宽带雷达信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与窄带雷达相比,宽带雷达在许多方面都具有优势。例如,可以获得更多的目标和环境信息,以实现目标成像或地形测绘,也有利于实现可靠的目标识别和分类;可以提高雷达对杂波中目标的检测能力;可以更加精确地测量目标的位置和运动参数;具有更好的电磁兼容性能,以对抗各种有源和无源干扰;具有更好的低截获性能;可以更加灵活地使用发射波形与目标和环境相匹配,以改善雷达的整体性能。因此,宽带雷达具有应对日益复杂的任务需求和战场环境的潜力,成为雷达发展的趋势。研究宽带雷达信号处理的基本理论和方法,具有重要的理论意义和工程价值。
     本文主要对宽带雷达信号处理中的目标检测、杂波抑制和目标回波的相参积累以及基于在线波形优化的宽带认知跟踪等三方面的基本理论和技术进行了深入研究。具体工作可概括为如下的五个部分:
     1.比较分析了宽带和窄带雷达在噪声中检测目标的性能。首先讨论了宽带与窄带雷达的雷达方程和目标散射截面积(RCS);随后,介绍了三种根据真实目标散射中心分布情况而抽象出的宽带雷达回波统计模型:宽带无起伏目标,宽带瑞利起伏目标及宽带莱斯起伏目标;然后推导了宽带和窄带雷达对符合这三种模型的目标的检测概率,指出宽带雷达的检测性能与窄带雷达相比,是由目标RCS起伏减小和检测器积累损失增加这一对矛盾因素共同决定的;最后得出结论:虽然理论上在高检测概率时宽带雷达的检测性能比窄带雷达高,但二者检测概率曲线的交点随包含目标回波的距离单元的增加而越来越高,使宽带雷达的检测优势失去意义。
     2.研究了在高斯杂波中基于单次回波的宽带雷达目标检测问题。首先分析了宽带雷达对杂波中的目标进行检测的优势和问题所在;接下来回顾了几种已有的基于单次回波的宽带雷达目标检测算法,并分析了它们各自的优点和存在的问题,以及实际中提高宽带雷达目标检测性能的难点在于无法获得待检测目标散射中心分布的先验信息;随后,从解决这一难点入手,提出了一种基于顺序统计量的宽带雷达目标序贯检测算法,从理论、仿真实验和实测数据验证三方面证明了该算法在完全不需要散射中心分布先验信息的条件下,对于散射中心稀疏分布的目标与以往的宽带雷达检测算法相比具有更好更稳健的检测性能。
     3.研究了非高斯时域相关杂波中基于多个相参脉冲回波的宽带雷达目标检测问题。首先介绍了宽带雷达目标多次相参脉冲回波的准确模型,并根据实际应用中的雷达和目标参数得到了其简化模型;然后介绍了球不变随机向量(SIRV)描述的非高斯宽带雷达杂波模型及其仿真方法;随后设计了基于广义似然比的宽带雷达目标广义自适应子空间检测器,对其性能进行了完整的理论分析,并提出了相应的高效实现算法;此外还考虑到实际目标可能还存在多普勒扩展的问题,设计了可对在距离和多普勒方向上都存在扩展的目标进行检测的宽带雷达检测算法;最后通过仿真实验验证了本章设计的检测器可以实现对宽带雷达目标回波的相参积累,与各种已有算法相比,显著提高了宽带雷达的检测性能。
     4.研究了基于子带处理的宽带雷达杂波抑制与目标回波相参积累的方法。首先根据宽带雷达杂波和目标回波的特点,指出了使用过采样滤波器组对宽带雷达回波进行子带分解的必要性,并介绍了相应的实现子带分解和综合的滤波器组的设计方法;随后指出宽带雷达实现杂波抑制和相参积累的目的并不仅仅像常规的窄带雷达那样是为了实现目标检测,而更重要的目的在于增强回波中的目标冲激响应,提高目标识别的可靠性,并根据这一要求设计了通过子带加权处理,从包含杂波的回波中重构目标冲激响应的最优和次优处理方法,最后通过仿真和实测数据验证了算法的有效性。
     5.研究了宽带雷达的认知跟踪问题。首先根据目标冲激响应的物理概念和特点,提出了采用宽平稳—不相关散射模型来描述雷达目标冲激响应及其动态模型;接下来根据这一模型首先研究了在时域设计最优跟踪波形的问题,并分析了它的不可实现性;随后提出了一种在频域设计次优跟踪波形的方法,并给出了它的实现算法;从实际雷达要求发射波形具有恒包络这一需求出发,还分别给出了在给定发射信号功率谱的情况下用相位驻点法和迭代加权最小二乘法设计恒包络信号的方法;最后,通过仿真实验说明,在一定条件下该方法可以减小宽带雷达跟踪时对目标参数的估计误差。
Wideband radars have many advantages over the narrowband radars, for instance, more information of the targets and environment, which can be used in imaging and mapping, additional reliable classification and recognition for the targets; stronger capability of target detection in clutter; more accurate measurements of the location and movement parameters of the targets; better electromagnetic compatibility and immunity to active and passive interference; low probability of interception and better secrecy of illumination; more flexible waveforms to match the targets and environments. So wideband radars have the potential to cope with the increasingly complex task and the battlefield environment, and become the trend of radar development. Research on the wideband radar signal processing is significant in both the theory and application.
     This dissertation is addressed on the wideband radar signal processing, and its scope covers the target detection, clutter suppression and target return coherent and cognitive tracking based on waveform agile on fly. The work of this dissertation can be surmmarized as the following five aspects:
