脉冲及脉间二相编码雷达高度表信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹载雷达高度表具有与传统雷达和传统雷达高度表不同的特点。其主要表现在目标回波时域波形(脉冲)的展宽和宽的多普勒频谱。如此特点也决定了其目标检测与处理方法会有所不同。
     传统的弹载脉冲雷达高度表(非相干)目标检测算法大都借助于点目标的二进制积累检测方法。算法的简单移植,使其在自动检测性能方面存在不足。因此,基于对雷达高度表面目标的二进制积累检测算法的研究显得尤为重要。就此本文提出了两种满足不同性能要求的检测算法,同时给出了相应的算法性能分析工具。
     随着对大地回波频域等特征研究的进一步深入,为弹载脉冲多普勒雷达高度表的研究提供条件。传统弹载脉冲多普勒雷达高度表大都采取了距离、速度二维选通处理方法。尽管通过对较宽频带范围的多普勒信号的能量进行积累平均,但较宽的多普勒滤波器带宽极大限制了其信号检测处理性能的提高,固定的多普勒滤波器带宽也大大降低高度表应用的灵活性。同时为避免速度模糊而引入高重频脉冲致使测高模糊增加。除此之外,简单脉冲多普勒体制高度表也很难满足现代复杂电磁环境下抗干扰能力的要求。因此,寻找一种有效的脉冲多普勒雷达高度表波形和与此相应的高性能目标检测处理算法是本文研究的另一个重点。因此,本文给出了一种新的雷达高度表波形——高重频脉间二相编码信号。通过对高重频脉间二相编码波形及其高度表目标回波信号的分析研究,提出了三种不同的目标检测、处理算法。在此基础上,设计、实现了基于频域多普勒滤波峰值检测的目标检测处理系统。处理算法硬件测试结果表明:该编码波形和信号处理算法完全满足弹载雷达高度表总体设计要求。
     为了客观评估脉间二相编码雷达高度表目标检测处理算法及其硬件的性能,提出了基于大地目标回波仿真的雷达高度表正交基带回波模拟系统,并完成该系统的设计、实现。
     本文完成的主要工作有:
     1.对垂直入射条件下,宽波束脉冲雷达高度表回波模型、距离域以及多普勒域回波特征进行全面的分析研究,据此对脉冲雷达高度表非相干积累检测和相
Airborne radar altimeter, as a special applied domain, has different operation characteristics from conventional radar and radar altimeter. Time waveform and Doppler spectrum spread are significant points. Such characteristics will lead to different signal detection and processing methods.Researching on ground echo model and its distinctions of time domain are relative maturity in airborne incoherent pulse altimeters, incoherent pulse system is popular in early-stage(at present, such system is widespread availability).Corresponding algorithm adopted in target detection and processing borrows ideas from classical point-based target's pulse radar system, such as: The binary integration detection (BI or M/N detection or double threshold detection) etc. Such simple algorithms transplant will make radar altimeter's target detection performance fall down. So studying on area target's detection algorithms for airborne pulse radar altimeter seem to be important. The content concerned is one of the tasks of this dissertation.Along with the technical development in modern radar and further researches on ground echo frequency domain characteristics, all achievements are prerequisite for developing airborne pulse Doppler radar altimeter. At the present, range correlation and velocity filtering processing methods are adopted in most of modern airborne pulse Doppler radar altimeters. Having wide Doppler filter width comparing to airborne pulse Doppler radar Doppler filter, signal processor has low performance. Meantime, it is fixed Doppler filter band that restrict airborne altimeter's flexibility. On the other hand, high repeat frequency for avoiding measuring velocity blurriness leads to high range blurriness. Moreover, simple pulse Doppler radar altimeter system can't satisfy the demands for anti-jamming in complex electromagnetic environment. So studying on a kind of waveforms adapting to airborne pulse Doppler radar altimeter and corresponding signal processing algorithms is major task in this dissertation.
