高品质量子点单光子源和自旋光子界面
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要讨论了基于半导体量子点的确定性单光子源,拉曼单光子源,自旋-光子纠缠等相关的研究课题。主要研究成果如下:
     1.在国际上首次实现了基于量子点脉冲共振荧光的确定性高品质单光子源,实验产生的单光子源信噪比超过300:1,二阶关联函数小于1.5%,光子全同性优于97%,打破了保持了10年的光子全同性最高只能达到70%的记录,解决了单光子确定性和高不可分辨性这两个基本问题。这是我国在量子点光学量子调控领域发表在《自然》系列期刊上第一篇论文。
     2.在实验上首次产生了可以超越表面编码容错界限的单光子源,在实验中首次验证了量子点在正啁啾脉冲激发下单光子的确定性以及稳定性,产生的单光子性优于99%,双光子干涉对比度优于99.5%。
     3.在国际上首次验证了基于半导体量子点的拉曼单光子的高度全同性,并实现了两个独立量子点发射光子的高保真度Hong-Ou-Mandel干涉。工作中实现了两个相距1.5m的量子点的拉曼光子干涉,创造了国际最高水平的87%的干涉对比度。
     4.在实验上首次检验了量子点固态介观系统中的量子非局域性。实验中利用相位电光调制技术成功突破光子进动的限制,实现了对量子点自旋与光子的纠缠探测,并检验了量子点自旋、光子极化、光子频率纠缠GHZ态的非定域性。
     5.首次在实验中观察到类原子系统中由于自发辐射抑制产生的量子相干和谱线擦除现象。该研究工作不仅实现了在半导体量子点系统中对量子相干等基本理论的检验,同时可以在实验上实现超窄线宽荧光光子的发射。
In the thesis, we have discussed the deterministic and robust generation of pulsed resonance fluorescence single photons, Raman photons and spin-photon entanglement. The main results are as follows:
     1. we have demonstrated the on-demand generation of near background-free (~99.7%purity) and highly indistinguishable RF single photons from a quantum dot in a planar microcavity driven by resonant π pulses. The RF photons show an antibunching of f2(0)=0.012(2). Non-postselective HOM two-photon interference has revealed near-unity visibilities (~97%). Our work on so-called s-shell pulsed excitation in quantum dots is the first to go beyond the previous record holding p-shell pulsed excitation technique developed10years ago by Yoshihisa Yamamoto's team at Stanford Uni-versity. This is the first work in the field of quantum dot related optical quantum control published in "Nature" series for the research groups in China.
     2. We demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single InGaAs quantum dot using the method of rapid adiabatic passage. The generated single photons are back-ground free, have a vanishing two photon emission probability of0.3%and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of97.9%(99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing.
     3. All-optically tunable and highly indistinguishable single Raman photons from a driven single quantum dot spin are demonstrated. The frequen-cy, linewidth, and lifetime of the Raman photons are tunable by varying the driving field power and detuning. Hong-Ou-Mandel interference is demon-strated between two single photons emitted from remote, independent quan-tum dots with an unprecedented visibility of0.87(4).
     4. The first observation of GHZ type entanglement in a single quantum dot is demonstrated. The measurements of reconstructed electron-spin, photon-frequency, photon-polarization entangled states(GHZ) confirm the conflict between quantum mechanical and local realistic predictions in the solid-state platform.
     5. We report the first experimental demonstration of interference induced spec-tral line elimination and dynamical suppression of spontaneous emission. Our achievement provides a versatile knob to control and modulate the spontaneous emission process and open the way to obtain spectral line nar-rowing.
引文
[1]Jian-Wei Pan, Zeng-Bing Chen, Chao-Yang Lu, Harald Weinfurter, Anton Zeilinger, and Marek Zukowski. Multi-photon entanglement and interferometry. Rev. Mod. Phys,2012,84:777-838 (2012).
    [2]Nicolas Gisin, Gregoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Rev. Mod. Phys,2002,74:145-195.
    [3]Lo Hoi Kwong, Ma Xiongfeng, Chen Kai. Decoy State Quantum Key Distribution. Physical Review Letters,2005,94:230504-1-230504-4.
    [4]B. Huttner, N. Imoto, N. Gisin, and T. Mor. Quantum cryptography with coherent states. Physical Review A,1995,51:1863-1869.
    [5]Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod.Phys,2007,79:135-174.
    [6]Kimble H J, Dagenais M, Mandel L. Photon antibunching in resonance fluorescence. Physical Review Letters,1977,39:691-695.
    [7]P. Michler, A. Imamolu, M. D. Mason, P. J. Carson, G. F. Strouse and S. K. Buratto. Quan-tum correlation among photons from a single quantum dot at room temperature. Nature,2000, 406:968-970.
    [8]P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. I-mamoglu. A quantum dot single-photon turnstile device. Science,2000,290:2282-2285.
    [9]Charles Santori, Matthew Pelton, Glenn Solomon, Yseulte Dale, and Yoshihisa Yamamoto. Trig-gered ingle photons from a quantum dot. Physical Review Letters,2001,86:1502-1505.
