核酸修饰碱基对的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸是生命遗传信息的载体,核酸内存在大量的碱基,各种碱基均为含有氮原子共轭体系的杂环化合物,在其所处的环境中弱相互作用广泛存在,其中碱基间的氢键作用对核酸的结构与复制有重要作用。本文采用量子化学二阶微扰理论(MP2)方法对核酸中的碱基间氢键作用进行理论研究,考察碱基的各种氧化损伤对Watson crick碱基对G:C和A:T的影响,以及各种氧化损伤碱基的配对性质,围绕分子间相互作用的理论方法,对碱基单体间氢键相互作用的特征及本质进行了系统的分析。主要内容如下:
     1.采用MP2/6-31G**方法,对核酸碱基A, C, G, T以及19种常见的氧化损伤碱基进行结构优化,经过频率分析验证为能量低点,得到稳定构型,然后对碱基单体进行几何参数的比较,并且进行自然键轨道理论(NBO)分析,得到不同位置的氧化损伤对碱基结构以及性质的影响。结果表明,氧化损伤碱基fapy-A, fapy-G, 5-OH-6H-T, 6-OH-5H-T, T-glycol, C-glycol, U-glycol, Iso-acid呈现非平面结构,并且采用‘原子偏离碱基平面最大距离’的方法来表示碱基的非平面性。
     2.采用MP2/6-31G**和MP2/6-311++G**方法,研究了19种DNA损伤碱基分别与四种正常碱基(A, C, G, T)间可能形成的碱基对,分析碱基不同位置的氧化损伤对G:C, A:T碱基对构型与强度的影响,并且考察损伤碱基的配对性质,比较各自与四种碱基间的配对强度。对于碱基对中的氢键作用,采用自然键轨道理论方法(NBO)和分子中原子理论(AIM)进行分析。通过研究表明,2-OH-A:T相对于碱基对A:T的结合能增加25%,而5-OH-U:G, 5,6-OH-U:G, Iso-acid:G, U-glycol:G和xanthosine:C相对于碱基对G:C的结合能分别降低39%,40%,44%,42%和53%,其余影响在6%内。结果表明,修饰碱基5-OH-C,5-OH-U, U-glycol,8-oxo-G , xanthosine, 8-oxo-A, fapy-A容易发生碱基错配,分别容易导致CG→GC,CG→TA, CG→TA, GC→TA, GC→CG, AT→CG,AT→GC形式的突变。
     3.采用超分子方法,研究了RNA中嘧啶稀有碱基DHU和s4U分别与四种RNA碱基A, C, G, U间形成的不同碱基对,能量分析表明,它们与碱基鸟嘌呤G形成的碱基对结合能最大。
     4.为了分析结合能与几何参数之间的关系,计算了结合能与碱基对中碱基平面角度间的关系,以及结合能与碱基对氢键中供体-受体间距离的关系,列出了结合能与几何参数间的关系曲线。并且考察了氢键临界点的电子密度与氢键键长间的关系,以及二阶稳定化能与氢键键长间的关系,并且针对不同质子受体的氢键建立了电子密度与键长间的趋势方程。
     本论文采用的二阶微扰理论MP2方法适用于所研究体系,计算满足精度与效率要求,同时总结出将‘结合能变化率’、‘距离变化率’、‘二面角变化率’三个参数用于评估碱基对的稳定性,研究结果与实验报道结果相似,此研究可为核酸结构研究与基因突变研究提供资料。
There are enormous bases in the nucleic acid, which is a macromolecule composed of chains of monomeric nucleotides. In biochemistry these molecules carry genetic information or form structures within cells. Nucleobases are heterocyclic aromatic organic compounds containing nitrogen atoms. There are various interactions between the bases, and the hydrogen bonding interaction is very important to the structure and property of nucleic acid. In this study, the hydrogen bonding interaction between the nucleic acid bases were investigated by quantum chemistry MP2 method. The effect of oxidation on the stability of G:C and A:T base pairs and the pairing properties of the damaged bases were studied by supermolecular method.
     The character and essence of the hydrogen bonds between the bases were analyzed systematicly. The main results are as follows:
     1. The DNA bases A, C, G, T and 19 oxidized bases were optimized at MP2/6-31G** level and characterized as minimum by frequency analysis. Subsequently the Natural Bond Orbital (NBO) analysis was performed starting from the optimized geometries. The difference between the normal bases (A, C, G, T) and the oxidized bases were analyzed by the geometry parameters, the atom charge and bond orbitals. The results indicate that some of the damaged bases, such as fapy-A, fapy-G, 5-OH-6H-T, 6-OH-5H-T, T-glycol, C-glycol, U-glycol and Iso-acid, show the nonplanar structures, and the‘maximum distance of the atom deviate from the base plane’was used to indicate the noplanarity of the damaged bases.
     2. The hydrogen bonds between 19 oxidized bases and four normal bases (A, C, G, T) were studied by supermolecule method at MP2/6-31G** and MP2/6-311++G** levels, the effect of oxidation on the configuration and strength of Watson crick base pairs G:C and A:T were discussed. The pairing properties of the damaged bases were studied by comparing the hydrogen bonding strength between the damaged bases and the normal bases. The Natural Bond Orbital (NBO) and Atoms in molecules theory (AIM) analysis were performed to compare the pairing ability to nucleic acid bases. The results indicate that base pair 2-OH-A:T increase the binding energy of A:T by 25%, while the base pairs 5-OH-U:G, 5,6-OH-U:G, Iso-acid:G, U-glycol:G and xanthosine:C decrease the binding energy of G:C by 39%,40%,44%,42% and 53%, and the ratio of binding energy change of the rest pairs are within 6%. Moreover, the results show that the favorable mispairing bases are 5-OH-C,5-OH-U, U-glycol,8-oxo-G, xanthosine, 8-oxo-A, fapy-A, and subsequently cause to the gene mutation of CG→GC,CG→TA, CG→TA, GC→TA, GC→CG, AT→CG,AT→GC.
     3. The hydrogen bonds between the damaged U bases (DHU and s4U) and RNA bases (A, C, G, U) were studied by supermolecule method. The binding energies, NBO analysis and AIM analysis were performed, and the results show that they form the most binding energy pairs with base G.
     4. To investigate the relationship between the interaction energy and geometry parameters, we have calculated the dependence of interaction energy on the buckle angle and the distance between the hydrogen bond donor and acceptor between bases. Furthermore, the relation between the electron density and distance, and the relation between the E(2) and distance were discussed in detail.
     The MP2 method of M?ller–Plesset perturbation theory is suitable in the studied systems, which gives an approving calculation accuracy and efficiency. Moreover, the three parameters‘ratio of binding energy change’,‘ratio of distance change’,‘ratio of dihedral angle change’, were proposed to compare the stability of damaged base pairs in nucleic acid, the results are similar to the reported experimental results and these can be useful for the nucleic acid study and gene mutation research.