    In order to estimate performance of target detecting algorithm and its hardware Objectively, an orthogonal base-band echo simulator system based on ground echo simulation is put forward. And simulator system's hardware design and implementation have been finished.Main contents in this dissertation include:1 After studying time and frequency domain echo model and its characteristics for airborne pulse radar altimeter in beam lobe vertical incidence, then target detection and processing algorithms for non-coherent and coherent integration are studied emphatically.2 According to altimeter echo pulse spread in distance, two types of target detection methods, multi-range gate BI detection & double integrator BI detection, are put forward. The former improve detection performance and measurement accuracy of height by means of optimizing weighting factor in adjacent range gate. And the latter has high performance with lower false alarm probability by block integrating. In addition, assessment of detection algorithm performance based on Markov chain is a unique feature.3 Through analyzing echo Doppler spectrum of airborne pulse radar altimeter, relative complete model of echo simulation and its simulation program is created. This program can simulate target echo signal from maximal beam-lobe illuminating circle and clutter loop from blurred range in different height. All these are important for target detection algorithms investigated.4 In response to requirement of radar altimeter's target detection performance, a kind of high PRF inter-pulse m sequence binary phase-coded waveform which combines all advantages of coherent pulse train and m sequence binary phase-coded signal has been presented. Not only does the waveform satisfy pulse Doppler radar altimeter demands, but also has high range and velocity resolution and measuring precision. Meantime, this waveforms signal can solve velocity and range's measuring blurriness better. On the other hand, high anti-interference performance can be obtained.5 Three types of target detection algorithms, including their performance and
引文
[1] R. K. Moore & C. S. Williams, "Radar Terrain Return at Near-Vertival Incidence", Proceeding of IRE 1957, pp28-238
    [2] Edsion A R, Moore R K, and Warner B D, "Radar Terrain Return Measured at Near Vertical Incidence", IEEE Transaction on Antennas and Propagation, 1960, 8(3), pp246-254
    [3] Warner B D, "Radar Terrain Return from the Spherical Earth at Near Vertical Incidence", AD260172, 1961
    [4] L. M. Spetner and I. Katz, "Two statistical Models for Radar Terrain Return", Transaction on Antennas and Propagation, 1960, 8(3), pp242-246
    [5] 彭定之,陈惠连等,雷达引信导论,中国过程物理研究院科技丛书,1998
    [6] 朱启明著,雷达高度表设计理论基础,北京.国防工业出版社,1992
    [7] 频率捷变脉冲多普勒雷达高度计设计方案,电子科技大学706教研室,1990
    [8] 抗干扰脉冲多普勒雷达高度表方案设计报告,西安电子科技大学,1990
    [9] Gary S. Brown, "The Average Impulse Response of a Rough Surface and Its Application", IEEE Trabsaction on Antennas and Propagation, Vol. AP-25 No. 1, January 1977, pp67-74
    [10] Thomas C. Sheives and Michael W. Callahan, "A Study of High-Altitude Radar Altimeter Model Accuracy and SITAN Performance Using HAAFT Data", SAND79-1380
    [11] 向敬成等,信号检测与估计,北京:国防工业出版社,1991