     1. The target detection performances in noise of wideband and narrowband radar are analyzed and compared. Firstly, the radar equation and target radar cross section (RCS) of the wideband and narrowband radar are discussed; then three statistical models induced from the scattering of real targets are introduced: wideband nonfluctuating target, wideband Rayleigh target and wideband Ricean target; the detection probabilities of these three target models for wideband and narrowband radars are deduced, and we point out that the detection performance in noise of the wideband radar is determined by the tradeoff between the two opposite factors, that are the target RCS decrease of the target RCS and the increase of the integration loss; finally, we conclude that though the performance of the target detection in noise of wideband radars outperforms the narrowband radar under high signal-to-noise ratio (SNR) in theory, the cross-point of the two detection probability curves is too high, and the result is that the detection advantage of the wideband radar is meaningless for real targets.
     2. The problem of wideband radar target detection in Gaussian clutter by one pulse is researched. Firstly, the advantage and problem of detecting targets in clutter by wideband radar are discussed; several present algorithms are reviewed, additionally, their advantages and disadvantages are analyzed; then we point that the difficult of wideband radar detection is the absence of the knowledge about the spatial distribution of the target scattering centers in real applications; to overcome this difficulty we design a novel algorithm for wideband radar detection—order statistics based modified sequential testing (OSBMST); by theory analysis, simulations and actual target returns validations, we prove the OSBMST can achieve better and more robust performance than the present algorithms for sparse scattering target when the prior knowledge of the targets’scattering centers distribution is absent.
     3. The problem of wideband radar target detection in non-Gaussian clutter by the returns of multiple coherent pulses is researched. The precise and approximate models of wideband target return are introduced firstly; then the spherical invariant random vector (SIRV) model of non-Gaussian wideband clutter and the method of generation are presented; based on the target and clutter models we design the wideband radar generalized adaptive subspace detector based on the generalized likelihood ratio test (GLRT). The statistical properties of the detector are discussed completely and rigorously, and a high efficiency algorithm for the detector is designed. Additionally, the detector is expended to fit the wideband radar target with Doppler spread. Finally, the performances of the detector are verified by simulations. The results show that the detector we designed can integrate the target returns from multiple pulses coherently, and has much better performance than the present analogous detectors.