    [10]Charles Santori, David Fattal, Jelena Vukovi, Glenn S. Solomon and Yoshihisa Yamamoto. Indis-tinguishable Photons from a Single-Photon Device. Nature,2002,419:594-597.
    [11]Zhiliang Yuan, Beata E. Kardynal, R. Mark Stevenson, Andrew J. Shields, Charlene J. Lobo, Ken Cooper, Neil S. Beattie, David A. Ritchie, Michael Pepper. Electrically driven single photon source. Science,2002,295:102-105.
    [12]Th. Basche, W. E. Moerner, M. Orrit, and H. Talon. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Physical review letters,1992,69:1516-1519.
    [13]Christian Kurtsiefer, Sonja Mayer, Patrick Zarda, and Harald Weinfurter. Stable solid-state source of single photons. Physical Review Letters,2000,85:290-293.
    [14]J. Kim, O. Benson, H. Kan and Y. Yamamoto. A single-photon turnstile device. Nature,1999, 397:500-503.
    [15]Sonia Buckley, Kelley Rivoire, Jelena Vuckovic. Engineered quantum dot single-photon sources. Rep. Prog. Phys,2012,75:126-503.
    [16]R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie and A. J. Shields. A semiconductor source of triggered entangled photon pairs. Nature,2006,439:179-182.
    [17]C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields. An entangled-light-emitting diode. Nature,2010,465:594-597
    [18]A. Nick Vamivakas, Yong Zhao, Chao-Yang Lu and Mete Atature. Spin-resolved quantum-dot resonance fluorescence. Nature Physics,2009,5:198-201.
    [19]E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo and C. K. Shih. Resonantly driven coherent oscillations in a solid state quantum emitter. Nature physics,2009,5:203-206.
    [20]A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih. Resonance Fluorescence from a Coherently Driven Semiconductor Quantum Dot in a Cavity. Physical Review Letters,2007,99:187402-1-187402-4.
    [21]M Kroutvar, Y Ducommun, Dominik Heiss, M Bichler, D Schuh, G Abstreiter,and J J Finley. Optically programmable electron spin memory using semiconductor quantum dots. Nature,2004, 432:81-84.
    [22]A. Greilich, D. R. Yakovlev, A. Shabaev, Al. L. Efros, I. A. Yugova, R. Oulton.V. Stavarache, D. Reuter, A. Wieck, and M. Bayer. Mode Locking of Electron Spin Coherences in Singly Charged Quantum Dots. Science,2006,313:341-345.
    [23]M. Atature, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and A. Imamoglu. Quantum-dot spin-state preparation with near-unity fidelity. Science,2006,312:551-553.
    [24]A. N. Vamivakas, C. Y. Lu, C. Matthiesen, Y. Zhao, S. Fait, A. Badolato and M. Atature. Obser-vation of spin-dependent quantum jumps via quantum-dot resonance fluorescence. Nature,2010, 467:297-300.
    [25]David Press, Thaddeus D. Ladd, Bingyang Zhang and Yoshihisa Yamamoto. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature,2008,456:218-221.
    [26]J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom. Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot. Science,2008,320:349-352.
    [27]W. B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez and A. Imamoglu. Observation of entanglement between a quantum dot spin and a single photon. Nature,2012,491:426-430.
    [28]Kristiaan De Greve, Leo Yu, Peter L. McMahon, Jason S. Pelc, Chandra M. Natarajan, Na Y-oung Kim, Eisuke Abe, Sebastian Maier, Christian Schneider, Martin Kamp, Sven Hofling, Robert H. Hadfield, Alfred Forchel, M. M. Fejer and Yoshihisa Yamamoto. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature,2012,491:421-425.
    [29]Cerletti, V., Coish, W. A., Gywat, O., and Loss, D. Recipes for spin-based quantum computing. Nanotechnology,2005,16:R27-R49.
    [30]Loss, D. and DiVincenzo, D. P. Quantum computation with quantum dots. Physical Review A, 1998,57:120-126.
    [31]Openov, L. A. Resonant electron transfer between quantum dots. Physical Review B,1999,60: 8798-8803.
    [32]Biolatti, E., Iotti, R. C., Zanardi, P., and Rossi, F. Quantum information processing with semi-conductor macroatoms. Physical Review Letters,2000,85:5647-5650.
    [33]Troiani, F., Molinari, E., and Hohenester,U. High-finesse optical quantum gates for electron spins in artificial molecules. Physical Review Letters,2003,90:206802.
    [34]Lovett, B.W., Reina, J. H., Nazir, A., and Briggs, G. A. D. Optical schemes for quantum compu-tation in quantum dot molecules. Physical Review B,2003,68:205319.
    [35]R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen Spins in few-electron quantum dots. Reviews of Modern Physics,2007,79:1217.
    [36]Shchukin, V. A., Ledentsov, N. N., and Bimberg, D. Epitaxy of Nanostructures. Nanoscience and Technology,2004, Springer, Heidelberg.
    [37]Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites-the size dependence of the lowest excited electronic state. Journal of Chemical Physics,1984,80: 4403-4409.