    [12] 向敬成等,雷达系统.北京:电子工业出版社,2001
    [13] 向敬成等,信号理论,成都电讯工程学院出版社,1985
    [14] Harry L. Van Tress, "Detection, Estimation And Modulation Theory, Part Ⅲ Radar-sonar Signal Processing and Gaussion Signal in Noise", John Wiley and Sons Inc. 1971
    [15] DiFranco,J. and Rubin, W, "Radar Detection", Artch House, 1968
    [16] Mark R. Bell, "Contiguous Pulse Binary Integration Analysis", IEEE Transactions on AES, 1996, Vol. 32, No. 3, pp923—933
    [17] Jack M. Miller, "An Alternative Method for Analyzing the Double Threshold Detector", IEEE Transactions on AES, 1985, Vol. 21, NO.4, pp508-513
    [18] Frank R. Castella, "Sliding Window Detection Probabilities" , IEEE Trans on AES, 1976, Vol.12, pp815-819
    [19] Mark A. Weiner, "Binary Integration of Fluctuating Targets" , IEEE Transactions on AES-27No.l January 1991, pp.11-17
    [20] N. Levanon, " Analytic Comparison of Four Robust Algorithms for Post-detection Integration" , IEE Proceeding-F, Vol. 139,No.l February 1992,pp67-72
    [21] Thomas L.FreyJR, "An Approximation for the Optimum Binary Integration Threshold for Swerling II Targets" , IEEE Transactions on AES Vol.32, NO.3, July 1996, ppll81-1185
    [22] P.Van Genderen and W.J.H.Meijer, "Non Coherent Integration in a Medium PRF Radar" , IEEE International Radar Conference, 1995, pp91-94
    [23] C.E.Cook and M.Bernfeld, "Radar Signal" , Academic Press, 1967
    [24] Eli Mozeson and Nadav Levanon, "MATLAB Code for Plotting Ambiguity Functions" , IEEE Transactions on Aerospace and Electronic Systems Vol.38, No.3, July 2002, pp 1064-1068
    [25] Nadav Levanon and Avraham Freedman, "Periodic Ambiguity Function of CW Signals with Perfect Periodic Autocorrelation" , IEEE Trans on AES Vol.28,No.2, April, 1992, pp387-394
    [26] William Blau,"Radar Partial Coherence Theory:An Introduction", IEEE Trans on AES Vol.2, No.5, September, 1966, pp536-543
    [27] David W. Greig, "A Monte Carlo Detection Model for Airborne Pulse Doppler Radar" , IEEE International Radar Conference 2000, pp219-222
    [28] Jim D. Echard, "Estimation of Radar Detection and False Alarm Probabilities" , IEEE Transactions on AES Vol.27, NO.2 , March 1991, pp255-260
    [29] Anne Lee and Michael Mason, "Matlab Simulation for Computing Probability of Detection", IEEE International Radar Conference, 2002, pp478-483
    [30] R.L.Mitchell, "Importance Sampling Applied to Simulation of False Alarm Statistics", IEEE Transaction on AES-17, No.1, January 1981, ppl5-24
    [31] AndrewJahns, "Precise Detection Statistics by Probability Transform Simulation, Applied to A Hard-limited Radar Receiver" , IEEE International Radar Conference 2000, pp410-415
    [32] David A. Shnidman, "Determination of Required SNR Values" , Transactions on Aerospace
     and Electronic Systems Vol. 38, No. 3, July 2002, pp1059-1064
    [33] 朱华,黄辉宁等,随机信号分析,北京理工大学出版社,1990年
    [34] Harry Urkowitz, "Energy Detection of Unknown Deterministic Signals", Proceedings of the IEEE. Vol. 55, No. 4, April 1967, pp523-531
    [35] D. Curtis Schleher, "Solving Radar Detection Problems Using Simulation", IEEE AESS Ststems Magazine, April 1995, pp36-39
    [36] C. S. Williams, "Ground Echo Characteristics for a Ground-Target Pulse Doppler Radar Fuze of High Ratio", SLA-735997