     4. The method of clutter suppression and targets return coherent integration based on subband processing is developed. Firstly, the necessity of analyzing the wideband returns into subbands by the oversampled filterbank is discussed based on the characters of the wideband target return and clutter, and then the method of filterbanks design is introduced; additionally, we show that the purpose of clutter suppression and coherent integration for wideband is to enhance the target impulse response in the returns to increase the reliability of the target recognition, rather than achieve higher signal-clutter-ratio as the narrowband radar; in the sequel, the optimal and suboptimal weights for clutter suppression and target enhancement in subband are designed. Finally, the validity of this method is proved by the results of simulations and actual returns processing.
     5. The problem of cognitive tracking by wideband radar is investigated. Firstly, the concept and properties of the target impulse response (TIR) are discussed and the wide sense stationary - uncorrelated scattering (WSS-US) model is introduced to describe the TIR and its dynamical model; the problem of optimal waveform design for tracking in time domain is researched, and its infeasibility is analyzed; then a suboptimal waveform designed method in frequency domain and its realization algorithm are proposed; additionally, according to the constant envelope requirement of the radar transmitter power amplifiers, two methods of constant-envelope waveform design in terms of given spectrum, namely, the stationary phase method and the iterative weight least square method are given; finally, we show that the method we proposed can decrease the estimation error for wideband radar tracking in some condition.
引文
[1] D. R. Wehner. High-Resolution Radar, 2nd ed. Boston, MA: Artech House, 1995.
    [2] James D, Taylor. P.E. Ultra-Wideband Radar Technology. New York: CRC Press, 2001.
    [3] L.Y. Astanin, A. A. Kostylev, Ultrawideband Radar Measurements: analysis and processing, London: The Institution of Electrical Engineers, 1997.
    [4] Kazimierz Siwiak, Debra McKeown. Ultra-Wideband Radio Technology. London: Weily, 2004.
    [5]张贤达,保铮.通信信号处理.北京:国防工业出版社,2001.
    [6] W. W. Camp, J. T. Mayhan, R. M. Odonnell. Wideband radar for ballistic missile defense and range-Doppler imaging of satellites. Lincoln Laboratory Journal. 2000, vol.12 (2). 267-279.
    [7]黄培康,殷红成,徐小剑.雷达目标特性.北京:电子工业出版社,2005.
    [8] H. L. van Tress, Detection, Estimation, and Modulation Theory (Part III):Radar-Sonar Signal Processing and Gaussian Signals in Noise. New York: John Wiley and Sons, 2001.
    [9] G. Y. Delisle, Haiqing Wu. Moving target imaging and trajectory computation using ISAR. IEEE Trans. Aerospace and Electronic Systems, 1994, vol.37 (3). 887-899.
    [10] Nanzhi Jiang, Renbiao WU, Jian Li, Super resolution feature extraction of moving targets. IEEE Trans. Aerospace and Electronic Systems, 2001, vol.37 (3).781-793.
    [11]刘宏伟,杜兰,保铮等.雷达高分辨距离像目标识别研究进展.电子与信息学报.2005, vol.27 (8).1328-1334.
    [12]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [13] P. K. Hughes. A high-resolution radar detection strategy. IEEE Trans. Aerosp.Electron. Syst. 1983, vol.19 (5). 663–667.
    [14] E. Conte, A.D. Maio and G. Ricci. GLRT-Based Adaptive Detection Algorithms for Range-Spread Targets. IEEE Trans. Signal Process. 2001, vol.49 (7). 1336–1348.
    [15] Y.D. Shirman, S. P. Leshchenko, V. M. Orlenko Advantages and Problems of Wideband Radar, Proc. of Intern. Radar-2003 Conf, Adwlaide.
    [16] S. Haykin. Cognitive radar: a way of the future. IEEE Signal Processing. Mag. 2006, vol. 23 (1). 30-40.
    [17] M. R. Bell. Information theory and radar waveform design. IEEE Trans. Inform. Technol. 1993, vol. 39(9). 1578-1597.
    [18] S. U. Pillai, H. S. Oh, J. R. Guerci and D.C. Youla. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inform. Technol. 2000, vol. 46(3). 577-584.
    [19] S. M. Sowelam, A.H. Tewfik, Waveform selection in radar target classification. IEEE Trans. Inform. Technol. 2000, vol. 46(5).1014-1029.