    [38]Murray, C. B., Norris, D. J., and Bawendi, M. Synthesis and characterization of nearly monodis-perse CdE (E= S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115:8706-8715.
    [39]Frank, F. C. and van der Merwe, J. H. One-dimensional dislocations.i, static theory. Proceedings of the Royal Society, A 1949,198:205-216.
    [40]Volmer, M. and Weber, A. Nucleus formation in supersaturated systems. Zeitschrift fur physikalis-che Chemie,1926,119:277-301.
    [41]Stranski, I. N. and Krastanow, L. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatshefte fur Chemie/Chemical Monthly,1937,71:351-364.
    [42]Goldstein, L., Glas, F., Marzin, J. Y.,Charasse, M. N., and Roux, G. L. Growth by molecular beam epitaxy and characterization of InAs/GaAs strainedlayer superlattices. Applied Physics Letters, 1985,47:1099-1101.
    [43]Eaglesham, D. J. and Cerullo, M. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Physical Review Letters,1990,64:1943-1946.
    [44]Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M. Direct for-mation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters,1993,63:3203-3205.
    [45]Leonard, D., Pond, K., and Petroff, P. M. Critical layer thickness for selfassembled InAs islands on GaAs. Physical Review B,1994,50:11687-11692.
    [46]Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M. Direct for-mation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Applied Physics Letters,1993,63:3203-3205.
    [47]Leonard, D., Pond, K., and Petroff, P. M. Critical layer thickness for selfassembled InAs islands on GaAs. Physical Review B,1994,50:11687-11692.
    [48]R Warburton, C Schaein, D Haft, F Bickel, A Lorke, K Karrai, J Garcia, W Schoenfeld, and P Petroff. Optical emission from a charge-tunable quantum ring. Nature,2000,405:926-929.
    [49]Wojs, A. and Hawrylak, P. Negatively charged magnetoexcitons in quantum dots. Physical Review B,1995,51:10880-10885.
    [50]Hawrylak, P. Excitonic artificial atoms:Engineering optical properties of quantum dots. Physical Review B,1999,60:5597-5608.
    [51]Warburton, R. J., Miller, B. T., Durr, C. S.,Bodefeld, C., Karrai, K., Kotthaus, J. P., Medeiros-Ribeiro, G., Petroff, P. M., and Huant, S. Coulomb interactions in small charge-tunable quantum dots:A simple model. Physical Review B,1998,58:16221-16231.
    [52]S Marcet, C Ouellet-Plamondon, and S Francoeur. High spatial resolution confocal microscope with independent excitation and detection scanning capabilities. REVIEW OF SCIENTIFIC IN-STRUMENTS,2009,80:063101-1-5.
    [53]G Brooker. Modern Classical Optics. Oxford,2003, chapter 5:109-122
    [54]Orazio Svelto, David C. Hanna. Principles of Lasers-5ed. Springer, New York Dordrecht Heidelberg London
    [55]Hanbury Brown, R., and Twiss, R. Q. A Test of a New Type of Stellar Interferometer on Sirius. Nature,1956,178:1046-1048
    [56]O' Brien, J. L., Furusawa, A. and Vuckovic, J. Photonic quantum technologies. Nature Photon, 2009,3:687-695
    [57]Kimble, H. J. The quantum internet. Nature 2008,453:1023-1030
    [58]Hong, C. K., Ou, Z. Y. and Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett,1987,59:2044-2046
    [59]Lounis, B. and Orrit, M. Single-photon sources. Rep. Prog. Phys.2005,68:1129-1179
    [60]Shields, A. J. Semiconductor quantum light sources. Nature Photon.2007,1:215-223
    [61]Adrien Dousse, Jan Suffczynski, Alexios Beveratos, Olivier Krebs, Aristide L, Isabelle Sagnes, Jacqueline Bloch, Paul Voisin and Pascale Senellart Ultrabright source of entangled photon pairs. Nature 2010,466:217-220
    [62]Ilya Fushman, Dirk Englund, Andrei Faraon, Nick Stoltz, Pierre Petroff, Jelena Vuckovic. Con-trolled phase shifts with a single quantum dot. Science 2008,320:769-772
    [63]Yilmaz, S. T., Fallahi, P. and Imamoglu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett.2010,105:033601
    [64]A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Hofling, L. Worschech, A. Forchel, and J. G. Rarity. Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A,2011,84:011803
    [65]Yao, W., Liu, R. B. and Sham, L. J. Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett.2005,95:030504
