半球形Si和GaAs探测器双光子响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将固浸透镜技术与双光子响应探测器的研究相结合,以近本征Si和半绝缘GaAs为材料,分别制作了半球形Si基(底面为(110)面)和GaAs基(底面为(001)面)双光子响应光电探测器。探测器采用金属—半导体—金属(MSM)结构。分析了入射线偏振光的偏振方向分别为[111]、[110]、[001]晶向时,Si和GaAs晶体的倍频吸收、双光子吸收、场致倍频效应的各向异性,在此基础上,对自行研制的半球形Si基和GaAs基光电探测器进行了双光子响应的实验研究。以1.3μm连续波固体激光器为光源,在入射光功率约为100mW和1V偏压的情况下,测得半球形Si探测器的双光子响应度达到了2μA/W以上。而在入射光功率约为100mW和25V偏压的情况下,测得半球形GaAs探测器的双光子响应度达到了2mA/W以上。在相同入射光功率和相同的偏置电压下,对同种材料的GaAs块状探测器和半球形探测器的响应度进行了比较研究,证明GaAs半球形光电探测器的双光子响应灵敏度提高了5倍。测量了半球形Si探测器光电流随入射光偏振方向的变化关系,实验数据很好地符合Si单晶双光子吸收理论,并且求出Si的两个独立的三阶非线性极化率张量元之比为0.42。测得的半球形GaAs探测器的光电流随入射光偏振方向的变化关系符合GaAs单晶倍频吸收理论,分析认为GaAs的远远大于暗电流并符合双光子响应的背景电流,是直流电场诱导的场致倍频吸收和GaAs禁带中由于EL2能级的存在而产生的两步单光子吸收所共同作用的结果。半球形Si探测器光电流随偏置电压的增加出现饱和现象,但是GaAs探测器光电流随偏置电压的增加而增加,并未出现饱和。通过以上对半球形GaAs和Si探测器的研究,得到的结论是:半球形GaAs双光子响应探测器的主要工作机制是倍频吸收,而在低偏压下半球形Si双光子响应光电探测器的主要物理机制是双光子吸收。此外,本文还探讨了研制以场致倍频吸收为主要工作机理的高灵敏度Si基双光子响应探测器的可行性。
As the most important semiconductors, Si and GaAs crystals are commonly used in microelectronics and optoelectronics. Silicon photonics has attracted much attention recently because of its potential applications in the near- and mid-infrared regions especially, and it is a potential candidate for future optoelectronic integration, photonic integration, and all-optical signal processing.
     When a semiconductor crystal is irradiated by a beam of laser whose photon energy is less than the bandgap of the semiconductor but greater than half of the bandgap, both double-frequency absorption (DFA) and two-photon absorption (TPA) can occur inside the crystal. DFA is a second-order nonlinear optical effect, in which the frequency of the fundamental light is doubled firstly, then one frequency-doubled photon with energy greater than the bandgap is absorbed by the crystal and thus intrinsic transition occurs; while TPA is a third-order nonlinear optical effect, in which two fundamental photons are absorbed simultaneously to induce intrinsic transition accordingly. DFA and TPA are generally defined as two-photon response (TPR) which is proportional to the square of the incident optical intensity. The bandgap of Si crystal is 1.12eV corresponding to a wavelength range of 1.2-2.1μm in TPR, while a wavelength range of 0.88-1.73μm in TPR for GaAs crystal with a bandgap of 1.43 eV. The TPR regions of the two crystals all cover the commonly used wavelengths of 1.3μm and 1.5μm in electrooptical sampling techniques and high-speed optical communications systems. Therefore, the solid immersion lens (SIL) microscopy was connected with the fabrication of TPR photodetectors for the first time to our knowledge, and the Si-based and the GaAs-based hemispherical TPR photodetectors were studied.
     The centrosymmetric Si crystal belongs to the m3m symmetry group of crystals. We developed the near-intrinsic Si material into a hemispherical photodetector with a radius of 3 mm and a bottom of (110) plane; and concentric circular and annular electrodes with a spacing of ~0.15 mm were made on the bottom. The characteristics of TPR for the hemispherical Si photodetector operating at a wavelength of 1.3μm from a continuous wave (cw) solid laser were studied. In the experiments, the fundamental light was aligned with [ī?ο] orientation and focused at the center of the hemisphere by a focusing lens. First of all, a measurement of photocurrent dependent on the incident optical power was carried out, and the measured result shows a quadratic dependence of the photocurrent on the incident power, the responsivity of the detector was above 2μA/W at 1 V bias, moreover, the responsivity of the hemispherical detector has a potential improvement with a pulse laser. Second, the anisotropy of TPR in Si single crystal was studied. The dependence of the photocurrent on the azimuth of the incident optical field is consistent with the anisotropy of the two-photon absorption in Si crystal. Deduced from the anisotropy of the photocurrent of the photodetector, the ratio of the two independent components of the third-order susceptibility of silicon is obtained to be 0.42. Third, the output photocurrent approached its maximum value with 1 V bias consistent with two-photon absorption in Si crystal also.
     For non-centrosymmetric GaAs crystal which belongs to the 43m symmetry group of crystals, both DFA and TPA can occur inside it. DFA is a second-order nonlinear optical effect, therefore, the DFA is much more significant than the TPA of third-order nonlinear optical effect in theory. The measure of the semi-insulating GaAs (SI-GaAs) material was similar with that of Si. The responsivity of the detector was above 2 mA/W at 25 V bias, the GaAs hemisphere as SIL improved the response sensitivity approximately five times compared to the SI-GaAs block photodetector. The deviated shape of the original ball lens from the perfect sphere and the thickness error of the SIL reduce to the function of SIL. The dependence of the photoexcited carrier density on the azimuth of the fundamental light polarization is in accordance with the theory of DFA. The detector have a larger constant background current than the dark-current, one contribution to the constant background current in the fitted result is effective DFA consequent upon the third-order dielectric response to the surface field and the applied field, another contribution is two-step-single-photon absorption due to the EL2-like defect level in the mid-gap in SI-GaAs. We have a conclusion through the research about anisotropy of DFA, TPA and electric-field-induced second-harmonic generation (EFISHG) in theory and experiment of Si- and GaAs-based photodetector. The conclusion is that the physical mechanism of the detector is attributed to DFA in GaAs crystal while that is TPA in Si crystal under lower voltage. This laid the foundation of the future research on TPR photodetectors.