引文
[1] Watson JD, Crick FHC, A Structure for Deoxyribose Nucleic Acid. Nature, 1953, 171: 737- 738
    [2] Kneale G, Brown T, Kennard O, Rabinovich D, G·T base-pairs in a DNA helix: The crystal structure of d(G-G-G-G-T-C-C-C). J Mol Biol, 1985, 186(4): 805-814
    [3] Fersht AR, Knill-Jones JW, Tsui WC, Kinetic basis of spontaneous mutation -MIS- insertion frequencies, proofreading specificities and cost of proofreading by DNA- polymerases of Escherichia coli. J Mol Biol, 1982, 156:37-51
    [4] Prive G, Herinemann U, Kan LS, Helix geometry hydration and G:A mismatch in a B-DNA decamer. Science, 1987, 238:498-504
    [5] Brown T, Leonard GA, Booth ED etal. Crystal structure and stability of a DNA duplex containing A·G base-pairs. J Mol Biol, 1989, 207:455-457
    [6] Pan B, Mitra SN, Sandaralingam M, Crystal structure of an RNA 16-mer duplex R(GCAG AGUUAAAUCUGC)2 with nonadjacent G(syn)·A(anti) mispairs. Biochemistry, 1999, 38: 2826-2831
    [7] Wu M, Turner DH, Solution structure (rGCGGACGC) 2 by two- dimensional NMR and the iterative relaxation matrix approach. Biochemistry, 1996, 35:9677-9689
    [8] Wu M, Santalucia J Jr, Turner DH, Solution Structure of (rGGCAGGCC)2 by Two- Dimensional NMR and the Iterative Relaxation Matrix Approach. Biochemistry, 1997, 36: 4449-4460
    [9] Brown T, Hunter WN, Kneale G, Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci USA, 1986, 83:2402-2406
    [10] Allawi HT, Jr JS, Nearest Neighbor Thermodynamic Parameters for Internal G·A Mismatches in DNA. Biochemistry, 1998, 37: 2170-2179
    [11] Xia T, McDowell JA, Turner DH, Thermodynamics of nonsymmetric tandem mismatches adjacent to G–C base pairs in RNA. Biochemistry, 1997, 36:12486-12497
    [12] Wallace SS, Biological Consequences of free radical-damaged DNA bases. Free Radical Biology & Medicine, 2002, 33:1-14
    [13] K Akamatsu, A novel methodology for characterizing strand-break termini and damaged bases in plasmid DNA exposed to ionizing radiation. Analytical Biochemistry,2007, 362: 229- 235
    [14] Pieretti M, Khattar N H, Smith S A., Common polymorphisms and somatic mutations in human base excision repair genes in ovarian and endometrial cancers. Mutation Research Genomics, 2001, 432:53-59
    [15] Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E, The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie, 2003, 85: 1053-1071
    [16] Akbari M, Krokan H E, Cytotoxicity and mutagenicity of endogenous DNA base lesions as potential cause of human aging. Mechanisms of Ageing and Development, 2008, 129: 353-365
    [17] Pelicano H, Carney D, Huang P, ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 2004, 7(2): 97-110
    [18] Acquaviva J, Wong R, Charest A, The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2009, 1795(1): 37-52
    [19] Han Y H, Kim S Z, Kim S H, Park W H, Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels. Lung Cancer, 2008, 59(3): 301-314
    [20] Angelopoulou R, Lavranos G, Manolakou P, ROS in the aging male: Model diseases with ROS-related pathophysiology. Reproductive Toxicology, 2009, 28(2) 167-171
    [21] McTigue MM, Rieger RA, Rosenquist TA, Iden CR, Santos CR, Stereoselective excisionof thymine glycol lesions by mammalian cell extracts,DNA Repair, 2004, 3(3):313-322
    [22] Yamanaka K, Mizoi M, Tachikawa M, Hasegawa A, Hoshino M, Okada S, Oxidative DNA damage following exposure to dimethylarsinous iodide: the formation of cis-thymine glycol, Toxicology Letters, 2003, 143(2):145-153
    [23] Teoule R, Radiation-induced DNA damage and its repair. Int J Radiat Biol, 1987, 51: 573-589
    [24] Evans MD, Dizdaroglu M, Cooke MS, Oxidative DNA damage and disease: induction, repair and significance Mutation Research/Reviews in Mutation Research, 2004, 567(1):1-61
    [25] Kasai H, Iwamoto N, Muraoka M, Arashidani K, Formation of 2-hydroxydeoxy adenosine from deoxyadenosine by oxygen radicals and induction of sister chromatid exchange (SCE) by its derivatives. Mutation Research/Environmental Mutagenesis and Related Subjects, 1996, 359(3):229
    [26] Kim JE, Hyun JW, Hayakawa H, Choi S, Choi J, Chung MH, Exogenous 8-oxo-dG is not utilized for nucleotide synthesis but enhances the accumulation of 8-oxo-Gua in DNA through error-prone DNA synthesis, Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 596:128-136
    [27] Oltra AM, Carbonell F, Tormos C, Iradi A, Sáez GT, Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic lerkenia, Free Radical Biology and Medicine, 2001, 30(11):1286-1292
    [28] Oda Y, Uesugi S, Ikehara M, Nishimura S, Kawase Y, Ishikawa H, Inoue H, Ohtsuka E, NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res, 1991, 19:1407-1412
    [29] Lipscomb L, Peek M, Morningstar M, Verghis S, Miller E, Rich A, Essigmann J, Williams L, X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proc Natl Acad Sci USA, 1995, 92:719-723
    [30] Wood M L, Dizdaroglu M, Gajewski E, Essigmann J, M.Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro- 8-oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry, 1990, 29:7024-7032
    [31] Shibutani S, Takeshita M, Grollman A P, Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature, 1991, 349:431-434
    [32] Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman A P, Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxy guanosine in E. coli. Mutat Res, 1991, 254:281-288
    [33] Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb L A, 8-Hydroxyguanine, an abundant form of oxidative DNA damage. J Biol Chem, 1992, 267:166-172
    [34] Sekine M, Okada K, Seio K, Kakeya H, Osada H, Sasaki T, Structure–activity relationship of phosmidosine: importance of the 7,8-dihydro-8-oxoadenosine residue for antitumor activity, Bioorganic & Medicinal Chemistry, 2004, 12(19):5193-5201
    [35] Harańczyk M, Miller J H, Gutowski M, Differences in electrostatic potential around DNA fragments containing adenine and 8-oxo-adenine: An analysis based on regular cylindrical projection, Journal of Molecular Graphics and Modelling, 2007, 26(1):282-289
    [36] Malins DC, Haimanot R, 4,6-Diamino-5-formamidopyrimidine,8-hydroxyguanine and 8-hydroxyadenine in DNA from neoplastic liver of English sole exposed to carcinogens. Biochem Biophys Res Commun, 1990, 173:614-619
    [37] Guschlbauer W, Duplaa A M, Guy A, Teoule R, Fazakerley G V, Structure and in vitro replication of DNA templates containing 7,8-dihydro-8-oxoadenine. Nucleic Acids Res, 1991, 19: 1753-1758
    [38] Leonard GA, Guy A, Brown T, Teoule R, Hunter WN, Conformation of guanine- 8-oxoadenine base pairs in the crystal structure of d(CGCGAATT(O8A)GCG). Biochemistry, 1992, 31:8415-8420
    [39] Cooke MS, Lunec J, Evans MD, Progress in the analysis of urinary oxidative DNA damage, Free Radical Biology and Medicine, 2002, 33(12): 1601-1614
    [40] Shibutani S, Bodepudi V, Johnson F, Grollman A P, Translesional synthesis on DNA templates containing 8-oxo-7,8-dihydrodeoxyadenosine. Biochemistry, 1993, 32:4615-4621