    [66]A. J. Bennett, D. C. Unitt, A. J. Shields, P. Atkinson, and D. A. Ritchie. Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Opt. Express 2005,13:7772-7778
    [67]Stefanie Weiler, Ata Ulhaq, Sven M. Ulrich, Stephan Reitzenstein, Andreas Loffler, Alfred Forchel and Peter Michler. Highly indistinguishable photons from a quantum dot in a microcavity. Phys. Status Solidi B,2011,248:867-871
    [68]Edward B. Flagg, Andreas Muller, Sergey V. Polyakov, Alex Ling, Alan Migdall, and Glenn S. Solomon Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett.2010,104:137401
    [69]Raj B. Patel, Anthony J. Bennett, Ian Farrer, Christine A. Nicoll, David A. Ritchie and Andrew J. Shields. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon.2010,4:632-635
    [70]Charles Santori, David Fattal, Jelena Vuckovic, Glenn S Solomon and Yoshihisa Yamamoto. Single-photon generation with InAs quantum dots. New. J. Phys.2004,6:89
    [71]A. Ulhaq, S. Weiler, S. M. Ulrich, R. Ro(?)bach, M. Jetter and P. Michler. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nature Photon.2012,6:238-242
    [72]Matthiesen, C., Vamivakas, A. N. and Atature, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett.2012,108:093602
    [73]H. S. Nguyen, G. Sallen, C. Voisin, Ph. Roussignol, C. Diederichs and G. Cassabois. Ultra-coherent single photon source. Appl. Phys. Lett.2011,99:261904
    [74]S. Ates, S. M. Ulrich, S. Reitzenstein, A. Loffler, A. Forchel, and P. Michler. Post-selected indistin-guishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett.2009,103:167402
    [75]A. Kiraz, M. Ehrl, Th. Hellerer,O. E. Miistecaphoglu, C. Brauchle, and A. Zumbusch Indistin-guishable photons from a single molecule. Phys. Rev. Lett.2005,94:223602
    [76]R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. Phys. Rev. Lett.2008,100:207405
    [77]Barrett, S. D. and Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A.2005,71:060301
    [78]Lindner, N. H. and Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett.2009,103:113602
    [79]R. Melet, V. Voliotis, A. Enderlin, D. Roditchev, X. L. Wang, T. Guillet, and R. Grousson Resonant excitonic emission of a single quantum dot in the Rabi regime. Phys. Rev. B.2008,78:073301
    [80]Marlan O. Scully and M. Suhail Zubairy. Quantum Optics. Cambridge University Press, Cambridge, 2000.
    [81]Mollow B R. Power spectrum of light scattered by two-level systems. Physical Review,1969, 188:1969-1975.
    [82]Claude Cohen-Tannoudji, Jacques Dupont-Roc, Gilbert Grynberg. Atom-Photon Interactions. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim,2004.
    [83]Moelbjerg, A., Kaer, P., Lorke, M. and M(?)rk, J. Resonance fluorescence from semiconductor quan-tum dots:beyond the Mollow triplet. Phys. Rev. Lett.2012,108:017401
    [84]A. Zrenner, E. Behaml, S. Stufler, F. Findeis, M. Bichler and G. Abstreiter. Coherent properties of a two-level system based on a quantum dot photodiode. Nature 2002,418:612-614
    [85]Q. Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A. H. MacDonald, and C. K. Shih. Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots. Phys. Rev. B.2005,72:035306
    [86]A. J. Ramsay, T. M. Godden, S. J. Boyle, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S. Skolnick. Phonon-induced Rabi-frequency renormalization of optically driven single In-GaAs/GaAs quantum dots. Phys. Rev. Lett.2010,105:177402
    [87]D. Mogilevtsev, A. P. Nisovtsev, S. Kilin, S. B. Cavalcanti, H. S. Brandi, and L. E. Oliveira. Driving-dependent damping of Rabi oscillation in two-level semiconductor systems. Phys. Rev. Lett.2008, 100:017401
    [88]Robinson, H. D. and Goldberg, B. B. Light-induced spectral diffusion in single selfassembled quan-tum dots. Phys. Rev. B 2000,61:5086-5089
    [89]A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira and J. M. Gerard. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nature Phys.2006,2:759-764.
    [90]J. Houel, A. V. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. D. Gerardot, P. A. Dalgarno, A. Badolato, P. M. Petroff, A. Ludwig, D. Reuter, A. D. Wieck, and R. J. Warburton. Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs quantum dot. Phys. Rev. Lett.108,107401 (2012).