     The research on the TPR photodetectors with high responsivity can facilitate the identification of the physical mechanisms of TPR. Specially, the GaAs-based and Si-based hemispherical photodetectors will be very useful in autocorrelation measurements, high-speed optoelectronics, optical communications systems, and the domain of THz science and technology, etc.
引文
[1] M.Born and E. Wolf, Principles of Optics[M], Pergamon Press, 1975.
    [2] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics[J], Phys. Rev. Lett., 1961, 7(4):118-119
    [3] R.W. Hellwarth, Theory of Stimulated Raman Scattering[J], Phys.Rev., 1963, 130:1850-1852
    [4] R.Y.Chiao, C.H.Townes and B.P.Stoicheff, Stimulated Brillouin scattering and coherent generation of intense hypersonic waves[J], Phys.Rev.Lett., 1964, 12:592-595
    [5] M.Bass, P.A.Franken, A.E.Hill, C.W.Peters and G.Weinreich., Optical Mixing[J], Phys.Rev.Lett., 1962, 8:18
    [6] D.W.Faries, K.A.Gehring, P.L.Richards and Y.R.Shen, Tunable Far-Infrared Radiation Generated from the Difference Frequency between Two Ruby Lasers[J], Phys.Rev. 1969, 180:363-365
    [7] J.A.Giordmaine and R.C.Miller, Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies[J], Phys.Rev.Lett. 1965, 14:973-976
    [8] S.L.McCall, H.M.Gibbs and T.N.C.Venkatesan, Optical transistor and bistability (A)[J], J.Opt.Soc.Am., 1975,65:1184
    [9] W. Zhao and E. Bourkoff, Propagation Properties of Dark Soliton[J], Opt. Lett., 1989, 14(13):703-705
    [10] R.E.Slusher, L.W.Hollberg, B.Yurke, J.C.Merta et al, Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity[J], Phys. Rev.Lett. 1985, 55:2409-2412
    [11]石顺祥,陈国夫,赵卫,刘继芳,非线性光学[M],西安:西安电子科技大学出版社,2003
    [12]钱士雄,王恭明,非线性光学――原理与进展[M],复旦大学出版社,2001,第一版,2-107
    [13] Giordmaine J A. Mixing of Light Beams in Crystals[J], Phys. Rev. Lett., 1962, 8:19-20
    [14] Marker P D, et al. Effects of Dispersion and Focusing on the Production of Optical Harmonics[J], Phys. Rev. Lett., 1962, 8:21-22
    [15] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Study of Si (111) surfaces byoptical second-harmonic generation: reconstruction and surface phase transformation[J], Phys. Rev. Lett., 1985, 54(1):63-66
    [16] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Study of symmetry and disordering of Si (111)-7×7 surfaces by optical second-harmonic generation[J], J. Vac. Sci. Technol., 1985, B3(5):1467-1470
    [17] C. Jordan, G. Marowsky, U. Emmerichs, et al., Wavelength dependent study of laser induced metallic properties of Si (111) by surface second harmonic generation[J], Optics Communications, 1994, 113:125-132
    [18] C.V. Shank, R. Yen, and C. Hirlimann, Femtosecond-time-resolved surface structural dynamics of optically excited silicon[J], Phys. Rev. Lett., 1983, 51(10):900-902
    [19] N. Arzate, J. E. Mejuam, B.S. Mendoza, et al., DC-electric-field-modified second-harmonic generation at the Si (100) surface[J], Appl. Phys. B, 1999, 68:629-632
    [20] Bernrdo S. Mendoza, Andrea Gaggiotti, and Rodolfo Del Sole, Microscopic theory of second harmonic generation at Si (100) surfaces[J], Phys. Rev. Lett., 1998, 81(17):3781-3784
    [21] D. Bodlaki and E. Borguet, Dynamics and second-order nonlinear optical susceptibility of photoexcited carriers at Si (111) interfaces[J], Appl. Phys. Lett., 2003, 83(12): 2357-2359
    [22] H.W.K. Tom, X.D. Ahu, Y.R. Shen, et al., Investigation of the Si (111)- 7×7 surface by second-harmonic generation: Oxidation and the effects of surface phosphorus[J], Surf. Sci., 1986, 167(1):167-176
    [23] Bernardo S. Mendoza,and W. Luis Mochan, Local-field effect in the second harmonic generation spectra of Si surfaces[J], Physical Review B, 1996, 53(16):R10473-R10474
    [24] J. I. Dadap, J. Shan, A. S. Weling, et al., Measurement of the vector character of electric fields by optical second-harmonic generation[J], Optics Letters, 1999, 24(15):1059-1061
    [25] R.W.J. Hollering, D. Dijkkmp, H.W.L. Lindelauf, et al., Cleaning of Si (001) surfaces studied by optical second-harmonic generation and x-ray photoelectron spectroscopy[J], J. Vac. Sci. Technol., 1991, B9(4):1967-1969
    [26] Elena D. Mishina, Nobuko Tanimura, Seiichiro Nakabayashi, et al., Photomodulated second-harmonic generation at Silicon-Silicon Oxide interfaces:from modeling to application[J], Jpn. J. Appl. Phys., 2003, 42(11):6731-6736
    [27] J.E. Sipe, D.J. Moss, and H.M. van Driel, Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals[J], Physical Review B, 1987, 35(3):1129-1141
    [28] Richard A. Soref, and Brian R. Bennett, Electrooptical effects in silicon[J], IEEE Journal of Quantum Electronics, 1987, QE-23(1):123-129
    [29]刘秀环,陈占国,贾刚等,硅材料场致等效二阶非线性极化率张量的研究[J],光学学报,2005,25(10):1391-1395
    [30] Vl.A. Margulis, E.A. Gaiduk, and E.N. Zhidkin, Electric-field-induced optical second harmonic generation and nonlinear optical rectification in semiconducting carbon nanotubes[J], Optics Communications, 2000, 183: 317-325