    [37] Richard F. Broderick, "Doppler Return from a Rough Surface", IEEE Transactions on AES-5. NO. 3, May 1969, pp441-449
    [38] R. H. Clarke and G. O. Hendry, "Prediction and Measurement of the Coherent and Incoherent Power Reflected from a Rough Surface", IEEE Trans on AP, May 1964, pp353-362
    [39] Alan L. Friedlander and Larry J. Greenstein, "A Generalized Clutter Computation Procedure for Airborne Pulse Doppler Radars", IEEE Transaction on AES Vol. 6, No. 1, January 1970, pp 51-61
    [40] J. L. Farrell, "Doppler Radar Clutter", IEEE Transactions on Aerospace and Navigational Electronics September 1964, pp 162-172
    [41] MdianiGCorsin, Fberizzi, D. calugi, "Ground Clutter Model for Airborne MPRF Radars in Look-down Search Mode", IEE Proc.-Radar, Sonar Navig, Vol. 143, No. 2, April 1996, pp113-120
    [42] J. Patrick Reilly, "Clutter Rejection Limitations from Ambiguous Range Clutter", IEEE International Radar Conference, 1990, pp195-200
    [43] J. Robert Jensen, "Radar Altimeter Gate Tracking: Theory and Extension. "IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, March 1999, pp651-658
    [44] R. Keith Raney, "The Delay/Doppler Radar Altimeter", IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, Sept. 1998, pp1578-1588
    [45] G Picardi, C Dai, Rseu and A Coradini, "Multimode Radar Altimeter", Proceeding of IGARSS'98 Symposium, pp993-994
    [46] 毛士艺等,脉冲多普勒雷达,北京:国防工业出版社,1990年
    [47] G. V. Trunk, W. B. Gordon and B. H Cantrell, "False Alarm Control Using Doppler Estimation", IEEE Transactions on AES, Vol. 26, No. 1, January 1990, pp 146-152
    [48] Nadav Levanon and B. Getz, "Comparison Between Linear FM and Phase coded CW Radar", IEE Proceeding Radar, Sonar Navig. Vol. 141, No. 4, August 1994, pp230-240
    [49] 陈付彬,张军,鲁力,“弹载高重频PD雷达对频率展宽信号的检测及精确测量”,现代雷达,2002年3月第二期,pp63—66
    [50] 冯健雄,向敬成,“雷达高度计系统模拟及目标信号检测”,系统工程与电子技术,1995年,第9期,pp49-56
    [51] Wei G., Xiaohui Z., Heguang L, "Development of Return Signal Simulator for Chinese Satellite Altimeter Test and Calibration", 2002 IEEE International Geoscience and Remote Sensing Smposium, pp3658-3660
    [52] Peter R. Boord and Noel M. Martin, "Simulation of an Electromagnetic Environment for Performance Analysis of Radar Receivers", International Symposium on Signal Processing and its Applications, ISSPA, Gold Coast, Australia, 1996, pp129-130
    [53] 杨宏宇,“PCPD雷达高度表最佳码型研究”,西安电子科技大学硕士论文,1997
    [54] 孙锦涛等,“伪随机码连续波雷达作用距离的计算”,现代雷达,Vol-3.1995,pp17-26
    [55] Damian F. Albanese and Albert M. Klein, "Pseudorandom Code Waveform Design for CW Radar", IEEE Transaction on AES-15, NO. 1, January 1979, pp 67-75
    [56] Sune R. J. Axelsson, "Suppressed Ambiguity in Range by Phase-Coded Waveforms", 2001 IEEE International Geoscience and Remote Sensing Symposium, IGARSS'01, pp2006-2009
    [57] B. Plantier, "Doppler Processing for Phase-coded Continuous Wave", IEEE International Radar Conference 1987, pp320-324
    [58] 张直中,雷达信号的选择与处理,北京:国防工业出版社,1979年
    [59] Nadav Levanon, "CW Alternatives to the Coherent Pulse Trains-Signals and Processors", IEEE Transactions On AES Vol. 29, No. 1, Jan. 1993, pp250-255