    [91]Kuhn, A., Hennrich, M. and Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett.2012,89,067901
    [92]J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble. Deterministic Generation of Single Photons from One Atom Trapped in a Cavity. Science 2004,303:1992-1994
    [93]J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui6, G. Messin, A. Browaeys and P. Grangier Quantum interference between two single photons emitted by independently trapped atoms. Nature 2006,440:779-782
    [94]P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich and C. Monroe. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys.2007,3: 538-541
    [95]O' Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. and Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 2003,426:264-267
    [96]N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O'Brien, G. J. Pryde, and A. G. White Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett.2005,95:210504
    [97]Nikolai Kiesel, Christian Schmid, Ulrich Weber, Rupert Ursin, and Harald Weinfurter Linear optics controlled-phase gate made simple. Phys. Rev. Lett.2005,95:210505
    [98]Ryo Okamoto, Holger F. Hofmann, Shigeki Takeuchi, and Keiji Sasaki Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett.2005,95:210506
    [99]M. A. Pooley, D. J. P. Ellis, R. B. Patel, A. J. Bennett, K. H. A. Chan, I. Farrer, D. A. Ritchie and A. J. Shields Controlled-NOT gate operating with single photons. Appl. Phys. Lett.2012,100: 021103
    [100]Hofmann, H. F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys. Rev. Lett.2005,94:160504
    [101]Fattal, D., Diamanti, E., Inoue, K. and Yamamoto, Y. Quantum teleportation with a quantum dot single photon source. Phys. Rev. Lett.2004,92:037904
    [102]Scholz, M., Aichlele, T., Ramelow, S. and Benson, O. Deutsch-Jozsa algorithm using triggered single photons from a single quantum dot. Phys. Rev. Lett.2006,96:180501
    [103]A. Einstein, B. Podolsky and N. Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev.1935,47:777
    [104]A. J. Leggett. Realism and the physical world. Rep. Prog. Phys.2008,71:022001
    [105]S. Y. Zhu and M. O. Scully. Spectral Line Elimination and Spontaneous Emission Cancellation via Quantum Interference. Phys. Rev. Lett.1996,76:388
    [106]Hwang Lee, Pavel Polynkin, Marlan O. Scully, and Shi-Yao Zhu. Quenching of spontaneous emis-sion via quantum interference. Phys. Rev. A.1997,55:4454
    [107]Fu-Ii Li and Shi-Yao Zhu. Resonance fluorescence quenching and spectral line narrowing via quan-tum interference in a four-level atom driven by two coherent fields. Phys. Rev. A.1999,59:2330
    [108]P. Zhou and S. Swain. Ultranarrow Spectral Lines via Quantum Interference. Phys. Rev. Lett. 1996,77:3995
    [109]E. Paspalakis and P. L. Knight. Phase Control of Spontaneous Emission. Phys. Rev. Lett.1998, 81:293
    [110]P. Zhou and S. Swain, Quantum Interference in Probe Absorption:Narrow Resonances, Trans-parency, and Gain without Population Inversion. Phys. Rev. Lett.1997,78:832
    [111]Qing Xu, Xiangming Hu, Hongju Guo, Jingyan Li, Xiaoxia Li, Wenxing Shi Spectral line sup-pression and sideband narrowing via quantum interference. Optics Communications 2006,265: 255
    [112]X. H. Yang and S. Y.Zhu. Control of coherent population transfer via spontaneous decay-induced coherence. Phys. Rev. A.2008,77:063822
    [113]D. G. Norris et al. Observation of Ground-State Quantum Beats in Atomic Spontaneous Emission. Phys. Rev. Lett.2010,105:123602
    [114]M. Fleischhauer, C. H. Keitel, M. O. Scully, Chang Su, B. T. Ulrich, and Shi-Yao Zhu. Resonantly enhanced refractive index without absorption via atomic coherence. Phys. Rev. A 1992,46:1468
    [115]Y. P. Niu and S. Q. Gong. Enhancing Kerr nonlinearity via spontaneously generated coherence. Phys. Rev. A.2006,73:053811
    [116]S. E. Harris. Lasers without inversion:Interference of lifetime-broadened resonances. Phys. Rev. Lett.1989,62:1033
    [117]A. Imamoglu, J. E. Field and S. E. Harris, Lasers without inversion:A closed lifetime broadened system. Phys. Rev. Lett.1991,66:1154
    [118]Z. Ficek and S. Swain. Simulating quantum interference in a three-level system with perpendicular transition dipole moments. Phys. Rev. A.2004,69:023401
    [119]G. S. Agarwal. Anisotropic Vacuum-Induced Interference in Decay Channels. Phys. Rev. Lett. 2000,84:5500
    [120]Qing Xu, Hong-di Zhou, Gui-ju Meng and Jian-Wu Yin. Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference J. Phys. B:At. Mol. Opt. Phys 2007, 40:3197
    [121]H. Huang, S. Y. Zhu and M. S. Zubairy. Nondecaying state in a three-level system driven by a single field:mEffect of relaxations Phys. Rev. A.1997,55:744