    [31] Dong Xiao, Euan Ramsay, Derryck T. Reid, et al., Optical probing of a silicon integrated circuit using electric-field-induced second-harmonic generation[J], Appl. Phys. Lett., 2006, 88:114107-1-3
    [32] Rune S. Jacobsen, Karin N. Andersen, Peter I. Bore, et al., Strained silicon as a new electro-optic material[J], Nature, 2006, 441:199-201
    [33] T.A. Driscoll, and D. Guidotti, symmetry analysis of second-harmonic generation in silicon[J], Phys. Rev. B, 1983, 28(2):1171-1173
    [34] C.Z. Fan and J.P. Huang, Second-harmonic generation with magnetic-field controllabilities[J], Appl. Phys. Lett., 2006, 89:141906-1-141906-3
    [35] C.H. Lee, R.K. Chang, and N. Bloembergen, Nonlinear electroreflectance in silicon and silver[J], Phys. Rev. Lett., 1967, 18(5):167-170
    [36] C.K. Chen, A.R.B. de Castro, and Y.R. Shen, Surface-enhanced second-harmonic generation[J], Phys. Rev. Lett., 1981, 46(2):145-148
    [37] H. Sano, G. Mizutani, W. Wolf, and R. Podloucky, Ab initio study of linear and nonlinear optical responses of Si(111) surfaces[J], Phys. Rev. B, 2002, 66(19):195338-195344
    [38] D. Bodlaki and E. Borguet, Dynamics and second-order nonlinear optical susceptibility of photoexcited carriers at Si(111) interfaces[J], Appl. Phys. Lett., 2003,83(12):2357-2359
    [39] J. I. Dadap, Z. Xu, X. F. Hu, M. C. Downer, N. M. Russelt, J. G. Ekerdt and O. A. Aktsipetrov, Second-harmonic spectroscopy of a Si(001) surface during calibrated variations in temperature and hydrogen coverage[J], Phys. Rev. B, 1997, 56(20):13367-13379
    [40] Kang–Xian Guo, and Shi–Wei Gu, Nonlinear optical rectification in parabolic quantum wells with an applied electric field[J], Phys. Rev. B, 1993, 47(2):16322–16325
    [41] L. Zhang and H.-J. Xie, Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells[J], Phys. Rev. B, 2003, 68(23):235315
    [42] Zahn, M., Kerr effect measurements with non-uniform electric field distributions whose direction changes along the light path, Elec. Insulation, Conference Record of the 1994 IEEE International Symposium, 1994[C], 5(8):137– 140
    [43] Filip Kadlec, Petr Kuzel, Jean-Louis Coutaz, Optical rectification at metal surfaces[J], Opt. Lett., 2004,29(22):2674-2676
    [44] W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy[J], Science, 1990, 73(6):248
    [45] M. Albota, D.Beljonne, J. L. Bredas, et al, Design of Organic Molecules with Large Two-Photon Absorption Cross Sections[J], Science, 1998, 281(5383):1653-1656
    [46] Y. Z. Shen, D. Jakubezyk, F. Xu, J. Swiatkiewicz, P. N. Prasad, Two-photon fluorescence imaging and spectroscopy of nanostructured organic materials using a photon scanning tunneling microscope[J], Appl. Phys. Lett. 2000,76(1):1-3
    [47] Bian Liu, Hui Xu, Lei Jin, Hui Ma, and Die Yan Chen, Two-phton fluorescence imaging of embryo with much less damage than confocal imaging[J], Proc. SPIE Int. Soc. Opt. Eng., 2002,4919:126
    [48] Andrew K. Dunn, Vincent P. Wallace, Mariah Coleno, Michael W. Berns, and Bruce J. Tromberg, Influence of optical properties on two-photon fluorescence imaging in turbid samples[J], Appl. Opt., 2000, 39:1194
    [49] Z. L. Huang, H. Lei, Z. R. Qiu, H. Z. Wang, Z. P. Zhong, Two-photon induced blue fluorescent emission of heterocycle-based organic molecule[J], Chem Commun, 2002, 20:2400-2401
    [50] Q. Z. Liu, Q. Fang, D. Wang, G. Xue, W. T. Yu, Z. S. Shao, M. H. Jiang, Trivalent boron as acceptor in D–π-A chromophores: synthesis, structure and fluorescence following single- and two-photon excitation[J], Chem. Commun., 2002, 23:2900
    [51] T. Plakhotnik, k. walser, M. Pirotta, A. Renn, U. P. Wkld, Nonlinear Spectroscopy on a Single Quantum System: Two-Photon Absorption of a Single Molecule[J], Science, 1996, 271:1703-1705
    [52] G. A. Baker, S. Pandey, F. V. Bright, Extending the Reach of Immunoassays to Optically Dense Specimens by Using Two-Photon Excited Fluorescence Polarization[J], Anal. Chem., 2000, 72(22):5748-5752
    [53] A. Van Orden, H. Cai, P. M. Goodwin, R. A. Keller, Efficient Detection of Single DNA Fragments in Flowing Sample Streams by Two-Photon Fluorescence Excitation Anal[J]. Chem. 1999,71(11):2108-2116
    [54] G. A. Baker, C. A. Munson, E. J. Bukowski, S. N. Baker, F. V. Bright, Assessment of One- and Two-Photon Excited Luminescence for Directly Measuring O2, pH, Na+, Mg2+, or Ca2+ in Optically Dense and Biologically Relevant Samples [J]. Appl. Spectrosc. 2002,56, 455
    [55] S. A. Zugel, B. J. Burke, F. E. Regnier, F .E. Lytle, Electrophoretically Mediated Microanalysis of Leucine Aminopeptidase Using Two-Photon Excited Fluorescence Detection on a Microchip[J], Anal. Chem. 2000,72(22):5731-5735
    [56] Jeffrey S. Lundgren, Lyndon L. E. Salins, Irina Kaneva, and Sylvia Daunert, A Dynamical Investigation of Acrylodan-Labeled Mutant Phosphate Binding Protein[J], Anal. Chem. 1999,71(3):589-595
    [57]汪国平,双光子技术的应用研究进展[J],物理,2000,29(9):546-549