    [41] Mailander PC, Meza JL, Higginbotham S, Chakravarti D, Induction of A·T to G·C mutations by erroneous repair of depurinated DNA following estrogen treatment of the mammary gland of ACI rats, The Journal of Steroid Biochemistry and Molecular Biology, 2006, 101:204-215
    [42] Kamiya H, Murata-Kamiya N, Koizume S, Inoue H, Nishimura S, Ohtsuka E, 8-Hydroxyguanine (7,8-dihydro-8-oxoguanine)in hot spots of the c-Ha-ras gene: effects of sequence contexts on mutation spectra. Carcinogenesis, 1995, 16:883-889
    [43] Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M, Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res, 1991, 51:5837-5842
    [44] Olinski R, Zastawny T, Budzbon J, Skokowski J, Zegarski W, Dizdaroglu M, DNA base modifications in chromatin of human cancerous tissues. FEBS Lett, 1992, 309:193-198
    [45] Mori T, Hori Y, Dizdaroglu M, DNA base damage generated in vivo in hepatic chromatin of mice upon whole body-irradiation. Int J Radiat Biol, 1993, 64:645-650
    [46] Kamiya H, Ueda T, Ohgi T, Matsukage A, Kasai H, Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res, 1995, 23:761-766
    [47] Kamiya H, Kasai H, Effects of sequence contexts on misincorporation of nucleotides opposite 2-hydroxyadenine. FEBS Lett, 1996, 391:113-116
    [48] Dizdaroglu M, Nackerdien Z, Chao BC, Gajewski E, Rao G, Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch Biochem Biophys, 1991, 285:388-390
    [49] Olinski R, Zastawny T, Budzbon J, Skokowski J, Zegarski W, Dizdaroglu M, Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett, 1992, 309:193-198
    [50] Graziewicz MA, Zastawny TH, Olinski R, Speina E, Siedlecki J, Tudek B, FAPYadenine is a moderately efficient chain terminator for prokaryotic DNA polymerases. Free Radic Biol Med, 2000, 28:75-83
    [51] Hatahet Z, Wallace SS, Nickoloff J A, Hoekstra M F, DNA damage and repair,vol. 1: DNA repair in prokaryotes and lower eukaryotes. Humana Press Inc, 1998:229-262
    [52] Wang D, Kreutzer DA, Essigmann JM, Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res, 1998, 400:99-115
    [53] Achey PM, Wright CF, Inducible repair of thymine ring saturation damage in X174 DNA. Radiat Res, 1983, 93: 609-612
    [54] Wallace S S, Biological consequences of free radical-damaged DNA bases ,Free Radical Biology and Medicine, 2002, 33(1):1-14
    [55] Bjelland S, Seeberg E, Mutagenicity, toxicity and repair of DNA base damage induced by oxidation Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 531:37-80
    [56] Malyarchuk S, Youngblood R, Landry A M, Quillin E, Harrison L, The mutation frequency of 8-oxo-7,8-dihydroguanine (8-oxodG) situated in a multiply damaged site: comparison of a single and two closely opposed 8-oxodG in Escherichia coli, DNA Repair, 2003, 2(6);695-705
    [57] Sponer J, Leszczynski J, Hobza P, Hydrogen bonding, stacking and cation binding of DNA bases. J Mol Struct: theochem, 2001, 573(1): 43-53
    [58] Zhang LY, Sun H, Lin JT, Stretching vibration influence of the hydrogen bond on a localized excitation and thermodynamic properties of DNA double helices. Physics Letters A, 1999, 259(1):71-79
    [59] Wang G, Vasquez KM, Non-B DNA structure-induced genetic instability. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 598(2): 103-119
    [60] Gu J, Wang J, Leszczynski J, Xie YM, Schaefer H F, To stack or not to stack: Performance of a new density functional for the uracil and thymine dimers. Chemical Physics Letters, 2008, 459(6): 164-166
    [61] Sponer J, Hobza P, Leszczynski J, Reviews of Current Trends In Computational Chemistry. World Scientific, Singapore, 2000, p.171
    [62] Qiu ZM, Xia YM, Wang HJ, Diao KS, Hydrogen-bonding interaction of 5,6- dihydrouracil with RNA bases: DFT and MP2 studies, J Mol Struct: Theochem, 2009, 915(3): 33-37
    [63] Suenaga A, Yatsu C, Komeiji Y, Uebayasi M, Meguro T, Yamato I, Molecular dynamics simulation of trp-repressor/operator complex: analysis of hydrogen bond patterns of protein–DNA interaction, J Mol Struct, 2000, 526(3): 209-218
    [64] van der Wijst T, Guerra C F, Swart M, Bickelhaupt F. M, Performance of various density functionals for the hydrogen bonds in DNA base pairs. Chem Phys Lett, 2006, 426 (6):415 -421
    [65] Sponer J, Hobza P, MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking. Chem Phys Lett, 1997, 267(4) 263-270
    [66] Hobza P, Sponer J, Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study. J Am Chem Soc, 1994, 116: 709-714
    [67] Wallace SS, Biological consequences of free radical-damaged DNA bases . Free Radical Biology and Medicine, 2002, 33(1): 1-14
    [68] Morpugo S, Bossa M, Morpugo G O, Ab initio study of intramolecular proton transfer reractions in cytosine. Chem Phys Let, 1997, 280(3,4):233-238Szczepaniak K, Szczesniak M,
    [69] Pauling L, The Nature of the Chemical Bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, 1939, p429
    [70] Coulson CA, Hydrogen bonding symposium, Ljubljana, Pergamon Press, 1959, p339
    [71] Kitaura K, Morokuma K, A new energy decomposition scheme for molecular interactions within the Hatree-Fock approximation. Int. J. Quantum Chem. 1976,10:325-40
    [72]夏泽吉,氢键的键理论及在化学中的应用,川东学刊(自然科学版),1996, 6(2):46-52
    [73] Legon AC, Millen DJ, Directional character, strength, and nature of the hydrogen bond in gas-phase dimmers. Acc Chem Rec, 1987, 20(1):39 -46
    [74]章慧,徐志固,谈氢键效应在某些前沿领域研究中的重要作用,大学化学,1995,10(4): 19-23
    [75] Derewenda ZS, Derewenda U, Kobos PM, (His) C-H...O=C hydrogen bond in the active sites of serine hydrolases. J Mol Biol, 1994, 241(1):83 -93
    [76] Steiner T, Saenger W,Role of C-H...O hydrogen bonds in the coordination of water molecules. Analysis of neutron difraction data. J Am Chem Soc, 1993, 115(11):4540-4547
    [77] Desirjau GR, The C-H…O Hydrogen Bond in Crytals: What is it? Ace Chem Res, 1991, 24 (10):290-296
    [78] Taylor R, Kennard O, Crystallographic evidence for the existence of CH…O, CH…N and CH…Cl hydrogen bonds. J Am Chem Soc, 1982, 104(19):50 63-5070
    [79] Malone JF, Murray CM, Charlton MH, X-H...π(phenyl)interactions theoretical and crystallographic observations. J Chem Soc Trans, 1997, 93(19) : 3429-3436
    [80] Jorgensen WL, Severance DL, A romatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene. J Am Chem Soc, 1990, 112 (12):4768-4774
    [81]张柏林,牟晓兰,王秀岩,楼南泉,化学物理学报,2002,15(3):181-184
    [82] Dey M, Moritz F, Grotemeyer J, Schlag EW, Base Pair Formation of Free Nucleobases and. Mononucleosides in the Gas Phase. J Am Chem Soc, 1994, 116:9211-9215
    [83] Mayevsky A A, Sukhorukov BI,IR study of base stacking interactions, Nucleic Acids Res, 1980, 8:3029-3042
    [84] Koygoku Y, Lord RC, Rich A, An infrared study of hydrogen bonding between adenine and uracil derivatives in chloroform solution, J Am Chem Soc, 1967, 89:496-504.