    [122]M. Kiffner, J. Evers and C. H. Keitel. Interference in the resonance fluorescence of two incoherently coupled transitions. Phys. Rev. A 2006,73:063814
    [123]X. M. Hu and Z. Z. Xu. Two color control of spontaneous emission from a single-channel system. Optics Communications 2002,204:253
    [124]F. L. Li and S. Y. Zhu. Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields. Phys. Rev. A.1999,59:2330
    [125]Z. Ficek and T. Rudolph. Quantum interference in a driven two-level atom. Phys. Rev. A.1999, 60:R4245
    [126]Z. Ficek and H. S. Freedhoff. Fluorescence and absorption by a two-level atom in a Dichromatic field with one strong and one weak component. Phys. Rev. A.1996,53:4275
    [127]T. Rudolph, H. S. Freedhoff and Z. Ficek. Shift of the subhararmonic resonances and suppression of fluorescence in a two-level atom driven by a bichromatic field. J. Opt. Soc. Am. B.1998,15:2325
    [128]H. S. Freedhoff and Z. Ficek. Resonance fluorescence and Autler-Townes spectra of a two-level atom driven by two fieldsof equal frequencies. Phys. Rev. A.1997,55:1234
    [129]H. R. Xia, C. Y. Ye and S. Y. Zhu, Experimental Observation of Spontaneous Emission Cancel-lation. Phys. Rev. Lett.1996,77:1032
    [130]Li Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra. Comment on "Experimental Observation of Spontaneous Emission Cancellation" Phys. Rev. Lett.2000,84:4016
    [131]P. R. Berman. Analysis of dynamical suppression of spontaneous emission. Phys. Rev. A.1998, 58:4886
    [132]J. Wang, H. M. Wiseman and Z. Ficek. Quantum interference in the fluorescence of a molecular system. Phys. Rev. A.2000,62:013818
    [133]Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter and Anton Zeilinger. Experimental quantum teleportation. Nature (London) 1997,390:575
    [134]ian-Wei Pan, Sara Gasparoni, Rupert Ursin, Gregor Weihs and Anton Zeilinger. Experimental entanglement purification of arbitrary unknown states. Nature (London) 2003,423:417
    [135]Philip Walther, Jian-Wei Pan, Markus Aspelmeyer, Rupert Ursin, Sara Gasparoni and Anton Zeilinger. De Broglie wavelength of a non-local four-photon state. Nature (London) 2004,429:158
    [136]Xing-Can Yao, Tian-Xiong Wang, Hao-Ze Chen, Wei-Bo Gao, Austin G. Fowler, Robert Raussendorf, Zeng-Bing Chen, Nai-Le Liu, Chao-Yang Lu, You-Jin Deng, Yu-Ao Chen and Jian-Wei Pan. Experimental demonstration of topological error correction. Nature (London) 2012,482: 489
    [137]Matthew A. Broome, Alessandro Fedrizzi, Saleh Rahimi-Keshari, Justin Dove, Scott Aaronson, Timothy C. Ralph, Andrew G. White. Photonic Boson Sampling in a Tunable Circuit. Science 2013,339:794
    [138]Justin B. Spring, Benjamin J. Metcalf, Peter C. Humphreys, W. Steven Kolthammer, Xian-Min Jin, Marco Barbieri, Animesh Datta, Nicholas Thomas-Peterl, Nathan K. Langford, Dmytro Kundys, James C. Gates, Brian J. Smith, Peter G. R. Smith, Ian A. Walmsley. Boson Sampling on a Photonic Chip. Science 339,798 (2013)
    [139]Xing-Can Yao, Tian-Xiong Wang, Ping Xu, He Lu, Ge-Sheng Pan, Xiao-Hui Bao, Cheng-Zhi Peng, Chao-Yang Lu, Yu-Ao Chen and Jian-Wei Pan. Observation of eight-photon entanglement. Nat. Photonics 2012,6:225
    [140]Paul G. Kwiat, Klaus Mattle, Harald Weinfurter, Anton Zeilinger, Alexander V. Sergienko, and Yanhua Shih New High-Intensity Source of Polarization-Entangled Photon Pairs. Phys. Rev. Lett. 1995,75:4337
    [141]P. Grangier, B. Sanders and J. Vuckovic, Focus on Single Photons on Demand. New J. Phys.2004, 6
    [142]David Press, Stephan Gotzinger, Stephan Reitzenstein, Carolin Hofmann, Andreas Loffler, Martin Kamp, Alfred Forchel, and Yoshihisa Yamamoto. Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime. Phys. Rev. Lett.2007,98:117402
    [143]Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatu"re, C.Schneider, S. Hofling, M. Kamp, C.-Y. Lu, and J.-W.Pan. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol.2013,8:213
    [144]Yanwen Wu, I. M. Piper, M. Ediger, P. Brereton, E. R. Schmidgall, P. R. Eastham, M. Hugues, M. Hopkinson, and R. T. Phillips. Population Inversion in a Single InGaAs Quantum Dot Using the Method of Adiabatic Rapid Passage. Phys. Rev. Lett.2011,106:067401
    [145]C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dal-garno, R. J. Warburton, X. Marie, and B. Urbaszek. Robust Quantum Dot Exciton Generation via Adiabatic Passage with Frequency-Swept Optical Pulses. Phys. Rev. Lett.2011,106:166801
    [146]A. Debnath, C. Meier, B. Chatel, and T. Amand. Chirped laser excitation of quantum dot excitons coupled to a phonon bath. Phys. Rev. B 2012,86:161304(R)
    [147]P.R. Eastham, A.O. Spracklen and J. Keeling. Lindblad theory of dynamical decoherence of quantum-dot excitons. Phys. Rev. B 2013,87:195306