    [58] Parthenopoulos D A, Rentzepis P M, Three-Dimensional Optical Storage Memory[J], Science, 1989,245:843-845
    [59] James H. Strickler, Watt W. Webb,Three-dimensional optical data storage in refractive media by two-photon point excitation[J], Opt. Lett., 1991,16(22):1780-1782
    [60] M. M. Wang, S. C. Esener, F. B. McCormick, I. C okgr, A. S. Dvornikov, P. M. Rentzepis,Experimental characterization of a two-photon memory[J], Opt. Lett., 1997,22(8):558-560
    [61] Yuan.W.; Sun, L.; Tang, H.; Wen, Y.; Jiang, G.; Huang, W.; Jiang, L.; Song, Y.; Tian, H.; Zhu, D , A Novel Thermally Stable Spironaphthoxazine and Its Application in Rewritable High Density Optical Data Storage[J], Adv. Mater., 2005, 17(2):156-160
    [62] Shoji Maruo, Osamu Nakamura, Satoshi Kawata, Three-dimensional microfabrication with two-photon–absorbed photopolymerization[J], Opt. Lett., 1997, 22(2):132-134
    [63] Cumpston B H, Ananthavel S P , Barlow S et al, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J],Nature, 1999,398:51-54
    [64] Sun H B, Matsuo S, Misawa H., Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J], Appl. Phys. Lett.,1999,74(6):786
    [65]贾刚,孙伟,衣茂斌,等,1.3μm波InGaAsP激光器产生的亚微微秒光脉冲的干涉自相关测量[J],半导体学报,1990,11(9):674-679
    [66] Jinendra K. Ranka, AlexanderL. Gaeta, Andrius Baltuska, Maxim S. Pshenichnikov, Douwe A. Wiersma, Autocorrelation measurement of 6-fs pulses based on the two-ohoton-induced photocurrent in a GaAsP photodiode[J], Opt. Lett., 1997,22(17):1346-1348.
    [67] Taira, K.; Y Fukuchi; Ohta, R.; Katoh, K.; Kikuchi, K.; Background-free intensity autocorrelator employing si avalanche photodiode as two-photon absorber[J], Elec. Lett., 2002, 38(23):1465-1466
    [68] Yoshihiro Takagi, Tohru Kobayashi, and Keitaro Yoshihara, Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors[J], Optics Letters, 1992, 17(9):658-660
    [69] K. Kikuchi, Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber[J], Electronics Letters, 1998, 34(1):123-125
    [70] F.R. Laughton, J.H. Marsh, and A.H. Kean, Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator[J], Electronics Letters, 1992, 28(17):1663-1665
    [71] Frances. R. Laughton, John. H. Marsh, David. A. Barrow, et al., The two-photon absorption semiconductor waveguide autocorrelator[J], IEEE Journal of Quantum Electronics, 1994, 30(3):838-844
    [72] H.K. Tsang, L.Y. Chan, J.B.D. Soole, et al., High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides[J], Electronics Letters, 1995, 31(20):1773-1775
    [73] T.K. Liang, H.K. Tsang, I.E. Day, et al., Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements[J], Appl. Phys. Lett., 2002, 81(7):1323-1325
    [74] W. Rudolph, M. Sheik-bahae, and A. Bernstein, et al., Femtosecond autocorrelation measurements based on two-photon photoconductivity in ZnSe[J], Optics Letters, 1997, 22(5):313-315
    [75] A. Zavriyev, E. Dupont, P.B. Corkum, et al., Direct autocorrelation measurementsof mid-infrared picosecond pulses by quantum-well devices[J], Optics Letters, 1995, 20(18):1886-1888
    [76] H. Erlig, S. Wang, T. Azfar, et al., LT-GaAs detector with 451fs response at 1.55μmvia two-photon absorption[J], Electronics Letters, 1999, 35(2):173-174
    [77] L.P. Barry, P.G. Bollond, J.M. Dudley, et al., Autocorrelation of ultrashort pulses at 1.5μm based on nonlinear response of silicon photodiodes[J], Electronics Letters, 1996, 32(20):1922-1923
    [78] H.K. Tsang, T.V. Penty, I.H. White, et al., Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region[J], Appl. Phys. Lett., 1991, 59(26):3440-3442
    [79] U. Keller, S.K. Diamond, B.A. Auld, et al., Noninvasive optical probe of free charge and applied voltage in GaAs devices[J], Appl. Phys. Lett., 1988, 53(5):388-390
    [80] F.W. Smith, H.Q. Le, V. Diadiuk, et al., Picosecond GaAs-based photoconductive optoelectronic detectors[J], Appl. Phys. Lett., 1989, 54(10):890-892
    [81] J.S. Aitchison, M.K. Oliver, E. Kapon, et al., Role of two-photon absorption in ultrafast semiconductor optical switching devices[J], Appl. Phys. Lett., 1990, 56(14):1305-1307
    [82] K.D. Li, A.S. Hou, E. ?zbay, et al., 2-picosecond, GaAs photodiodes optoelectronic circuit for optical correlation applications[J], Appl. Phys. Lett., 1992, 61(26):3104-3106
    [83] Yi-Jen Chiu, S.Z. Zhang, S.B. Fleischer, et al., GaAs-based, 1.55μmhigh speed, high saturation power, low-temperature grown GaAs pin photodetector[J], Electronics Letters, 1998, 34(12):1253-1255
    [84] Masahiko Tani, Kwang-Su Lee, and X.-C. Zhang, Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55μmprobe[J], Appl. Phys. Lett., 2000, 77(9):1396-1398
    [85] Zhanguo Chen, Gang Jia, Yunlong Liu, et al., Submicron external electro-optic measuring system based on an electro-optic solid immersion lens[J], International Journal of Infrared and Millimeter Waves, 2001, 22(5):695-701
    [86] Chen Zhanguo, Jia Gang, and Yi Maobin, External electro-optic measuring system with high spatial resolution and high voltage sensitivity by using an electro-optic solid immersion probe[J], J. Phys. D: Appl. Phys., 2001, 34:3078-3082