    [85] Sigel A, Sigel H, In metal ions in boil systems [M]. New York: Marcal Dekker Inc, 1996
    [86] Potaman V N, Soyfer V N. Divalent metal cations upon coordination to the N7 of purines differentially stabilize the PyPuPu DNA triplex due to unequal Hoogsteen-type hydrogen bond enhancement. J Biomol Struct Dyn, 1994(11): 1035-1040
    [87] Egli M, Gessner R V, Stereoelectronic effects of deoxyribose O4’on DNA conformation. Proc Natl Acad Sci USA, 1995, 92(1):180-184
    [88] Roy S, Westmaas J A, Buda F, Reedijk J, Platinum(II) compounds with chelating ligands based on pyridine and pyrimidine: Synthesis, characterizations, DFT calculations, cytotoxic assays and binding to a DNA model base, J Inorg Biochem, 2009, 103(9): 1278- 1287
    [89] Nakanishi Y, Kitagawa Y, Shigeta Y, Theoretical studies on magnetic interactionsbetween Cu(II) ions in salen nucleobases, Polyhedron, 2009, 28(9): 1945-1949
    [91] Tamasi G, Botta F, Cini R, DFT-molecular modeling analysis of C–H N and C–H S hydrogen bond type interactions in selected platinum–purine/pyrimidine complexes, J Mol Struct: THEOCHEM, 2006, 766(1):61-72
    [92] Tehrani ZA, Fattahi A, Pourjavadi A, DFT study of the interaction of cytidine and 2′-deoxycytidine with Li+, Na+, and K+: effects of metal cationization on sugar puckering and stability of the N-glycosidic bond, Carbohydrate Research, 2009, 344(6): 771-778
    [93] Zhang Y, Huang K, On the interactions of hydrated metal cations (Mg2+, Mn2+, Ni2+, Zn2+) with guanine–cytosine Watson–Crick and guanine–guanine reverse- Hoogsteen DNA base pairs, J Mol Struct: THEOCHEM, 2007, 812: 51-62
    [94] Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobz a P, The Effect of Metal Binding to the N7 Site of Purine Nucleotides on Their Structure, Energy, and Involvement in Base Pairing. J Phys Chem B, 2000, 104 (31):7535-7544
    [95] Zhang Y, Huang KX, On the interactions of hydrated metal cations (Mg2+, Mn2+, Ni2+, Zn2+) with guanine–cytosine Watson–Crick and guanine–guanine reverse-Hoogsteen DNA base pairs. J Mol Struct: Theochem, 2007, 812(3):51-62
    [96] Nakanishi Y, Kitagawa Y, Shigeta Y, Saito T, Matsui T, Miyachi H, Kawakami T, M. Okumura, K. Yamaguchi, Theoretical studies on magnetic interactions between Cu(II) ions in salen nucleobases. Polyhedron, 2009, 28 (10):1945-1949
    [97] Sponer J, Sponer JE, Gorb L, Leszczynski J, Lippert B, Metal-Stabilized Rare Tautomers and Mispairs of DNA Bases: N6-Metalated Adenine and N4-Metalated Cytosine, Theoretical and Experimental Views. J Phys Chem A, 1999,103:11406-11413
    [98] Schmidt K S, Reedijk J, Weisz K, B Janke E M, Sponer J E, Sponer J, and Lippert, Loss of Hoogsteen Pairing Ability upon N1 Adenine Platinum Binding. Inorg Chem, 2002, 41 (11):2855-2863
    [99] Sponer J, Sponer JE, Leszczynski J, Cation -πand amino-acceptor interactions between hydrated metal cations and DNA bases. A quantum-chemical view. J Biomol Struct Dyn, 2000, 17(6):1087-1096
    [100] Pople J A,贝弗里奇DL.分子轨道近似方法理论[M].江元生译.北京:科学出版社, 1976. 210-232
    [101]徐光宪,黎乐民.量子化学(基本原理和从头计算法)[M].北京:科学出版社, 1984. 60-72
    [102] Schr?dinger E, "An Undulatory Theory of the Mechanics of Atoms and Molecules". Physical Review, 1926, 28 (6): 1049-1070
    [103] Hinchliffe Alan, Modelling Molecular Structures (2nd ed.). Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd, 2000, p. 186
    [104] M?ller C, Plesset MS, "Note on an Approximation Treatment for Many-Electron Systems" Phys Rev, 1934, 46: 618-622
    [105] Dewar M J主编.有机化学分子轨道理论[M].戴树珊,刘有德译.北京:科学出版社, 1977. 346-358
    [106] Levine I N主编.量子化学[M].宁世光译。北京:人民教育出版社, 1981, 212-232
    [107]肖鹤鸣,居学海,高能体系中的分子间相互作用[M].北京:科学出版社, 2003.152-165
    [108] Ransil B J. Studies in molecular structure. IV. Potential curve for the interaction of two Helium atoms in single-configuration LCAO-MO-SCF approximation. J Chem Phys, 1961, 34:2109-2118
    [109] Zandler ME, Souza FD, The remarkable ability of B3LYP/3-21G calculations to describe geometry, spectral and electrochemical properties of molecular and supra molecular porphyrin–fullerene conjugates, Comptes Rendus Chimie, 2006, 9: 960-981
    [110] Ramos JM, Versiane O, Felcman J, Téllez S. FT-IR vibrational spectrum and DFT: B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate– guanidoacetate nickel (II) complex: [Ni(Gly)(Gaa)], Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(1): 182-189
    [111] Ramos JM, Versiane O, Felcman J, Téllez Soto CA. Fourier transform infrared spectrum, vibrational analysis and structural determinations of the trans-bis (glycine) nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(5): 1370-1378
    [112] Neihsial S, Lyngdoh RH D, Novel H-bonded base pairs as potential repeat units for information-bearing macromolecular duplexes: A B3LYP/6-31G* search, J Mol Struct: THEOCHEM, 2007, 806: 213-221
    [113] Bhattacharjee AK, Assessment of cation–pi binding affinity of the aromatic ring in several chloroquine analogs and related antimalarials using the ab initio quantum chemical (6-31G**) theory, J Mol Struct: THEOCHEM, 2001, 549: 27-37
    [114] Frisch MJ, et al., GAUSSIAN 03, Gaussian Inc., Pittsburgh, PA, 2003
    [115] L?wdin PO, Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, Phys. Rev. 1955,97:1474–1489
    [116] Bader R F, Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford 1994
    [117] Danilov V I, Anisimov V M, Kurita N, Dmytro Hovorun MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases, Chem Phy Lett, 2005, 412,4:285-293
    [118] Pejov L, A gradient-corrected density functional and MP2 study of phenol–ammonia and phenol–ammonia(+) hydrogen-bonded complexes, Chem Phy, 2002, 285: 177-193
    [1] Cadet J, Berger M, Buchko GW, Josh PC, Raoul S, 2,2-Diamino -4- [(3,5-di-O -acetyl- 2-deoxy-β-d-erythro-pentofuranosyl) amino]- 5-(2H)- oxazolone: A novel and predominantradical oxidation product of 3,5-di-O- acetyl -2-deoxyguanosine. J Am Chem Soc, 1994, 116: 7403-7404
    [2] Raoul S, Berger M, Buchko GW, Joshi PC, Morin B, Weinfeld M, Cadet J, 1H, 13C and 15N NMR analysis and chemical features of the two main radical oxidation products of 2-deoxyguanosine: oxazolone and imidazolone nucleosides. J Chem Soc Perkin Trans, 1996, 2:371-381
    [3] Gasparutto D, Ravanat JL, Gérot O, Cadet J, Characterization and chemical stability of photooxidized oligonucleotides that contain 2,2-diamino-4-[(deoxy-β-derythro- pento furanosyl) -amino]-5(2H)-oxazolone. J Am Chem Soc, 1998, 120:10283-10286
    [4] Kino K, Saito I, Sugyiama H, Product analysis of GG specific photooxidation of DNA via electron transfer: 2-aminoimidazolone as a major guanine oxidation product. J Am Chem Soc, 1998, 120:7373-7474
    [5] Sekine M, Okada K, Seio K, Kakeya H, Osadad H, Sasakie T, Structure–activity relationship of phosmidosine: importance of the 7,8-dihydro- 8-oxoadenosine residue for antitumor activity. Bioorganic & Medicinal Chemistry, 2004, 12: 5193-5201
    [6] Haranczyk M, Miller J H, Gutowski M, Differences in electrostatic potential around DNA fragments containing adenine and 8-oxo-adenine An analysis based on regular cylindrical projection. Journal of Molecular Graphics and Modelling, 2007, 26:282-289
    [7] Yamanaka K, Mizoi M, Tachikawa M, Hasegawa A, Hoshino M, Okada S,Oxidative DNA damage following exposure to dimethylarsinous iodide: the formation of cis-thymine glycol. Toxicology Letters, 2003, 143:145-/153