    [20] A. Leshem, O. Naparstek, A. Nehorai. Information theoretic adaptive radar waveform design for multiple extended targets. IEEE Journal of Selected Topics in Signal Processing. 2007, vol.1 (1). pp42-55.
    [21]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社.2005.
    [22] K. M. Cuomo, J. E. Piou, J. T. Mayhan. Ultra-wideband coherent processing, Lincoln Laboratory Journal. 1997, vol.10 (2). 203-222.
    [23] A. Hoffman, S. Kogon. Subband STAP in wideband radar systems. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000. 256-260.
    [24] A. O. Steinhardt, Nicholas B. Pulsone. Subband STAP Processing, the fifth generation. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000.1-6.
    [25] D.V. Rabinkin, Truong Nguyen. Optimum subband filterbank design for radar array signal processing with pulse compression. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000.315-321.
    [26] G. Raz, An approach to adaptive beamforming for wideband systems using subband decomposition. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000.300-305.
    [27] K. M. Cuomo, S. D. Coutts, J. C. McHarg, etc. Wideband aperture coherent processing for nest generation radar. Project report NG-3, Lincoln Laboratory ,July 2004.
    [28] S. Coutts, K. Cuomo, J. McHarg, F. Robey, etc. Distributed coherent aperture measurements for next generation BMS radar. Sensor array and multichannel signal processing, 2006, IEEE Workshop. 390-393.
    [29] G. A. van der Spek. Detection of a distributed target. IEEE Tarns. Aerosp. Electron. Syst.1971, vol.7 (5).922–931.
    [30] K. Gerlach, M. Steiner and F. C. Lin. Detection of a Spatially Distributed Target in White Noise. IEEE Signal Processing Letter. 1997, vol.4 (7).198–200.
    [31] K. Gerlach and M. J. Steiner. Adaptive Detection of Range Distributed Targets. IEEE Trans. Signal Process. 1999, vol.47 (7).1844–1850.
    [32] K. and M. J. Steiner. Fast Convergence Adaptive Detection of Doppler-Shifted Range-Distributed Targets. IEEE Trans. Signal Process. 2000, vol.48 (9). 2686–2670.
    [33] E. Conte and A. D. Maio, CFAR Detection of Distributed Targets in Non-Gaussian Disturbance, IEEE Trans. Aerosp. Electron. Syst. 2002 vol. 38(2). 612–621.
    [34] E. Conte and A. D. Maio, Distributed Target Detection in Compound-Gaussian Noise with Rao and Wald Tests, IEEE Trans. Aerosp. Electron. Syst. 2003, vol.39 (2). 568–582.
    [35] F. Bandiera, A. D. Maio, A. S. Gerco and G. Ricci. Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference. IEEE Trans. Signal Process. 2007, vol.55 (4). 1223–1237.
    [36] N. Bon, A. Khencharf and R. Garello. GLRT Subspace Detection for Range and Doppler Distributed Targets. IEEE Trans. Aerosp. Electron. Syst. 2008, vol.44 (2). 678–696.
    [37] A. Farina, F.A.Studer, Detection with high resolution radar: great promise, big challenge, Microwave Journal, 1991, vol.34 (5).263-273.
    [38] J. R. Guerci, S. U. Pillai, Adaptive transmission radar: the next‘wave’?. Proceedings of the IEEE 2000 National Aerospace and Electronics Conference, Dayton, OH, USA: IEEE. 779-786.
    [39] Yang Yang, R. S. Blum, MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 2007, vol. 43(1). 1–12.
    [40] N. A. Goodman, P. R. Venkata, M. A. Neifeld. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors. IEEEJournal of Selected Topics in Signal Processing.2007, vol.1 (1). 105-113.
    [41] S. P. Sira, D. Cochran, A. P. Suppappola, etc. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter. IEEE Journal of Selected Topics in Signal Processing. 2007, vol.1 (1). 56-66.
    [42] C. Y. Chen, P. P. Vaidyanathan. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 2009, vol.57 (9).3533–3544.