    [60] P. E. Holbourn and A. M. Kinghorn, "Performance Analysis of Airborne Pulse Doppler Radar", IEEE International Radar Conference 1985, pp12-16
    [61] Robert M. Lerner. "A Matchede Filter Detection System for Complicated Doppler Shifted Signals", IRE Transactions on IT, June 1960, pp373-385
    [62] Shawn W. Hogberg, Jennte SI, "Decimating Pseudorandom Noise Receiver", IEEE Transations on AES, VOL. 35, NO. 1, January 1999, pp338-343
    [63] Nicholas J. Bucci and Harry Urkowitz, "Testing of Doppler Tolerant Range Sidelobe Suppression in Pulse Compression Meteorological Radar", IEEE International Radar Conference 1993, pp206-211
    [64] F. R. Castella and S. A. Rudie, "Detection Performance of Phase-coded Radar Waveforms with Various Types of Limitin.", IEE Proceedings, Vol. 136, Pt. F. No. 3, June 1989, pp118-124
    [65] David C. Lush, "Airborne Radar Analysis Using The Ambiguity Function", IEEE International Radar Conference 1990, pp600-605
    [66] B. S. Sharif, "Adaptive Doppler Compensation for Coherent Ascousti Communication", IEE Proceedings Radar, Sonar Navig. Vol. 147, No. 5, October 2000, pp239-246
    [67] Yuping Cheng, Zheng Bao, Pufu Zhao and Zhiping Lin, "Doppler Compensation for Binary Phase-coded Waveforms", IEEE Transactions on Aerospace and Electronic Systems Vol. 38, No. 3, July 2002, pp1068-1072
    [68] Martin H. Ackroyd & F. Ghani, "Optimum Mismatched Filters for Sidelobe Suppression", IEEE Transaction on AES-9 No. 2, March 1973, pp214-218
    [69] Galati G., Orsini M, "Doppler-tolerant digital pulse Compression with Minimized Hardware", IEEE International Radar Conference 1984, pp22-28
    [70] J. P. Larvor, "Digital Pulse Compression with Low Range Sidelobes", IEEE International Radar Conference 1992, pp391-394
    [71] Reiji Sato and Masanori Shinriki, "Time Sidelobe Reduction Technique for Binary Phase Coded Pulse Compression", IEEE International Radar Conference. 2000, pp809-814
    [72] 张鹤飞等,“二相PN码在分布式雷达系统中应用”,现代雷达,1996年第5期,pp21-31
    [73] 贾鸿志等,“扩展二相码信号多谱勒容限方法研究”,现代雷达,1994年第3期,pp44-52
    [74] S. E. Craig, W. Fishben, "Continuous-Wave Radar with High Range Resolution and Unambiguous Velocity Determination", IRE Trans. on MIL, Vol. 6 NO. 2, April 1962, pp??-??
    [75] Mark W. Maier, "Airbone Clutter Performance of Randomized Radar Waveforms", IEEE Transactions On AES-31 No. 3, July 1995, pp951-958
    [76] David Silber, "Performance of Pseudorandom Binary Phase Code with Errors and Doppler-Shift CW", IEEE Transactions on AES-17 No. 6, November 1981, pp786-794
    [77] Zoraster S. "Minimum Peak Range Sidelobe Filters for Binary Phase-coded Waveform", IEEE Transaction on AES-16 No. 1, January 1980, pp 112~115
    [78] Alan L. Friedlander, and Larry J. Greenstein, "A Generalized Clutter Computation Procedure for Airborne Pulse Doppler Radars", IEEE Transaction on AES-6 VOL.AES -6,NO.1, January 1970, pp51-61
    [79] 彭霞,“弹载雷达高度表回波模拟器研究”,成都:电子科技大学硕士论文,2003
    [80] R. D. Crowley and D. M. Walker. "Digital Signal Processing in a SpaceBorne Radar Altimeter", The Processings of the 5th International Conference on Signal Processing Applications and Technology, Vol. 2, Dallas, October 1994, pp1338-1342