    [8] McTigue MM, Rieger RA, Rosenquist TA, Iden CR, de los Santos CR,Stereoselective excision of thymine glycol lesions by mammalian cell extracts.DNA Repair, 2004,3: 313-322
    [9] Cysewski P, Structure and properties of hydroxyl radical modified nucleic acid components: tautomerism and miscoding properties of 5-hydroxycytosine. J Mol Struct: Theochem, 1999, 466:49-58
    [10] Kchromov IS, Sorotchkina VV, Nigmatullin TG, Tikchonenko TI, A New nigrogen base 5-hydroxycytosine in phage N-17 DNA. FEBS LETTERS,1980,118:51-54
    [11] Clowney L, Jain SC, Srinivasan AR, Westbrook J, Olson WK, Berman HM, Geometric parameters in nucleic acids: nitrogenous bases. J Am Chem Soc, 1996,118:509-518
    [12] McMullan RK, Benci P, Craven BM, The neutron crystal structure of 9-methyladenine at 126 K. Acta Cryst B, 1980, 36:1424-1430
    [13] Florián J, Leszczyński J, What Changes Occur in Vibrational Spectra of Guanine and Cytosine When They Form the Watson-Crick Base Pair? A Quantum-Chemical SCRF HF.6-31G* Study. Intern J Quantum Chem, 1995, 22 :207-225
    [14] Cysewski P, et al., An ab initio SCF study on the tautomerisation of fapy-guanine. J Mol Struct: Theochem, 1996, 369: 93-104
    [15] Shishkin O V, Gorb L, Leszczynski J, Modeling of the Hydration Shell of Uracil and Thymine. Int J Mol Sci, 2000, 1:17-27
    [16] Clowney L, Jain SV, Srinivasan AR, Westbrook J, Olson WK, Berman HM. J Am Chem Soc, 1996,118:509-512
    [17] Zhang CF, Chen XJ, Yuan ZS, Zhang ZJ, Xu KZ, Density functional theory studies ofmethylated uracil: gemetries and energies. Chem Phys, 2000, 256:275-278
    [18]赵瑶兴,孙祥玉.光谱解析与有机结构鉴定.合肥:中国科技大学出版社,1992: 203
    [19] (?)poner J, Hobza P, DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations. Intern J Quantum Chem, 1998, 57(5): 959 - 970
    [20] (?)poner J , Hobza P , Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study. J Phys Chem, 1994, 98 (12): 3161-3164
    [21] Bludsky O, Sponer J, Leszczynski J, Spirko V, Hobza P, Amino groups in nucleic acid bases, aniline, aminopyridines, and aminotriazine are nonplanar: Results of correlated ab initio quantum chemical calculations and anharmonic analysis of the aniline inversion motion. J Chem Phys, 1996, 105:11042-11050
    [22] Cysewski P, An ab initio study on nucleic acid bases aromaticities. J Mol Struct: Theochem, 2005, 714(1): 29-34
    [23] Sivanesan D, Sumathi I, Welsh WJ, Comparative studies between hydrated hydrogen bonded and stacked DNA base pair. Chem Phys Lett, 2003, 367(4): 351-360
    [24] Hobza P, (?)poner J, MP2 and CCSD(T) calculations on H-bonded and stacked formamide…formamide and formamidine…formamidine dimers. J Mol Struct: Theochem, 1996, 388(11): 115-120
    [25] Kurita N, Danilov VI, Anisimov VM, The structure of Watson–Crick DNA base pairs obtained by MP2 optimization. Chem Phys Lett, 2005, 404(3): 164-170
    [26] Umezawa Y, Nishio M, Thymine-methyl/πinteraction implicated in the sequence- dependent deformability of DNA, Nucleic acids research, 2002,30(10):2183-2192
    [1] McTigue MM, Rieger RA, Rosenquist TA, Iden CR, de los Santos CR, Stereoselective excision of thymine glycol lesions by mammalian cell extracts, DNA Repair, 2004, 3(3):313 -322
    [2] Morimoto S, Hatta H, Fujita S, Matsuyama T, Ueno T, Nishimoto S, Hydroxyl radical-induced cross-linking of thymine and lysine: Identification of the primary structure and mechanism, Bioorganic & Medicinal Chemistry Letters, 1998, 8(7): 865-870
    [3] Dizdaroglu M, Gajewski E, Selected-ion mass spectrometry: Assays of oxidative DNA damage. Methods in Enzymology, 1990, 186: 530-544
    [4] Müller K, Leukel P, Mayer KK, Wiegrebe W, Modification of DNA bases by anthralin and related compounds. Biochemical Pharmacology, 1995, 49(11): 1607-1613
    [5] Breen AP, Murphy JA, Reactions of oxyl radicals with DNA. Free Radical Biology and Medicine, 1995, 18(6): 1033-1077
    [6] Kagawa K, Kagawa H, DNA modification in chick heart and cerebrum. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2004, 138(2): 147-160
    [7] Guerniou V, Rapin D, Millau J, Bufflier E, Favier A, Cadet J, Sauvaigo S, Repair of oxidative damage of thymine by HeLa whole-cell extracts: simultaneous analysis using a microsupport and comparison with traditional PAGE analysis, Biochimie, 2005, 87(2):151-159
    [8] Mansoor F, Ali R, Characterization of chromatin modified with reactive oxygen species: Recognition by autoantibodies in cancer, Clinical Biochemistry, 2007, 40 :928-935
    [9] Yamanaka K, Mizoi M, Tachikawa M, Hasegawa A, Hoshino M, Okada S, Oxidative DNA damage following exposure to dimethylarsinous iodide: the formation of cis-thymine glycol, Toxicology Letters, 2003,143(2):145-153
    [10] Toga T, Yamamoto J, Iwai S, Efficient conversion of thymine glycol into the formamide lesion in oligonucleotides, Tetrahedron Letters, 2009, 50(6):723-726
    [11] Luvino D, Gasparutto D, Reynaud S, Smietana M, Vasseur JJ, Boronic acid-based fluorescent receptors for selective recognition of thymine glycol, Tetrahedron Letters, 2008, 49(42):6075-6078
    [12] Hayes RC, Petrullo LA, Huang HM, Wallace SS, LeClerc JE, Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions. J Mol Biol, 1988, 201:239-246
    [13] Ide H, Kow YW, Wallace SS, Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res, 1985, 13:8035-8052
    [14] Rouet P, Essigmann J M, Possible role for thymine glycol in the selective inhibition of DNA synthesis on oxidized DNA templates. Cancer Res, 1985, 45:6113-6118
    [15] Hayes RC, LeClerc JE, Sequence dependence for bypass of thymine glycols in DNA by DNA polymerase I. Nucleic Acids Res, 1986,14:1045-1061
    [16] Greenberg MM, Matray TJ, Inhibition of klenow fragment (exo-) catalyzed DNA polymerization by (5R)-5,6-dihydro-5-hydroxythymidine and structural analogue 5,6- dihydro- 5-methylthymidine. Biochemistry, 1997, 36:14071-14079
    [17] Frenkel K, Cummings A, Solomon J, Cadet J, Steinberg JJ, Teebor G W, Quantitative determination of the 5-(hydroxymethyl)uracil moiety in the DNA of Irradiated cells. Biochemistry, 1985, 24:4527-4533
    [18] Liu PF, Burdzy A, Sowers L C, Repair of the mutagenic DNA oxidation product, 5-formyluracil, DNA Repair, 2003, 2(2):199-210
    [19] Mellac S, Fazakerley G, Sowers L, Structures of base pairs with 5-(hydroxymethyl) -2-deoxyuridine in DNA determined by NMR spectroscopy. Biochemistry, 1993, 32:7779 -7786
    [20] Podolyan Y, Nowak MJ, Lapinski L, Leszczynsk J, Probing ab initio MP2 approach towards the prediction of vibrational infrared spectra of DNA base pairs. J Mol Struct,2005, 744:19-34
    [21] Boys SF, Bernardi F, The Calculation of Small Molecular Interaction by the Differences of Separate Total Energies: Some Procedures with Reduced Errors. Mol Phys, 1970, 19: 553-556
    [22] Alkorta I, Rozas I, Elguero J, An extension of the bond lenght-bond order relationship from Covalent bond to van der Waals interactions. Struct Chem, 1998, 9:243-247
    [23] Bader RFW, A bond path: A universal indicator of bonded interactions. J Phys Chem A, 1998, 102: 7314-7323
    [24] Kurita N, Danilov V I, Anisimov V M,The structure of Watson–Crick DNA base pairs obtained by MP2 optimization. Chem Phy Lett, 404 (2005) 164–170