    [148]K. Gawarecki, S. Luker, D. E. Reiter, T. Kuhn, M. Glassl, V. M. Axt, A. Grodecka-Grad and P. Machnikowski. Adiabatic rapid passage in quantum dots:phonon-assisted decoherence and biexciton generation Phys. Status Solidi C 2013,10:1210
    [149]M. Glassl, A. M. Barth, K. Gawarecki, P. Machnikowski, M. D. Croitoru, S. Luker, D. E. Reiter, T. Kuhn, and V. M. Axt. Biexciton state preparation in a quantum dot via adiabatic rapid passage: Comparison between two control protocols and impact of phonon-induced dephasing. Phys. Rev. B 2013,87:085303
    [150]H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller. Quantum Repeaters:The Role of Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett.1998,81:5932
    [151]P.P. Rohde and T.C. Ralph, Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 2012,85:022332
    [152]R. Raussendorf and J. Harrington, Fault-Tolerant Quantum Computation with High Threshold in Two Dimensions Phys. Rev. Lett.2007,98:190504
    [153]E.B. Treacy, Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 1969,5:454
    [154]O.S. Martinez,3000 Times Grating Compressor with Positive Group Velocity Dispersion:Appli-cation to Fiber Compensation in 1.3-1.6 μm Region IEEE J. Quantum Electron.1987,23:59
    [155]D.P.S. McCutcheon and A. Nazir, Quantum dot Rabi rotations beyond the weak exciton-phonon coupling regime. New J. Phys.2010,12:113042
    [156]Matthew Pelton, Charles Santori, Jelena Vuckovic, Bingyang Zhang, Glenn S. Solomon, Jocelyn Plant, and Yoshihisa Yamamoto. Efficient Source of Single Photons:A Single Quantum Dot in a Micropost Microcavity. Phys. Rev. Lett.2002,89:233602
    [157]F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin and S. W. Nam Detecting single infrared photons with 93% system efficiency Nat. Photonics 2013,7:210
    [158]Peter C. Humphreys, Benjamin J. Metcalf, Justin B. Spring, Merritt Moore, Xian-Min Jin, Marco Barbieri, W. Steven Kolthammer, and Ian A. Walmsley. Linear Optical Quantum Computing in a Single Spatial Mode. Phys. Rev. Lett.2013,111:150501
    [159]H.Y. Hui and R.B. Liu, Proposal for geometric generation of a biexciton in a quantum dot using a chirped pulse. Phys. Rev. B 2008,78:155315
    [160]M. Muller, S. Bounouar, K. D. Jons, M. Glassl and P. Michler. On-demand generation of indis-tinguishable polarization-entangled photon pairs. Nat. Photonics 2014,8:224
    [161]T. Unold, K. Mueller, C. Lienau, T. Elsaesser and A.D. Wieck, Optical Control of Excitons in a Pair of Quantum Dots Coupled by the Dipole-Dipole Interaction. Phys. Rev. Lett.2005,94:137404
    [162]C. Creatore, R. T. Brierley, R. T. Phillips, P. B. Littlewood, and P. R. Eastham. Creation of entangled states in coupled quantum dots via adiabatic rapid passage. Phys. Rev. B 2012,86: 155442
    [163]R. Hanson and D. D. Awschalom. Coherent manipulation of single spins in semiconductors. Nature (London) 2008,453:1043;
    [164]R. J. Warburton. Single spins in self-assembled quantum dots. Nat.Mater.2013,12:483
    [165]C.-Y. Lu, Y. Zhao, A. N. Vamivakas, C.Matthiesen, S. Falt, A. Badolato, and M. Atature. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence. Phys. Rev. B.2010,81:035332
    [166]X. Xu, W. Yao, B.Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J.Sham, Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature (London) 2009, 459:1105
    [167]D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C.Schneider, M. Kamp, S. Hofling, A. Forchel, and Y.Yamamoto, Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 2010,4:367
    [168]B.D. Gerardot, D.Brunner, P.A. Dalgarno, P. ohberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton. Optical pumping of a single hole spin in a quantum dot. Nature (London) 2008,451:441
    [169]S. G. Carter, T.M. Sweeney, M. Kim, C. S. Kim, D.Solenov, S. E. Economou, T. L. Reinecke, L. Yang, A. S.Bracker, and D. Gammon. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photonics 7,329 (2013).
    [170]J.R.Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon. Phys. Rev. Lett.2013,110:167401
    [171]C. Simon, Y.-M. Niquet, X. Caillet, J. Eymery, J.-P. Poizat,and J.-M. Gerard. Quantum commu-nication with quantum dot spin. Phys. Rev. B 2007,75:081302(R)
    [172]S. D. Barrett and P. Kok. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 2005,71:060310(R)
    [173]See D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and Daniel Gammon. Ultrafast optical control of entanglement between two quantum-dot spins. Nat. Phys.7,223 (2011)
    [174]O.Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak,E. Galopin, I. Sagnes, L. Lanco, A. Lemartre, and P.Senellart, Bright solid-state sources of indistinguishable single photons. Nat. Com-mun.4,1425 (2013).