    [87]陈占国,贾刚,衣茂斌,等,亚微米外部电光检测技术[J],光学学报,2002,22(5):607-611
    [88] E. Ramsay, N. Pleynet, D. Xiao, et al., Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm[J], Optics Letters, 2005, 30(1):26-28
    [89] D.A. Fletcher, K.B. Crozier, C.F. Quate, et al., Near-field infrared imaging with a microfabricated solid immersion lens[J], Appl. Phys. Lett., 2000, 77(14):2109-2111
    [90] S. B. Ippolito, B. B. Goldberg, and M.S.ünlü, High spatial resolution subsurface microscopy[J], Appl. Phys. Lett., 2001, 78(26):4071-4073
    [1]石顺祥,陈国夫,赵卫,刘继芳,非线性光学[M],西安:西安电子科技大学出版社,2003年,第三章至第五章
    [2] Feinberg J, Photorefractive nonlinear optics[J], Physics Today, 1998, 10:46-52
    [3] J.A. Armstrong, N.Bloembergen, J. Ducuing, et al., Interactions between light waves in a nonlinear dielectric[J], Phys. Rev., 1962, 127(9):1918-1939
    [4] M. Bass, P. Franken, J. F. Ward, et al., Optical rectification[J], Phys. Rev. Lett.,1962, 9 (11):446-448
    [5] R.W. Terhune, P. D. Maker, and C.M. Savage, Optical harmonic generation in Calcite[J], Phys. Rev. Lett., 1962, 8(1):18-20
    [6] J. F. Ward and P.A. Franken, Structure of nonlinear optical phenomena in Potassium Dihydrogen Phosphate[J], Phys. Rev., 1964, 133(1):183-190
    [7] Shapiro S L. Ultrashort Light Pulses, Picosecond Technigues and Applications[M]. New York: Springeri-Verlag Berlin Heidelherg, 1976, 184
    [8]李家泽,朱宝亮,魏光辉,晶体光学[M],北京:北京理工大学出版社,1989年,361-362
    [9] N. Bloembergen and Y. R. Shen, Optical Nonlinearities of a Plasma[J], Phys. Rev. 1966, 141:298-305
    [10] N. Bloembergen, R. K. Chang et al., Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry[J], Phys. Rev. 1968, 174:813-822
    [11] J. Rudnick, E. A. Sern, Second-Harmonic Radiation from Metal Surfaces[J], Phys. Rev. B, 1971, 4:4274-4290
    [12] J. E. Sipe, V. C.Y. So et al., Analysis of second-harmonic generation at metal surfaces[J], Phys. Rev. B, 1980, 21:4389-4402
    [13] J. Nundia, E. A. Stern, in: Surface Polaritons, edited by V. M. Agranovich and D. L. Mills, North-Holand Publishing Co., 1982
    [14] C. K. Chen, T. F. Heinz, D. Ricard and Y. R. Shen, Detection of Molecular Monolayers by Optical Second-Harmonic Generation[J], Phys. Rev. Lett. 1981, 46:1010-1012
    [15] C. K. Chen, A. R. B de Castro an Y. R. Shen, Surface-Enhanced Second-Harmonic Generation[J], Phys. Rev. Lett. 1981, 46:145-148
    [16] OA Aktsipetrov, NN Akhmediev, ED Mishina, and V. R. Novak, Structure ofLangmuir–Blodgett films by second harmonic generation[J], JETP Lett. 1983, 37:207-209
    [17] I. R. Girling, NA Cade, PV Kolinsky et al., Observation of second harmonic generation from Langmuir-Blodgett multilayers of a hemicyanine dye[J], Thin Solid Film. 1985, 132:101-112
    [18]钱世雄,王恭明,非线性光学原理与进展[M],上海:复旦大学出版社,2001年,第一版,73-79
    [19] M. Maile, W. Kaisoer, and T. A. Giordmaine, Intense light bursts in the stimulated Raman effect[J], Phys. Rev. Lett., 1966, 17:1275-1277
    [20] Vaidya Nathan and A.H.Guenther, Review of multiphoton absorption in crystalline solids[J], J.Opt.Soc.Am., 1985, B2(2):294-316
    [21] W. Kaiser and C. G. B. Garrett, Two-photon excitation in CaF?Eu2+ [J], Phys. Rev. Lett., 1961,7(6):229-231
    [22] Stephen J. Bepko, Anisotropy of two-photon absorption in GaAs and Cdte[J], Phys. Rev. B, 1975, 12(2):669-672
    [23] H.K. Tsang, T.V. Penty, I.H. White, et al., Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region[J], Appl. Phys. Lett., 1991, 59(26):3440-3442
    [24]张学如,杨学栋,国凤云,等,GaAs半导体材料中双光子吸收光限幅与偏振方向的关系[J],光学学报,1998,18(3),299-302
    [25] Misao Murayama and Takashi Nakayama, Symmetry-induced anisotropy of two-photon absorption spectra in zinc-blende semiconductors[J], Phys. Rev. B, 55(15):9628-9636
    [26] D. C. Hutchings and B.S. Wherrett, Theory of anisotropy of two-photon absorption in zinc-blende semiconductors[J], Phys. Rev. B, 1994, 49(4):2418-2426
    [27] M. Mehdi Karhanehchi, John H. Marsh, and David C. Hutchings, Polarization dependence of two-photon absorption in an AlGaAs waveguide autocorrelator[J], Applied Optics, 1997, 36(30):7799-7801
    [28] M. D. Dvorak, W. A. Schroeder, D.R. Andersen, et al., Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors[J], IEEE J. Quantum Electron., 1994, 30:256-268
    [29] Frances. R. Laughton, John. H. Marsh, David. A. Barrow, et al., The two-photon absorption semiconductor waveguide autocorrelator[J], IEEE Journal of Quantum Electronics, 1994, 30(3):838-844
    [30]程守洙,江之永,普通物理学(第三册)[M],1982年修订本,高等教育出版社,62-64
    [31]赵凯华,钟锡华,光学(上册)[M],北京大学出版社,1984年
    [32] M. Vollmer, H. Giessen, W. Stolz, et al., Ultrafast nonlinear subwavelength solid immersion spectroscopy at T=8K[J], Appl. Phys. Lett., 1999, 74(13):1791-1793
    [33] M. Born and E. Wolf, Principles of optics[M], Pergamon, New York, 1980, 253 and 468
    [34] S.M. Mansfield and G.S. Kino, Solid immersion microscope[J], Appl. Phys. Lett., 1990, 57:2615-2616