    [25] van der Wijst T, Guerra C F, Swart M, M Bickelhaupt F,Performance of various density functionals for the hydrogen bondsin DNA base pairs. Chem Phy Lett, 426 (2006) 415–421
    [26] Hobza P, Havlas Z, Blue-shifting hydrogen bonds. Chem Rev, 2000, 100: 4253-4264
    [27] van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P,The nature of improper, blue-shifting hydrogen bonding verified experimentally. J Am Chem Soc, 2001, 123:12290-12293
    [28] Gu Y, Kar T, Scheiner S, Fundamental properties of the CH…O interaction: Is it a true hydrogen bond? J Am Chem Soc, 1999, 121:9411-9422
    [29] Hermansson K, Blue-shifting hydrogen bonds. J Phys Chem A, 2002, 106:4695-4702
    [30] Li X, Liu L, Schlegel HB, On the physical origin of blue-shifted hydrogen bonds. J Am Chem Soc, 2002, 124:9639-9647
    [31] Alabugin IV, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding: A subtle balance of hyperconjugation and rehybridization. J Am Chem Soc, 2003, 125:5973-5987
    [32] Yang Y, Zhang WJ, Per S X, Shao J, Huang W, Gao X M, Blue shifted and red shifted hydrogen bonds: Theoretical study of the CH3CHO…NH3 complexes. J Mol Struct: Theochem, 2005,732: 33-37
    [33] Miehlich B, Savin A, etal. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett, 1989, 157:200-206
    [34] Bader RFW, Atoms in Molecules: A Quantum Theory. Clarendon Press, New York, 1990
    [35] Matta CF, Hernandez-Trujillo J, etal. Design and Characterisation of Integrated Varactors for RF Applications Handbook. J Chem Eur, 2003, 91:940-946
    [36] Koch U, Popelier PLA, Characterization of CH…O hydrogen bonds on the basis of the charge density. J Phys Chem, 1995, 99:9747-9754
    [37] Popelier PLA, Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A, 1998, 102: 1873-1878
    [38] Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J. Properties of the CH…H dihydrogen bond: An ab intio and topological analysis. J Phys Chem A, 2004, 108: 10865- 10872
    [1] Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA, DNA repair, mitochondria, and neurodegeneration. Neuroscience, 2007, 145(4): 1318-1329
    [2] Thiviyanathan V, Somasunderam A, Volk DE, Hazra TK, Mitra S, Gorenstein DG, Base- pairing properties of the oxidized cytosine derivative, 5-hydroxy uracil. Biochemical and Biophysical Research Communications, 2008, 366(3): 752-757
    [3] Cysewski P, Structure and properties of hydroxyl radical modified nucleic acid components: tautomerism and miscoding properties of 5-hydroxycytosine. J Mol Struct: Theochem, 1999, 466(3):49-58
    [4] Whiteman M, Hong HS, Jenner A, Halliwell B, Loss of oxidized and chlorinated bases in DNA treated with reactive oxygen species: implications for assessment of oxidative damage in vivo. Biochemical and Biophysical Research Communications, 2002, 296(4): 883-889
    [5] Purmal AA, Kow YW, Wallace SS, Major oxidative products of cytosine, 5-hydroxy cytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Nucleic Acids Res, 1994, 22:72-78
    [6] Bjelland S, Seeberg E, Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 531(2): 37-80
    [7] Cysewski P, Jeziorek P, Olinski R, Structure and tautomeric properties of cytosine derivatives generated by a hydroxyl radical in aerobic conditions. J Mol Struct: Theochem, 1999, 459: 1-14
    [8] Purmal AA, Kow YW, Wallace SS, Major oxidative products of cytosine, 5-hydroxy cytosine and 5-hydroxyuracil, exhibit sequence context-dependent mispairing in vitro. Nucleic Acids Res, 1994, 22:72-78
    [9] Krokan HE, Standal R, Slupphaug G, DNA glycosylases in the base excision repair of DNA. Biochem J, 1997, 325:1-16
    [10] Purmal AA, Lampman GW, Bond JP, Hatahet Z, Wallace SS, Enzymatic processing of uracil glycol, a major oxidative product of DNA cytosine. J Biol Chem, 1998, 273: 10026 -10035
    [11] Kreutzer DA, Essigmann JM, Oxidized, deaminated cytosines are a source of C·T transitions in vivo. Proc Natl Acad Sci, USA 1998, 95:3578-3582
    [12] Feig DI, Sowers LC, Loeb LA, Reverse chemical mutagenesis: identification of the mutagenic lesions resulting from reactive oxygen species-mediated damage to DNA. Proc Natl Acad Sci, USA 1994, 91:6609- 6613
    [13] Cysewski P,Structure and properties of hydroxyl radical modified nucleic acid components: tautomerism and miscoding properties of 5-hydroxycytosine. J Mol Struct: Theochem, 1999, 466:49-58
    [14] Boys SF, Bernardi F, The Calculations of Small Molecular Interaction by the Differerce of Separate Total Energies. Some Procedures with Reduced error. Mol Phys, 1970, 19: 553-566
    [15] Sordo JA, On the use of the Boys–Bernardi function counterpoise procedure to correctbarrier heights for basis set superposition error. J Mol Struct: Theochem, 2001, 537(3): 245- 251
    [16] Kurita N, Danilov V I, Anisimov V M,The structure of Watson–Crick DNA base pairs obtained by MP2 optimization. Chem Phy Lett, 404 (2005) 164-170
    [17] van der Wijst T, Guerra C F, Swart M, M Bickelhaupt F,Performance of various density functionals for the hydrogen bondsin DNA base pairs. Chem Phy Lett, 426 (2006) 415–421
    [18] Cysewski P, Jeziorek P, Olinski R, Structure and tautomeric properties of cytosine derivatives generated by a hydroxyl radical in aerobic conditions. J Mol Struct: Theochem, 1999, 459:1-14
    [19] Miehlich B, Savin A, et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett, 1989, 157:200-206
    [20] Koch U, Popelier P L A. Characterization of CH…O hydrogen bonds on the basis of the charge density. J Phys Chem, 1995, 99:9747-9754
    [21] Popelier PLA, Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A, 1998, 102: 1873-1878
    [22] (a) Bader RWF, A Bond Path: A Universal Indicator of Bonded Interactions. J Phys Chem A, 1998, 102:7314-7323 (b) Alkorta I, Elguero, The Molecular Structure and NMR Properties of P-Phosphinoylmethyl Aminophosphonium Salts. J Struc Chem, 2004, 15:117-120
    [23] Thiviyanathan V, Somasunderam A, Volk DE, Gorenstein DG, 5-Hydroxyuracil can form stable base pairs with all four bases in a DNA duplex, Chem Commun, 2005, 400-402
    [1] Lu RZ, Nash HM, Verdine GL, A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer. Current Biology, 1997, 7(6): 397-407
    [2] Bruner SD, Nash HM, Lane WS, Verdine GL, Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Current Biology, 1998, 8(7): 393-404
    [3] Hirakawa K, Kawanishi S, Hirano T, Segawa H, Guanine-specific DNA oxidation photosensitized by the tetraphenylporphyrin phosphorus(V) complex via singlet oxygen generation and electron transfer. Journal of Photochemistry and Photobiology B: Biology, 2007, 87(3): 209-217
    [4] Niles JC, Wishnok JS, Tannenbaum SR, Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: Structures and mechanisms of product formation. 2006, 14(2): 109-121
    [5] Kelly MC, White B, Smyth MR, Separation of oxidatively damaged DNA nucleobases and nucleosides on packed and monolith C18 columns by HPLC-UV-EC. Journal of Chromatography B, 2008, 863(1): 181-186
    [6] Shibutani S, Grollman AP, Miscoding during DNA synthesis on damaged DNA templates catalysed by mammalian cell extracts. Cancer Letters, 83(2): 315-322
    [7] Kino K, Sugiyama H, Possible cause of G·C→C·G transversion mutation by guanine oxidation product, imidazolone. Chemistry & Biology, 2001, 8(4): 369-378