    [43] Kay. S. Waveform design for multistatic radar detection. IEEE Trans. Aerosp. Electron. Syst. 2009, vol.45 (3). 1153-1166.
    [44]刘永坦.雷达成像技术.北京:国防工业出版社.1999.
    [45]黄德双.高分辨雷达智能信号处理.北京:机械工业出版社.2001.
    [46] P. L. Shui, H. W. Liu, Z. Bao. Range-spread target detection based on cross time-frequency distribution features of two adjacent received signals. IEEE Trans. Signal Process. 2009, vol.57 (10).3733-3745.
    [47]孙文峰,何松华,郭桂蓉等.自适应距离单元积累检测方法及其应用.电子学报.1999, vol.27 (2).111-112.
    [48]黎海涛,徐继麟.基于广义似然比的高分辨雷达目标检测.系统工程与电子技术.2000, vol. 22(11). 5-7.
    [49]黄巍,贺知明,向敬成.宽带雷达能量积累与信号检测方法研究.系统工程与电子技术.2004, vol.26 (7). 889-892.
    [50]王彩云,许小剑,毛士艺.高分辨雷达中带宽对信号检测影响的研究.宇航学报.2006, vol.27 (5). 915-919.
    [51]顾新锋,简涛,何友等.一种基于散射中心密度的距离扩展目标检测方法.信号处理.2009, vol.25 (12). 1941-1945.
    [52]孟祥伟,曲东才,何友.高斯背景下距离扩展目标的恒虚警率检测.系统工程与电子技术.2005, vol. 27(6). 1012–1015.
    [53] Guan Jian, Zhang Yan-fei, Huang Yong. Adaptive subspace detection of range-distributed target in compound-Gaussian Clutter. Digital Signal Processing. 2009, vol. 19(1). 66-78.
    [54] Xiaofei Shuai, Lingjiang Kong, Jianyu Yang. Performance analysis of GLRT-based adaptive detector for distributed targets in compound-Gaussian clutter. Signal Processing. 90(2010).16-23.
    [1] James D, Taylor. P.E. Ultra-Wideband Radar Technology. New York: CRC Press, 2001.
    [2] K. Gerlach, M. Steiner and F. C. Lin. Detection of a Spatially Distributed Target in White Noise. IEEE Signal Processing Letter. 1997, vol.4 (7).198–200.
    [3]孟祥伟,曲东才,何友.高斯背景下距离扩展目标的恒虚警率检测.系统工程与电子技术.2005, vol. 27(6). 1012–1015.
    [4] G. A. van der Spek. Detection of a distributed target. IEEE Tarns. Aerosp. Electron. Syst.1971, vol.7 (5).922–931.
    [5] P. K. Hughes. A high-resolution radar detection strategy. IEEE Trans. Aerosp. Electron. Syst. 1983, vol.19 (5). 663–667.
    [6] E. Conte, A.D. Maio and G. Ricci. GLRT-Based Adaptive Detection Algorithms for Range-Spread Targets. IEEE Trans. Signal Process. 2001, vol. 49(7), 1336–1348.
    [7] Ghahramani M, Mohseni R, Sheikhi A, and Saeimanesh F. Optimum two-pulse UWB detector for different target fluctuation models. International Conference on Radar, Adelaide, 2008. 355–359.
    [8] D. R. Wehner. High-Resolution Radar, 2nd ed. Boston, MA: Artech House, 1995.
    [9]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社.2005.
    [10]韩传钊(译).合成孔径雷达—系统与信号处理.北京:电子工业出版社.2006.
    [11]黄培康,殷红成,徐小剑.雷达目标特性.北京:电子工业出版社,2005.
    [12] Y. D. Shirman. Computer simulation of aerial target radar scattering recognition, detection, and tracking. Boston: Artech House. 2002.
    [13] S. M. Kay. Fundamentals of Statistical Signal Processing Volume II: Detection Theory. New Jersey: Prentice Hall PTR. 1998.
    [14]《现代应用数学手册》编委会.现代应用数学手册:概率统计与随机过程卷.北京:清华大学出版社.2000.