    [35] M. Yoshita, T. Sasaki, M. Baba, et al., Application of solid immersion lens to high-spatial resolution photoluminescence imaging of GaAs quantum wells at low temperatures[J], Appl. Phys. Lett., 1998, 73:635-637
    [36] C.D. Poweleit, A. Gunther, S. Goodnick, et al. Raman imaging of patterned silicon using a solid immersion lens[J], Appl. Phys. Lett., 1998, 73:2275-2277
    [37] A. Chekanov, M. Birukawa, Y. Itoh, et al., "Contact" solid immersion lens near-field optical recording in magneto-optical TbFeCo media[J], J. Appl. Phys., 1999, 85:5324-5327
    [38] Q. Wu, R.D. Grober, D. Gammon, et al., Imaging Spectroscopy of Two-Dimensional Excitons in a Narrow GaAs/AlGaAs Quantum Well[J], Phys. Rev. Lett., 1999, 83:2652-2655
    [39] K. Hirota, T.D. Milster, K. Shimura, et al., Near-Field Phase Change Optical Recording Using a GaP Hemispherical Lens[J], Jpn. J. Appl. Phys., 2000, 39(2B):968-972
    [40] D.A. Fletcher, K.B. Crozier, C.F. Quate, et al., Near-field infrared imaging with a microfabricated solid immersion lens[J], Appl. Phys. Lett., 2000, 77(14):2109-2111
    [41] S. B. Ippolito, B. B. Goldberg, and M.S.ünlü, High spatial resolution subsurface microscopy[J], Appl. Phys. Lett., 2001, 78(26):4071-4073
    [42] E. Ramsay, N. Pleynet, D. Xiao, et al., Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm[J], Optics Letters,2005, 30(1):26-28
    [43] Q. Wu, G.D. Feke, T.D. Grober, et al., Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens[J], Appl. Phys. Lett., 1999, 75(26):4064-4066
    [44] Yoshihiro Takagi, Tohru Kobayashi, and Keitaro Yoshihara, Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors[J], Optics Letters, 1992, 17(9):658-660
    [45] K. Kikuchi, Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber[J], Electronics Letters, 1998, 34(1):123-125
    [46] F.R. Laughton, J.H. Marsh, and A.H. Kean, Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator[J], Electronics Letters, 1992, 28(17):1663-1665
    [47] H.K. Tsang, L.Y. Chan, J.B.D. Soole, et al., High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides[J], Electronics Letters, 1995, 31(20):1773-1775
    [48] T.K. Liang, H.K. Tsang, I.E. Day, et al., Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements[J], Appl. Phys. Lett., 2002, 81(7):1323-1325
    [49] W. Rudolph, M. Sheik-bahae, and A. Bernstein, et al., Femtosecond autocorrelation measurements based on two-photon photoconductivity in ZnSe[J], Optics Letters, 1997, 22(5):313-315
    [50] A. Zavriyev, E. Dupont, P.B. Corkum, et al., Direct autocorrelation measurements of mid-infrared picosecond pulses by quantum-well devices[J], Optics Letters, 1995, 20(18):1886-1888
    [51] H. Erlig, S. Wang, T. Azfar, et al., LT-GaAs detector with 451fs response at 1.55μmvia two-photon absorption[J], Electronics Letters, 1999, 35(2):173-174
    [52] L.P. Barry, P.G. Bollond, J.M. Dudley, et al., Autocorrelation of ultrashort pulses at 1.5μm based on nonlinear response of silicon photodiodes[J], Electronics Letters, 1996, 32(20):1922-1923
    [53] D.T. Reid, M. Padgett, C. McGowan, et al., Light-emitting diodes as measurement devices for femtosecond laser pulses[J], Optics Letters, 1997, 22(4):233-235
    [54] Jinendra K. Ranka, Alexander L. Gaeta, Andrius Baltuska, et al., Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode[J], Optics Letters, 1997, 22(17):1344-1346
    [1] R.A. Soref, The past, present, and future of Silicon photonics[J], IEEE J. Sel. Top. Quantum Electron. 2006, 12:1678-1687
    [2] R. A. Soref, S. J. Emelett, and W. R. Buchwald, Silicon waveguided components for the long-wave infrared region[J], J. Opt. A, Pure Appl. Opt. 2006, 8:840-848
    [3] J.E. Sipe, D.J. Moss, and H.M. van Driel, Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals[J], PhySical Review B, 1987, 35(3):1129-1141
    [4] Richard A. Soref, and Brian R. Bennett, Electrooptical effects in Silicon[J], IEEE Journal of Quantum Electronics, 1987, QE-23(1):123-129
    [5] Bernardo S. Mendoza and W. Luis Mochan, Local-field effect in the second harmonic generation spectra of Si surfaces[J], PhySical Review B, 1996, 53(16):R10473-R10474
    [6] N. Arzate, J. E. Mejuam, B.S. Mendoza, et al., DC-electric-field-modified second-harmonic generation at the Si (100) surface[J], Appl. Phys. B, 1999, 68:629-632
    [7] J. I. Dadap, J. Shan, A. S. Weling, et al., Measurement of the vector character of electric fields by optical second-harmonic generation[J], Optics Letters, 1999, 24(15):1059-1061
    [8] Vl.A. Margulis, E.A. Gaiduk, and E.N. Zhidkin, Electric-field-induced optical second harmonic generation and nonlinear optical rectification in semiconducting carbon nanotubes[J], Optics Communications, 2000, 183:317-325
    [9] Dong Xiao, Euan Ramsay, Derryck T. Reid, et al., Optical probing of a Silicon integrated circuit uSing electric-field-induced second-harmonic generation[J], Appl. Phys. Lett., 2006, 88:114107-1-3
    [10] Rune S. Jacobsen, Karin N. Andersen, Peter I. Bore, et al., Strained Silicon as a new electro-optic material[J], Nature, 2006, 441:199-201