    [8] Kawanishi S, Hiraku Y, Oikawa S, Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutation Research/Reviews in Mutation Research, 2001, 488(1): 65-76
    [9] Mazurek A, Berardini M , Fishel R, Activation of Human MutS Homologs by 8-Oxo-guanine DNA Damage, J Bio Chem, 2002,277:8260-8266
    [10] Shukla LI, Adhikary A, Pazdro R, Becker D, Sevilla MD, Formation of 8-oxo- 7,8-dihydro guanine-radicals in -irradiated DNA by multiple one-electron oxidations, Nucleic Acids Research, 2004, 32(22):6565-6574
    [11] Lipscomb L, Peek M, Morningstar M, Verghis S, Miller E, Rich A, Essigmann J, Williams L, X-ray structure of a DNA decamer containing 7,8-dihydro-8-oxoguanine. Proc Natl Acad Sci USA, 1995, 92:719-723
    [12] Akasaka S, Takimoto K, Yamamoto K, G:C→T:A and G:C→C:G transversions arethe predominant spontaneous mutations in the Escherichia coli supF gene: an improved lacZ(am) E. coli host designed for assaying pZ189 supF mutational specificity. Mol Gen Genet, 1992, 235:173-178
    [13] Akasaka S, Yamamoto K, Hydrogen peroxide induces G:C to T:A and G:C to G:G transversions in the supF gene of Escherichia coliMol. Gen Genet, 1994, 245:500-505
    [14] Reynisson J, Steenken S, DFT calculations on the electrophilic reaction with water of the guanine and adenine radical cations. A model for the situation in DNA. Phys Chem Chem Phys, 2002, 4:527-532
    [15] Candeias LP, Steenken S, Reaction of HO with guanine derivatives in aqueous solution: Formation of two different redox-active OH-adduct radicals and their unimolecular transformation reactions. Properties of G(?H). Chem Eur J, 2000, 6:475-484
    [16] Moriya M, Grollman AP, Mutations in the mutY gene of Escherichia coli enhance the frequency of targeted G:C→T:A transversions induced by a single 8-oxoguanine residue in single-stranded DNA. Mol Gen Genet, 1993, 239:72-76
    [17] Akasaka S, Yamamoto K, Hydrogen peroxide induces G:C to T:A and G:C to G:G transversions in the supF gene of Escherichia coli. Mol Gen Genet, 1994, 243:500-505
    [18] Smirnov S, De Los Santos FJ C, PDB-Protein Data Bank1FYI (2000)
    [19] Reynisson J, Steenken S, DNA-base radicals. Their base pairing abilities as calculated by DFT. Phys Chem Chem Phys, 2002, 4:5346-5352
    [20] Lesher DT, Pommier Y, Stewart L, Redinbo MR, 8-Oxoguanine rearranges the active site of human topoisomerase I . Proc Natl Acad Sci USA, 2002, 99:12102-12107
    [21] Freisinger E, Grollman AP, Miller H, Kisker C, Lesion (in)tolerance reveals insights into DNA replication fidelity. EMBO J, 2004, 23:1494-1505
    [22] Demple B, Harrison L, Repair of oxidative damage to DNA: Enzymology and biology. Annu Rev Biochem, 1994, 63:915-948
    [23] Cysewskia P, Jeziorek D, Olifiskia R,An ab initio SCF study on the tautomerisation of fapy-guanine. J Mol Struct: Theochem, 1996, 369:93-104
    [24] Hobza P, Intermolecular Complexes.The Role of Van der Waals Systems in Physical Chemistry and in the Biodisciplines; Elsevier; Amsterdam, 1988
    [25] Koch U, Popelier PLA, Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem, 1995, 99, 9747-9754
    [26] Reynisson J, Steenken S, DNA-base radicals. Their base pairing abilities as calculated by DFT. Phys Chem Chem Phys, 2002, 4:5346-5352
    [27] Reynisson J, Steenken S,The calculated base pairing energy of 8-oxoguanine in the syn–anti conformation with cytosine, thymine, adenine and guanine. J Mol Struct: Theochem 2005, 723:29-36
    [28] Culp SJ, Cho BP, Kadlubar FF, Evans F.E., Structural and conformational analyses of 8-hydroxy- 2′-deoxyguanosine. Chem Res Toxicol, 1989, 2:416-422
    [1] Cysewski P,Structure and properties of hydroxyl radical modified nucleic acid components: pairing properties of 2-hydroxyadenine and 8-oxoadenine. J Mol Struct: Theochem, 1999, 466: 59-67
    [2] Boysen G, Pachkowski BF, Nakamura J, Swenberg JA, The formation and biological significance of N7-guanine adducts. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2009, 678(2): 76-94
    [3] Graziewicz MA, Zastawny TH, Olinski R, Tudek B,SOS-dependent A→G transitions induced by hydroxyl radical generating system hypoxanthine/xanthine oxidase/Fe3+/EDTA are accompanied by the increase of Fapy-adenine content in M13 mp18 phage DNA. Mutation Research/DNA Repair, 1999, 434(1): 41-52
    [4] Murata M, Suzuki T, Midorikawa K, Oikawa S, Kawanishi S, Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide. Free Radical Biology and Medicine, 2004, 37(6): 793-802
    [5] Graziewicz M A, Zastawny T H, Olinski R, Speina E, Siedlecki J, Tudek B,Fapyadenine is a moderately efficient chain terminator for prokaryotic DNA polymerases. Free Radical Biology and Medicine, 2000, 28(1): 75-83
    [6] LeDoux SP, Driggers WJ, Scott Hollensworth B, Wilson GL, Repair of alkylation and oxidative damage in mitochondrial DNA. Mutation Research/DNA Repair, 1999, 434(3): 149- 159
    [7] Kamiya H, Ueda T, Ohgi T, Matsukage A, Kasai H, Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res, 1995, 23:761-766
    [8] Kamiya H, Kasai H, Effects of sequence contexts on misincorporation of nucleotides opposite 2-hydroxyadenine. FEBS Lett, 1996, 391:113-116
    [9] Cysewskia P, Vidal-Madjar C, Jordan R, Olinskia R,Structure and properties of hydroxyl radical modified nucleic acid components II. 8-Oxo-adenine and 8-oxo-2’-deoxy-adenosine. J Mol Struct: Theochem, 1997, 397:167-177
    [10] Guschlbauer W, Duplaa AM, Guy A, Teoule R, Fazakerley GV, Structure and in vitro replication of DNA templatescontaining 7,8-dihydro -8-oxoadenine. Nucleic Acids Res, 1991,19: 1753 -1758
    [11] Kamiya H, Kasai H, Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J Biol Chem, 1995, 270:19446-19450
    [12] Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M, Nickel(II)- and cobalt (II) -dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Cancer Res, 1991, 51:5837-5842
    [13] Boys SF, Bernardi F. The Calculations of Small Molecular Interaction by the Differerce of Separate Total Energies. Some Procedures with Reduced error. Mol Phys, 1970, 19: 553- 566
    [14] West GJ, West IW, Ward JF, Radioimmunoassay of 7,8-dihydro-8-oxoadenine (8-hydroxy adenine). Int J Radiat Biol Relat Stud, 1982, 42:481-90
    [15] Switzer CY, Moroney SE, Benner SA, Enzymatic recognition of the base pair between isocytidine and isoguanosine. Biochemistry 1993, 32:10489-10496
    [16] Kamiya H, Ueda T, Ohgi T, Matsukage A, Kasai H, Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Res, 1995, 23:761 -766
    [1] Watson JD, Crick FHC, A Structure for Deoxyribose Nucleic Acid. Nature, 1953, 171: 737-738
    [2] Parthasarathi R, Subramanian V, Hydrogen bonding of DNA base pairs and information entropy: From molecular electron density perspective. Chem Phys Lett, 2006, 418:530-534
    [3] Dkhissi A, Blossey R, Performance of DFT/MPWB1K for stacking and H-bonding interactions. Chem Phys Lett, 2007, 439:35-39
    [4] Thiviyanathan V, Somasunderam A, Volk DE, Hazra TK, Mitra S, Gorenstein DG, Base-pairing properties of the oxidized cytosine derivative, 5-hydroxy uracil. Biochem Biophys Res Commun, 2008, 366:752-757
    [5] Padermshoke A, Katsumoto Y, Masaki R, Aida M, Thermally induced double proton transfer in GG and wobble GT base pairs: A possible origin of the mutagenic guanine. Chem Phys Lett, 2008, 457: 232-236.