    [81]. M. Nayebi, M. R. Aref and M. H. Bastani, "Detection of Coherent Radar Signals With Unknown Doppler Shift", IEE Proceedings-Radar, Sonar Navig. Vol. 143, No. 2, April 1996, pp79-86
    [82] L. T. Younkins, "The Application of Doppler Estimation Techniques to Phase-coded Radar with Short Observation Times", IEEE internation Rada Conference 199?, pp375-378
    [83] G. V. Morris等,机载脉冲多普勒雷达,北京:航空工业出版社,1990
    [84] 王飞雪,郭桂蓉,“二相编码信号分段相关—视频积累检测的最优中频积累时间”,国防科技大学学报,第21卷(Vol.31),第一期(No.1),1999,pp71-75
    [85] M. Saint-Venant, S. Mouty, J. Assaad, F. Lefebvre, "Detection of Multiple Signal Echoes with a One Bit Correlator Receiver", 2000 IEEE intelligent Transportation Systems Conference Preceedings, pp 196-201
    [86] Spillard, S. M. Spangenberg and G. J. R. Povey, "A serial-parallel FFT correlator for PN Code acquisition from LEO satellites", IEEE Fifth International Symposium on Spread Spectrum Techniques and Applications, South Africa, September 1998, pp446-448
    [87] James Tsui, "Digital Techniques for Wideband Receivers", Artech House Inc., 2001
    [88] James A. Scheer and James L. Kurtz, "Coherent Radar Performance Estimation", Artech House Boston. London, 1993
    [89] Mark A. Richards, "Coherent Integration Loss due White Gaussian Phase Noise", IEEE Signal Processing Letters 2003(Vol-10, No. 7), pp208-210
    [90] Uwe Meyer-Baese著.刘凌,胡永生译,“Digital Signal Processing With Field Programmable Gate Arrays”,清华大学出版社,2003
    [91] Ray Andraka and Andrew Berkun, "FPGAs Make a Radar Signal Processor on a Chip a Reality", Proceedings of the Asilomar Conference on Signal, Systems, and Computers, Oct. 1999, Monterey, CA, USA
    [92] Magnus Nilsson, "FFT Realization and Implementation in FPGA. Signal Processing Lab.", School of Microelectronic Engineering, Griffith University 2000/2001. Tech. Report, No. FX/D-2001:007
    [93] R L Walke, J. Dudley and D.Sadler, "An FPGA based digital Radar Receiver for Soft Radar", 34th Asilomar Conference on Signals, Systems and Computers 2000, pp73-77
    [94] Robert D. Turney, Chris Dick, David B. Parlour, and James Hwang, "Modeling and Implementation of DSP FPGA Solution", Xilinx Inc. 1999
    [95] R. J. Andraka and R. M. Phelps, "An FPGA Based Processor Yields a Real Time High Fidelity Radar Environment Simulato", Andraka Consulting Group Inc.
    [96] Jean-Luc Danger, Adel Ghazel, Emmanuel Boutillon, "Efficient FPGA Implementation of Gaussian Noise Generator for Communication Channel Emulation", 2000 IEEE Intelligent Transportation Systems Conference Proceedings, pp366-369
    [97] R. J. Andraka., "A Survey of CORDIC Algorithms for FPGA based Computers", Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Filed Programmable Gate Arrays, Feb. 22-24, 1998, Monterey, CA, pp191-200
    [98] 胡国荣,韩月秋,毛二可,“基于专用集成电路的雷达动目标检测信号处理器”,电子学报,Vol.26,No.4,1998.4,pp36-40
    [99] 高梅国,潘军等,“三种信号处理器的CPLD设计”,电子技术应用,1999年第3期,pp9-11
    [100] Petter Fanden, "Evaluation of Xilinx System Generator", LITH-ITN-ED-EX-2001 02-SE.Department of Science and Technology Linkoping University, Sweden
    [101] Raymond J. Andraka, "Buliding a High Performance Bit Serial Processor in an FPGA", Andraka Consulting Group, 1995
    [102] Keshab K. Parhi, "VLSI Digital Signal Processing Systems",机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700