    [11] Elena D. Mishina, Nobuko Tanimura, Seiichiro Nakabayashi, et al., Photomodulated second-harmonic generation at Silicon-Silicon Oxide interfaces: from modeling to application[J], Jpn. J. Appl. Phys., 2003, 42(11):6731-6736
    [12] T.A. Driscoll, and D. Guidotti, Symmetry analySis of second-harmonic generation in Silicon[J], Phys. Rev. B, 1983, 28(2):1171-1173
    [13] C.Z. Fan and J.P. Huang, Second-harmonic generation with magnetic-field controllabilities[J], Appl. Phys. Lett., 2006, 89:141906-1-141906-3
    [14] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a Silicon chip[J], Nature(London), 2004,431:1081-1084
    [15] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, An all-Silicon Raman laser[J], Nature (London) 2005,433:292-294
    [16] A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, Optical amplification and laSing by stimulated Raman scattering in Silicon waveguides[J], Journal of Lightwave Technology, 2006, 24:1440-1455
    [17] B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, Raman-based Silicon photonics[J], IEEE J. Sel. Top. Quantum Electron. 2006,12:412-421
    [18] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, Four-wave mixing in Silicon wire waveguides[J], Opt. Express, 2005,13:4629-4637
    [19] H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, High efficiency wavelength converSion of 10 Gb/s data in Silicon waveguides[J], Opt. Express, 2006, 14:1182-1188
    [20] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, Broad-band optical parametric gain on a Silicon photonic chip[J], Nature(London) 2006,441:960-963
    [21] I. HSieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in Silicon photonic wires[J], Opt. Express, 2007,15:1135-1146
    [22] G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, Issues Associated With Polarization Independence in Silicon Photonics[J], IEEE J. Sel. Top. Quantum Electron. 2006,12:1335-1344
    [23] T.K. Liang, H.K. Tsang, I.E. Day, et al., Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements[J], Appl. Phys. Lett., 2002, 81(7):1323-1325
    [24] K. Kikuchi, Highly senSitive interferometric autocorrelator uSing Si avalanche photodiode as two-photon absorber[J], Electronics Letters, 1998, 34(1):123-125
    [25] L.P. Barry, P.G. Bollond, J.M. Dudley, et al., Autocorrelation of ultrashort pulsesat 1.5μm based on nonlinear response of Silicon photodiodes[J], Electronics Letters, 1996, 32(20):1922-1923
    [26] H.K. Tsang, C.S. Wong, T.K. Liang et al., Optical disperSion, two-photon absorption and self-phase modulation in Silicon waveguides at 1.5μm wavelength[J], Appl. Phys. Lett., 2002, 80(3):416-418
    [27] D.T. Reid, M. Padgett, C. McGowan, et al., Light-emitting diodes as measurement devices for femtosecond laser pulses[J], Optics Letters, 1997, 22(4):233-235
    [28]石顺祥,陈国夫,赵卫,等,非线性光学[M],西安:西安电子科技大学出版社,2003,
    [29] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Study of Si (111) surfaces by optical second-harmonic generation: reconstruction and surface phase transformation[J], Phys. Rev. Lett., 1985, 54(1):63-66
    [30] C. Jordan, G. Marowsky, U. Emmerichs, et al., Wavelength dependent study of laser induced metallic properties of Si (111) by surface second harmonic generation[J], Optics Communications, 1994, 113:125-132
    [31] J.I. Dadap, X.F. Hu, M.H. Anderson, et al., Optical second-harmonic electroreflectance spectroscopy of a Si(001) metal-oxide-semiconductor structure[J], PhySical Review B, 53(12):R7607-R7609
    [32] T. F. Heinz, M. M. T. Loy, and W. A. Thompson, Study of symmetry and disordering of Si (111)-7×7 surfaces by optical second-harmonic generation[J], J. Vac. Sci. Technol., 1985, B3(5):1467-1470
    [33] C.V. Shank, R. Yen, and C. Hirlimann, Femtosecond-time-resolved surface structural dynamics of optically excited Silicon[J], Phys. Rev. Lett., 1983, 51(10):900-902
    [34] R.W.J. Hollering, D. Dijkkmp, H.W.L. Lindelauf, et al., Cleaning of Si (001) surfaces studied by optical second-harmonic generation and x-ray photoelectron spectroscopy[J], J. Vac. Sci. Technol., 1991, B9(4):1967-1969
    [35]刘恩科,朱秉升,罗晋生,等,半导体物理学(第6版)[M],电子工业出版社,2003,6-7,442
    [36]黄昆(原著),韩汝琦(改编),固体物理学[M],高等教育出版社,1988,5
    [37] R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, Z-scan measurements of the anisotropy of nonlinear refractionand absorption in crystals[J]. Optics Letters. 1993, 18(3):194-196
    [38] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland,SenSitive measurement of optical nonlinearities uSing a Single beam[J], IEEE J. Quantum Electron. 1990, 26:760-769
    [39] W.K. Burns and N. Bloembergen, Third-Harmonic Generation in Absorbing Media of Cubic or Isotropic Symmetry[J], Phys. Rev. B, 1971, 4:3437-3450
    [40] Chr. Flytzanis, Third-order optical susceptibilities in IV-IV and III-V semiconductors[J], PhySics Letters, 1970, 31A(5):273-274