    [6] Kurita N, Danilov VI, Anisimov VM, The structure of Watson-Crick DNA base pairs obtained by MP2 optimization. Chem Phys Lett, 2005, 404:164-170
    [7] Reynisson J, Steenken S, DFT studies on the pairing abilities of the one-electron reduced or oxidized adenine-thymine base pair. Phys Chem Chem Phys, 2002, 4:5353- 5358
    [8] Bhattacharyya D, Koripella SC, Mitra A, Rajendran VB, Sinha B, Theoretical analysis of noncanonical base pairing interactions in RNA molecules. J Biosci, 2007, 32:809-825
    [9] Warmlander S, Sponer JE, Sponer J, Lerjon M, The Influence of the Thymine C5 MethylGroup on Spontaneous Base Pair Breathing in DNA. J Biol Chem, 2002, 277:28491-28497
    [10] Frazer-Abel AA, Hagerman PJ, Variation of the acceptor-anticodon interstem angles among mitochondrial and non-mitochondrial tRNAs. J Mol Biol, 2004, 343:313-325
    [11] Issa RM, Awad MK, Atlam FM, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Appl Surf Sci, 2008, 255:2433-2441
    [12] Ali MM, Hazra T.K, Hong D, Kow YW, Action of human endonucleases III and VIII upon DNA-containing tandem dihydrouracil. DNA Repair, 2005, 4:679-686
    [13] Novak I, Kovac B, Electronic structure and biological activity of nucleobases. Spectrochim Acta A, 2005, 61:2771-2774
    [14] Jiang H, Jiang J, Hu P, Hu YF, Measurement of endogenous uracil and dihydrouracil in plasma and urine of normal subjects by liquid chromatography-tandem mass spectrometry. J Chromatogr B, 2002, 769:169-176
    [15] Meng FC, Density functional study of various thiouracil tetrads. J Mol Struct: theochem 2007, 806:159-164
    [16] Khvorostov A, Lapinski L, Rostkowska H, Nowak MJ, Unimolecular photochemistry of 4-thiouracils. Photochem Photobiol, 2005, 81:1205-1211
    [17] Burova G, Ten GN, Anashkin AA, Quantum-Mechanical Calculation of the Intensity Distribution in Resonance Raman Spectra of Thiosubstituted Derivatives of Uracil. Opt Spectrosc, 2005, 99:690-694
    [18] Frisch MJ, et al., GAUSSIAN 03, Gaussian Inc., Pittsburgh, PA, 2003
    [19] Becke AD, Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98:5648-5652
    [20] Frisch MJ, Head-Gordon M, Pople JA, A direct MP2 gradient method. Chem Phys Lett, 1990, 166:275-280
    [21] van der Wijst T, Guerra CF, Swart M, Bickelhaupt FM, Performance of various density functionals for the hydrogen bonds in DNA base pairs. Chem Phys Lett, 2006, 426: 415-421
    [22] Hobza P, Zahradnik R, Intermolecular Complexes, Elsevier, Amsterdam, 1988
    [23] van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH, State of the art in counterpoise theory. Chem Rev, 1994, 94:1873-1885
    [24] Bondi, A, Van der Waals Volumes and Radii" , J Phys Chem. 1964, 68 (3): 441–451.
    [25] Sharma P, Mitra A, Sharma S, Singh H, Base pairing in RNA structures: A computational analysis of structural aspects and interaction energies. J Chem Sci, 2007, 119: 525-531
    [26] Warmlander S, Sponer JE, Sponer J, Lerjon M, The influence of the thymine C5 methyl group on spontaneous base pair breathing in DNA. J Biol Chem, 2002, 277: 28491-28497
    [27] Zhang XH, Barbara L, Jones R A, J. Am. Chem. Soc. 1997,119,6432-6433
    [28] Masquida B, Westhof E. RNA. 2000,6:9-15
    [1] (a) Nachtigallova D, Hobza P, Ritze H H, Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions, Phys Chem Chem Phys, 2008, 10:5689-5697 (b) Pitońák M, Neogrády P, Hobza P, Three- and four-body nonadditivities in nucleic acid tetramers:a CCSD(T) study, Phys Chem Chem Phys, 2010, 12:1369-1378 (c) Morgado CA, Jurecka P, Svozil D, Hobza P, Sponer J, Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions, Phys Chem Chem Phys, 2010, 12:3522-3534 (d) Bader RFW, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990
    [2] Koch U, Popelier PLA, Characterization of C-H…O Hydrogen Bonds on the Basis of the Charge Density. J Phys Chem, 1995, 99:9747-9754
    [3] Rozas I, Alkorta, I, Bifurcated hydrogen bonds: Three-centered interactions. J Phys Chem, 1998, 102:9925-9932
    [4] Kock U, Popelier PLA, Characterization of C-H…O Hydrogen Bonds on the Basis of the Charge Density. J Phys Chem, 1995, 99:9747-9754
    [5] Tang TH, Hu J, Yan D, Cui YP, A quantum chemical study on selectedπ-type hydrogen -bonded systems. J Mol Struct, 1990, 207:319-326
    [6] Zhou PP, Qiu WY, Red and Blue Shifted Hydrogen Bonds in the Cis-Trans Noncyclic Formic Acid Dimer. Chem Phys Chem, 2009, 10:1847-1858
    [7] Popelier PLA, Characterization of a dihydrogen bond on the basis of the electron density. Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem, 1998, 102:1873-1878
    [8] Cubero E, Orozco M, Hobza P, Luque FJ, A Comparative Analysis Based on the Electron Density Topology. J Phys Chem, 1999, 103:6394-6401
    [9] Espinosa E, Soubassou M, Lachekar H, Lecomte C, Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr, 1999, B55:563-572
    [10] Mallinson PR, Wozniak K, Smith GT, Mccormack KL, A charge density analysis of cationic and anionic hydrogen bonds in a 'proton sponge' complex. J Am Chem Soc, 1997, 119:11502-11509
    [11] Raissi H, Jalbout AF , Abbasi B, Fazli F , Farzad F, Nadim E, Intramolecular hydrogen bond in 3-imino-propenylamine isomers: AIM and NBO studies. Int J Quan Chem,2009, 110(4):893 - 901
    [12] Nowroozi A, Raissi H, Strong intramolecular hydrogen bond in triformylmethane ab-initio, AIM and NBO study. J Mol Struct: Theochem, 2006, 759:1-3
    [13] Grabowski SJ. High-level ab initio calculations of dihydrogen-bonded complexes. J Phys Chem A, 2000, 104 (23): 5551-5557
    [14] Raghavendra B, Pankaj K, Arunan E, Ab initio and AIM theoretical analysis of hydrogen-bond radius of HD (D = F, Cl, Br, CN, HO, HS and CCH) donors and some acceptors. Phys Chem Chem Phys, 2006, 8 (45):5276-5286
    [15] Doronina EP, Aksamentova TN, Chipanina NN, Mukha SA, Medvedeva SA, Hydrogen bonds in dimers of 3-hydroxy-2-methyl-4-pyrone. AIM analysis. Russian Journal of General Chemistry, 2009, 79: 297-302
    [16] Dusan Hadzi Ed. Theoretical treatment of hydrogen bonding.[M], Chichester: John Wiley & Sons Ltd., 1997
    [17] Deepa P, Kolandaivel P, Senthilkumar K, Interactions of anticancer drugs with usual and mismatch base pairs—Density functional theory studies, Biophys Chem,2008, 136: 50–58
    [18]孙长亮,张艳,姜笑楠,王长生,杨忠志,快速预测分子间氢键强度的新方法,中国科学,2008,38:762-768
    [19] Thiviyanathan V, Somasunderam A, Volk DE, Gorenstein DG, 5-Hydroxyuracil can form stable base pairs with all four bases in a DNA duplex, Chem Commun, 2005, 400–402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700