    [15] Du Lan, Liu Hong-wei, Bao Zheng. A Two-Distribution Compounded Statistical Model for Radar HRRP Target Recognition. IEEE Trans. Signal Process. 2007, vol.55 (4). 1223–1237.
    [16] V. M. Orlenko, Y. D. Shirman. Non-Coherent Integration Losses of Wideband Target Detection. First European Radar Conference 2004, Amesterdam, Oct.2004. 225-228.
    [1] E. Conte, A.D. Maio and G. Ricci. GLRT-Based Adaptive Detection Algorithms for Range-Spread Targets. IEEE Trans. Signal Process. 2001, vol. 49(7).1336–1348.
    [2] P. K. Hughes. A high-resolution radar detection strategy. IEEE Trans. Aerosp. Electron. Syst. 1983, vol.19 (5). 663–667.
    [3]孟祥伟,曲东才,何友.高斯背景下距离扩展目标的恒虚警率检测.系统工程与电子技术.2005, vol. 27(6). 1012–1015.
    [4]郭启俊,刘劲,刘宏伟.基于时频融合的分布式目标的恒虚警率检测.雷达科学与技术.2007, vol.5 (1). 65-68.
    [5] K. Gerlach, M. Steiner and F. C. Lin. Detection of a Spatially Distributed Target in White Noise. IEEE Signal Processing Letter. 1997, vol.4 (7).198–200.
    [6] S. M. Kay. Fundamentals of Statistical Signal Processing Volume II: Detection Theory. New Jersey: Prentice Hall PTR. 1998.
    [7] B. C. Levy. Principles of Signal Detection and Parameter Estimation. MA, Boston: SPVU. 2008.
    [8] A. Papoulis, S. U. Pillai, Probability. Random Variables and Stochastic Process, 4th ed. New York: McGraw-Hill. 2002.
    [9] G. A. van der Spek. Detection of a distributed target. IEEE Tarns. Aerosp. Electron. Syst.1971, vol.7 (5). 922–931.
    [10] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed. California: Elsevier. 2007.
    [11] H. A. David, H. N. Nagaraja, Order Statistics, 3rd ed. New Jersey: Wiley. 2003.
    [12] V. Anastassopoulos, G. A. Lampropoulos, A. Drosopoulos etc. High Resolution Radar Clutter Statistics. IEEE Trans. Aerosp. Electron. Syst.1999, vol.35 (1).43-59.
    [1] E. Conte, A.D. Maio and G. Ricci. GLRT-Based Adaptive Detection Algorithms for Range-Spread Targets. IEEE Trans. Signal Process. 2001, vol. 49(7), 1336–1348.
    [2] F. Bandiera, A. D. Maio, A. S. Gerco and G. Ricci. Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference. IEEE Trans. Signal Process. 2007, vol.55 (4). 1223–1237.
    [3] E. Conte and A. D. Maio, CFAR Detection of Distributed Targets in Non-Gaussian Disturbance, IEEE Trans. Aerosp. Electron. Syst. 2002 vol. 38(2). 612–621.
    [4] Xiaofei Shuai, Lingjiang Kong, Jianyu Yang. Performance analysis of GLRT-based adaptive detector for distributed targets in compound-Gaussian clutter. Signal Processing. 90(2010).16-23.
    [5] E. Conte and A. D. Maio, Distributed Target Detection in Compound-Gaussian Noise with Rao and Wald Tests, IEEE Trans. Aerosp. Electron. Syst. 2003, vol.39 (2). 568–582.
    [6] K. Gerlach and M. J. Steiner. Adaptive Detection of Range Distributed Targets. IEEE Trans. Signal Process. 1999, vol.47 (7).1844–1850.
    [7] K. and M. J. Steiner. Fast Convergence Adaptive Detection of Doppler-Shifted Range-Distributed Targets. IEEE Trans. Signal Process. 2000, vol.48 (9). 2686–2670.
    [8] Guan Jian, Zhang Yan-fei, Huang Yong. Adaptive subspace detection of range-distributed target in compound-Gaussian Clutter. Digital Signal Processing. 2009, vol. 19(1). 66-78.