    [41] J. Qi, M.S. Yeganeh, I. Koltover, et al., Depletion-electric-field-induced changes in second-harmonic generation from GaAs[J], Phys. Rev. Lett., 1993, 71(4):633-636
    [42] J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, Anisotropic nonlinear response of Silicon in the near-infrared region[J]. Appl. Phys. Lett. 2007, 91:071113-1-3
    [43] A. Villeneuve, M. Sundheimer, N. Finlayson, et al., Two-photon absorption in In1-x-yGaxAlyAs/InP waveguides at communications wavelengths[J], Appl. Phys. Lett., 1990, 56(19):1865-1867
    [44]刘秀环,陈占国,贾刚等,硅材料场致等效二阶非线性极化率张量的研究[J],光学学报,2005,25(10):1391-1395
    [45]过巳吉,非线性光学[M],西北电讯工程学院出版社,1986(第一版),Chap. 1-4
    [46] T. Du and W. Luo, Nonlinear optical effects in ferrofluids induced by temperature and concentration cross coupling[J], Appl. Phys. Lett., 1998, 72:272-274
    [1] U. Keller, S.K. Diamond, B.A. Auld, et al., Noninvasive optical probe of free charge andapplied voltage in GaAs devices[J], Appl. Phys. Lett., 1988, 53(5):388-390
    [2] F.W. Smith, H.Q. Le, V. Diadiuk, et al., Picosecond GaAs-based photoconductive optoelectronic detectors[J], Appl. Phys. Lett., 1989, 54(10):890-892
    [3] J.S. Aitchison, M.K. Oliver, E. Kapon, et al., Role of two-photon absorption in ultrafast semiconductor optical switching devices[J], Appl. Phys. Lett., 1990, 56(14):1305-1307
    [4] H.K. Tsang, T.V. Penty, I.H. White, et al., Polarization and field dependent two-photon absorption in GaAs/AlGaAs multiquantum well waveguides in the half-band gap spectral region[J], Appl. Phys. Lett., 1991, 59(26):3440-3442
    [5] K.D. Li, A.S. Hou, E. ?zbay, et al., 2-picosecond, GaAs photodiodes optoelectronic circuit for optical correlation applications[J], Appl. Phys. Lett., 1992, 61(26):3104-3106
    [6] F.R. Laughton, J.H. Marsh, and A.H. Kean, Very sensitive two-photon absorption GaAs/AlGaAs waveguide detector for an autocorrelator[J], Electronics Letters, 1992, 28(17):1663-1665
    [7] Frances. R. Laughton, John. H. Marsh, David. A. Barrow, et al., The two-photon absorption semiconductor waveguide autocorrelator[J], IEEE Journal of Quantum Electronics, 1994, 30(3):838-844
    [8] Yi-Jen Chiu, S.Z. Zhang, S.B. Fleischer, et al., GaAs-based, 1.55μmhigh speed, high saturation power, low-temperature grown GaAs pin photodetector[J], Electronics Letters, 1998, 34(12):1253-1255
    [9] H. Erlig, S. Wang, T. Azfar, et al., LT-GaAs detector with 451fs response at 1.55μmvia two-photon absorption[J], Electronics Letters, 1999, 35(2):173-174
    [10] Masahiko Tani, Kwang-Su Lee, and X.-C. Zhang, Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55μmprobe[J], Appl. Phys. Lett., 2000, 77(9):1396-1398
    [11] Zhanguo Chen, Gang Jia, Yunlong Liu, et al., Submicron external electro-optic measuring system based on an electro-optic solid immersion lens[J], International Journal of Infrared and Millimeter Waves, 2001, 22(5):695-701
    [12] Chen Zhanguo, Jia Gang, and Yi Maobin, External electro-optic measuring system with high spatial resolution and high voltage sensitivity by using an electro-optic solid immersion probe[J], J. Phys. D: Appl. Phys., 2001, 34:3078-3082
    [13]陈占国,贾刚,衣茂斌,等,亚微米外部电光检测技术[J],光学学报,2002,22(5):607-611
    [14] Xiuhuan Liu, et al., Hemispherical semi-insulating GaAs double-frequency absorption photodetector operating at 1.3μm wavelength[J], Appl. Phys. Lett., 2007, 90:101109-1-3
    [15] L.P. Barry, P.G. Bollond, J.M. Dudley, et al., Autocorrelation of ultrashort pulses at 1.5μm based on nonlinear response of silicon photodiodes[J], Electronics Letters, 1996, 32(20):1922-1923
    [16] T.K. Liang, H.K. Tsang, I.E. Day, et al., Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements[J], Appl. Phys. Lett., 2002, 81(7):1323-1325
    [17] M.J. Howes and D.V. Morgan, Gallium Arsenide[M], John Wiley & Sons Ltd, 1985, Chapter 4, 121-143
    [18]刘恩科,朱秉升,罗晋生编著,半导体物理(第六版)[M],电子工业出版社,2003,34,443
    [19]赵毅强,姚素英,解晓东等译,半导体物理与器件(第三版) [M],电子工业出版社,2005,498
    [20] E. Ramsay, N. Pleynet, D. Xiao, et al., Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm[J], Optics Letters, 2005, 30(1):26-28
    [21] D.A. Fletcher, K.B. Crozier, C.F. Quate, et al., Near-field infrared imaging with a microfabricated solid immersion lens[J], Appl. Phys. Lett., 2000, 77(14):2109-2111
    [22] S. B. Ippolito, B. B. Goldberg, and M.S.ünlü, High spatial resolution subsurface microscopy[J], Appl. Phys. Lett., 2001, 78(26):4071-4073
    [23] Motoyoshi Baba, Takeaki Sasaki, Masahiro Yoshita, Aberrations and allowances for errors in a hemisphere soild immersion lens for submicron-resolution photoluminescence microscopy[J], Journal of Applied Physics, 1999, 85(9):6923-6924.
    [24]刘秀环,陈占国,贾刚,等,硅材料场致等效二阶非线性极化率张量的研究[J],光学学报,2005,25(10):1391-1395
    [25] Shi Wei, Dai Huiying, and Zhang Xianbin, Peculiar photoconduction in semi-insulating GaAs photoconductive switch triggered by 1064 nm laser pulse[J], Chinese Journal of Semiconductors, 2005, 26(3):460-464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700