    [175]C. Matthiesen, M. Geller, C.H.H. Schulte, C. Le Gall, J.Hansom, Z. Li, M. Hugues, E. Clarke, and M. Atature. Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source. Nat. Commun.2013,4:1600
    [176]A. Kiraz, M. Atature, and A. Imamoglu. Quantum-dot single-photon sources:Prospects for ap-plications in linear optics quantum-information processing. Phys. Rev. A 2004,69,032305;
    [177]D. Fattal, R. Beausoleil, and Y.Yamamoto. Coherent single-photon generation and trapping with imperfect cavity QED systems. arXiv:quant-ph/0606204;
    [178]C. Santori, D.Fattal, K.-M. C. Fu, P. E Barclay, and R.G Beausoleil. On the indistinguishability of Raman photons. New J. Phys.2009,11:123009
    [179]G. Jaritz and U.Hohenester. Controlled cavity-assisted generation of single and entangled photons in semiconductor quantum dots. Eur. Phys. J. B 2011,82:29
    [180]A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett.1993,71:3095
    [181]J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, H. J. Kimble, Deter-ministic Generation of Single Photons from One Atom Trapped in a Cavity. Science 2004,303: 1992
    [182]M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, A single-photon server with just one atom. Nat. Phys.2007,3:253
    [183]M. Varnava, D. E. Browne, and T. Rudolph, How Good Must Single Photon Sources and Detectors Be for Efficient Linear Optical Quantum Computation? Phys. Rev. Lett.2008,100:060502
    [184]Andreas V. Kuhlmann, Julien Houel, Arne Ludwig, Lukas Greuter, Dirk Reuter, Andreas D. Wieck, Martino Poggio and Richard J. War burton. Charge noise and spin noise in a semiconductor quantum device. Nature Physics.2013,9:570-575
    [185]E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. S(?)rensen, P. R. Hemmer, A. S. Zibrov and M. D. Lukin. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010,466:730
    [186]B. B. Blinov, D. L. Moehring, L. M. Duan and C.Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 2004,428:153
    [187]Jurgen Volz, Markus Weber, Daniel Schlenk, Wenjamin Rosenfeld, Johannes Vrana, Karen Saucke, Christian Kurtsiefer, and Harald Weinfurter. Observation of Entanglement of a Single Photon with a Trapped Atom. Phys. Rev. Lett.2004,96:030404
    [188]T. Wilk, S. C. Webster, A. Kuhn and G. Rempe. Single-Atom Single-Photon Quantum Interface. Science 2007,317:488
    [189]Zhen-Sheng Yuan, Yu-Ao Chen, Bo Zhao, Shuai Chen, Jorg Schmiedmayer and Jian-Wei Pan Experimental demonstration of a BDCZ quantum repeater node. Nature 2008,454:1098
    [190]D. N. Matsukevich, T. Chaneliere, M. Bhattacharya, S.-Y. Lan, S. D. Jenkins, T. A. B. Kennedy, and A. Kuzmich. Entanglement of a Photon and a Collective Atomic Excitation. Phys. Rev. Lett. 2005,95:040405
    [191]Jian-Wei Pan, Dik Bouwmeester, Matthew Daniell, Harald Weinfurter and Anton Zeilinger. Exper-imental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 2000,403:515-519
    [192]Wei-Bo Gao, Chao-Yang Lu, Xing-Can Yao, Ping Xu, Otfried Guhne, Alexander Goebel, Yu-Ao Chen, Cheng-Zhi Peng, Zeng-Bing Chen and Jian-Wei Pan. Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state. Nature Phys 2010,6:331
    [193]N. D. Mermin. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett.1990,65:1838
    [194]D. M. Greenberger, M. Home and A. Zeilinger, Bell's theorem without inequalities. Am.J.Phys. 1990,58:1131
    [195]C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek. Driving the driven atom:Spectral signatures. Phys. Rev. A.1997,56:R4381
    [196]J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg. Vacuum-mediated multiphoton tran-sitions. Phys. Rev. A.2001,63:051402(R)
    [197]M. V. Gurudev Dutt, Jun Cheng, Bo Li, Xiaodong Xu, Xiaoqin Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, Sophia E. Economou, Ren-Bao Liu, and L. J. Sham. Stimulated and Spontaneous Optical Generation of Electron Spin Coherence in Charged GaAs Quantum Dots. Phys. Rev. Lett.2005,94:227403
    [198]K. Bergmann, H. Theuer and B. W. Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys.1998,70:1003
    [199]Xiaodong Xu, Bo Sun, Paul R. Berman, Duncan G. Steel, Allan S. Bracker, Dan Gammon and L. J. Sham. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys.2008,4:692
    [200]Daniel Brunner, Brian D. Gerardot, Paul A. Dalgarno, Gunter Wust, Khaled Karrai, Nick G. Stoltz, Pierre M. Petroff, Richard J. Warburton. A Coherent Single-Hole Spin in a Semiconductor. Science 2009,325:70
    [201]Martin Miicke, Eden Figueroa, Joerg Bochmann, Carolin Hahn, Karim Murr, Stephan Ritter, Celso J. Villas-Boas and Gerhard Rempe. Electromagnetically induced transparency with single atoms in a cavity. Nature 2010,465:755
    [202]Z. H. Tang, G. X. Li and Z. Ficek. Entanglement created by spontaneously generated coherence. Phys. Rev. A.2010,82:063837
    [203]J. Cai, G. G. Guerreschi and H. J. Briegel. Quantum Control and Entanglement in a Chemical Compass. Phys. Rev. Lett.2010,104:220502
    [204]Chao-Yang Lu, Xiao-Qi Zhou, Otfried Giihne, Wei-Bo Gao, Jin Zhang, Zhen-Sheng Yuan, Alexan-der Goebel, Tao Yang and Jian-Wei Pan. Experimental entanglement of six photons in graph states. Nature Physics.2007,3:91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700