    [9] V. C. Chen, Fayin Li, Shen-Shyang Ho, etc. Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study. IEEE Trans. Aerosp. Electron. Syst. 2006, vol.42 (1). 2–21.
    [10] H. L. van Tress, Detection, Estimation, and Modulation Theory: Part III. New York: John Wiley and Sons, 2001.
    [11] N. Bon, A. Khencharf and R. Garello. GLRT Subspace Detection for Range and Doppler Distributed Targets. IEEE Trans. Aerosp. Electron. Syst. 2008, vol.44 (2).678–696.
    [12]张焕颖.高速运动目标ISAR成像方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [13] E. Conte, M. Longo. Characterisation of radar clutter as a spherically invariant random process. IEE Proceedings Radar, Sonar, Naving. 1987, vol.134 (2).191-197.
    [14] M. Rangaswamy, Donald Weiner, Aydin Ozturk. Non-Gaussian Random Vector Identification Using Spherically Invariant Random Process. IEEE Trans. Aerosp. Electron. Syst. 1993, vol.29 (1). 111–124.
    [15] M. Rangaswamy, Donald Weiner, Aydin Ozturk. Computer generation of correlated non-Gaussian radar clutter. IEEE Trans. Aerosp. Electron. Syst. 1995, vol.31 (1). 106–116.
    [16] W. H. Tranter. Principles of Communication Systems Simulation with Wireless Applications. New York: Prentice Hall. 2004.
    [17] S. Kraut, L. L. Scharf, L. T. McWhorter. Adaptive subspace detectors. IEEE Trans. Signal Processing. 2001, vol.49 (1). 1-16.
    [18] A. K. Fupta, S. Nadarajah. Handbook of Beta Distribution and Its Applications. New York: CRC Press. 2004.
    [19] E. J. Kelly, K. M. Forsythe. Adaptive detection and parameter estimation for multichannel signal models. Technical report of Lincoln Laboratory. MIT. 1989.
    [20] J. B. Billingsley. Low-Angle Radar Land Clutter: Measurements and Empirical Models. New York: William Andraw Publishing INC. 2002.
    [21] S. M. Kay. Fundamentals of Statistical Signal Processing Volume II: Detection Theory. New Jersey: Prentice Hall PTR. 1998.
    [22] J. G. Proakis, D. G. Manolakis. Digital Signal Processing, Principles, Algorithms, and Applications, 4th ed. New Jersey: Prentice Hall. 1996.
    [1]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [2] M. Zatman. How narrow is narrow?. IEE Proc-Radar, Sonar, Naving.1998, vol.145 (2). 85-91.
    [3]黄培康,殷红成,徐小剑.雷达目标特性.北京:电子工业出版社,2005.
    [4] A. O. Steinhardt, Nicholas B. Pulsone. Subband STAP Processing, the fifth generation. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000.1-6.
    [5] D.V. Rabinkin, Truong Nguyen. Optimum subband filterbank design for radar array signal processing with pulse compression. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000.315-321.
    [6] G. Raz, An approach to adaptive beamforming for wideband systems using subband decomposition. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000.300-305.
    [7] A. Hoffman, S. Kogon. Subband STAP in wideband radar systems. In Proceedings of the IEEE SAM Signal Processing Workshop, Cambridge, MA, March 2000. 256-260.
    [8]陶然,张惠云,王越.多抽样率数字信号处理理论及其应用.北京:清华大学出版社.2007.
    [9] H. H. Dam, S. Nordholm, A. Cantoni, etc. Iterative method for the design of DFT filter bank. IEEE Trans. Circuits and Systems-II: Express Briefs. 2004, vol. 51 (11).581-586.
    [10]胡广书.现代信号处理教程.北京:清华大学出版社.2004.
    [11] M. Harteneck, S. Weiss, R.W. Stewart. Design of near perfect reconstruction oversampled filter banks for subband adaptive filter. IEEE Trans. Circuits and Systems-II: Express Briefs.1999, vol.46 (8). 1081-1085.
    [12] M.A.Richards, Fundamentals of Radar Signal Processing. New York: MCGraw-Hill. 2005.
    [13] J. Benesty, Jingdong Chen, Yiteng Huang. Microphone Array Signal Processing. Berlin Heidelberg: Springer-Verlag. 2008.
    [14]程维虎,来向荣.复值随机变量的协方差与相关性.中央民族大学学报(自然科学版).2001,vol.10 (1). 19-21.
    [15] Simon. Haykin. Adaptive Filter Theory, 4th ed. New York: Prentice Hall. 2002.
    [16] Merrill. Skolink. An introduction and overview of radar 3rd.ed. London: McGraw-Hill.2008.
    [17] H. L. van Tress, Detection, Estimation, and Modulation Theory: Part III. New York: John Wiley and Sons, 2001.
    [1] S. Haykin. Cognitive radar: a way of the future. IEEE Signal Processing. Mag. 2006, vol. 23 (1). 30-40.
    [2] S. U. Pillai, H. S. Oh, J. R. Guerci and D.C. Youla. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inform. Technol. 2000, vol. 46(3). 577-584.
    [3] D. A. Garren, M.K.Osborm, A.C.Odom, J.S.Goldstein, etc. Enhanced target detection and identification via optimized radar transmission pulse shape. IEE Proceedings. 2001, vol. 148 (3). 130-138.
    [4] Kay. S. Waveform design for multistatic radar detection. IEEE Trans. Aerosp. Electron. Syst. 2009, vol.45 (3). 1153-1166.
    [5] M. R. Bell. Information theory and radar waveform design. IEEE Trans. Inform. Technol. 1993, vol. 39(9). 1578-1597.
    [6] S. M. Sowelam, A.H. Tewfik, Waveform selection in radar target classification. IEEE Trans. Inform. Technol. 2000, vol. 46(5).1014-1029.
    [7] A. Leshem, O. Naparstek, A. Nehorai. Information theoretic adaptive radar waveform design for multiple extended targets. IEEE Journal of Selected Topics in Signal Processing. 2007, vol.1 (1). pp42-55.
    [8] Yang Yang, R. S. Blum, MIMO radar waveform design based on mutualinformation and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 2007, vol. 43(1). 1–12.
    [9] N. A. Goodman, P. R. Venkata, M. A. Neifeld. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors. IEEE Journal of Selected Topics in Signal Processing.2007, vol.1 (1). 105-113.
    [10] C. Y. Chen, P. P. Vaidyanathan. MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 2009, vol.57 (9).3533–3544.
    [11] L.Y. Astanin, A. A. Kostylev, Ultrawideband Radar Measurements: analysis and processing, London: The Institution of Electrical Engineers, 1997.
    [12] G. Y. Delisle, Haiqing Wu. Moving target imaging and trajectory computation using ISAR. IEEE Trans. Aerospace and Electronic Systems, 1994, vol.37 (3). 887-899.
    [13] Matthias Patzold. Mobile Fading Channels. London: Wiley. 2002.
    [14] S. M. Kay. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory. New Jersey: Prentice Hall PTR. 1993.
    [15]张贤达.矩阵分析与应用.北京:清华大学出版社.2004.
    [16] H. L. van Tress, Detection, Estimation, and Modulation Theory: Part III. New York: John Wiley and Sons, 2001.
    [17] D. G. Manolakis, V. K. Ingle, S .M. Kogon. Statistical and adaptive signal processing. London: Artech House. 2005.
    [18] R. K. Sundaram. A first course in optimization theory. Cambridge: Cambridge University Press. 1996.
    [19] S. S. Rao. Engineering Optimization: theory and Practice, 4th ed. London: Wiley. 2009.
    [20] Nadav Levanon, Eli Mozeson. Radar signals. New Jersey: Wiley. 2004.
    [21] E.N.Foelw. The design of FM Pulse Compression Signals. IEEE Trans. Information Theory. 1964, vol. IT-10 (1). 61-67.
    [22] Mathias Lang. Algorithms for the constrained design of digital filters with arbitrary magnitude and phase response. Doctoral dissertation of Vienna University of Technology. 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700