非协调有限元的构造及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文构造了几个新的非协调有限元,系统地研究了它们的收敛性质并讨论了它们的一些应用.这些非协调元包括:Quasi-Carey元,Quasi-Wilson元,高次Wilson元以及二阶非协调混合元.
     与协调元相比,非协调元具有许多优势.一般来说,对某些问题,它们构造简单,同时还具有很好的收敛效果,例如Morley元和Wilson元.另外,相对于协调混合元,非协调混合元更容易构造地使其满足离散inf-sup条件,因此非协调元的研究得到科学工作者和工程师的广泛关注.根据第二Strang引理,非协调元的误差包括两部分,一部分为插值误差,另一部分为相容误差,许多情况下相容误差的阶低于或等于插值误差的阶.对于二阶椭圆问题,本文构造的Quasi-Carey元相容误差为O(h~2),比插值误差高一阶;在矩形网格上,本文证明了传统的Quasi-Wilson元的相容误差为O(h~3),比插值误差高两阶,同时还给出了一个新的Quasi-Wilson元,它的相容误差在任意四边形网格上为O(h~3);经过仔细分析,我们首次证明了在各向异性网格上,高次Wilson元插值误差为O(h~3),比相容误差O(h~2)高一阶.
     作为应用,在第二章,我们得到了各向异性网格上Quasi-Carey元关于Sobolev方程O(h~2)阶的整体超收敛和后验误差估计,根据误差渐近展开得到了O(h~4)阶的整体外推结果.第三章,我们根据Quasi-Wilson元的特殊收敛性,把它应用到对流扩散方程,得到了与双线性元和P_1~(mod)元相同的O(h~(3/2))阶的最优收敛阶.第四章首先分析了高次Wilson元在各向异性网格上的收敛性质,并给出数值试验说明了理论分析的有效性.接着导出了高次Wilson元的整体超收敛性质,并在此基础上给出了解的后验误差估计.第五章把Quasi-Carey元和修正的高次Wilson元应用到Maxwell方程的有限元格式,得到了Crouzeix-Raviart型三角形非协调元,Carey元以及高次Wilson元达不到的最优收敛结果.第六章我们用两个新的具有O(h~2)阶的非协调元格式离散不可压Navier-Stokes方程,得到了速度的H~1-模和压力的L~2-模的O(h~2)阶的误差估计以及速度的L~2-模的O(h~3)阶的误差估计,同时还给出了数值算例来验证误差分析的有效性.
Several new nonconforming finite elements are constructed,the convergence analysis of these elements are discussed and their application are presented in this thesis systematically.These new nonconforming elements include:the Quasi-Carey element,the Quasi-Wilson element,the higher order Wilson element and the second order nonconforming mixed finite element.
     Compared with the conforming finite element methods,the finite element methods of nonconforming have many advantages.Generally speaking,nonconforming elements have fewer degrees of freedom for its simpler structure and good convergence properties,such as the Morley element and the Wilson element.In addition, the nonconforming mixed finite element methods are usually much easier to be constructed to satisfy the discrete inf-sup condition than the conforming ones. Therefore,nonconforming finite element methods have drawn increasing attention from scientists and engineers.As we know,according to the second Strang lemma, the error of every nonconforming element consists of two parts,one arises from the interpolation error and the other is the consistency error due to nonconformity of the element.In most cases,the order of the consistency error is lower than or equal to that of the interpolation error.But,in this paper,one can see that for the second order elliptic problems the consistency error of the Quasi-Carey element is of order O(h~2),one order higher than that of its interpolation error O(h).We proved that the consistency error of the traditional Quasi-Wilson element is of order O(h~3),two order higher than that of its interpolation error.At the same time,a new QuasiWilson element for arbitrary quadrilateral meshes possessing consistency error with order O(h~3) is presented.After a careful analysis,we first show that the interpolation error of the higher order Wilson element is of order O(h~3) on anisotropic meshes,one order higher than that of its consistency error.
     As application,in Chapter 2,we investigated the approximation of higher accuracy of the anisotropic nonconforming Quasi-Carey element for the Sobolev type equations.The superclose and global superconvergence with order O(h~2) are obtained. Moveover,by virtue of the extrapolation,we improved the approximate accuracy of the related approximate solution and derive a posteriori error estimate of higher accuracy of order O(h~4).In Chapter 3,based on the special convergence of the Quasi-Wilson element,we applied it to convection-diffusion equations and obtained the optimal convergence order O(h~(3/2)) as the bilinear element and the p_1~(mod) element.In Chapter 4,after analysing the error estimates of the higher order Wilson element on anisotropic meshes with a numerical test,the superclose properties of this element are proved.Then the interpolation postprocessing technique is used to obtain the global superconvergence and the posterior error estimate of higher accuracy.In Chapter 5,we applied the Quasi-Carey element and the modification higher order Wilson element to Maxwell's equations on the finite element scheme, the optimal convergence results are obtained.But the similar optimal convergence results can not be obtained for the nonconforming linear triangular Crouzeix-Raviart element,the Carey element and the higher order Wilson element.In Chapter 6,the new nonconforming mixed finite element schemes with second order convergence behavior are proposed for the stationary Navier-Stokes equations,the convergence analysis is presented and the error estimates of both H~1-norm of order O(h~2) and L~2-norm of order O(h~3) with respect to velocity as well as the L~2-norm of order O(h~2) for the pressure are derived.At the same time,the numerical results are presented to illustrate the error analysis.
引文
[1]G.F.Carey,An analysis of finite element equations and mesh subdivision,Comput.Methods Appl.Mech.Engrg.,1976,9:165-179.
    [2]Z.C.Shi,Convergence properties of two nonconforming finite element,Comput.Methods Appl.Mech.Engrg.,1985,48:123-137.
    [3]Q.Lin,P.Luo,High accuracy analysis for a nonconforming membrane element,J.Math.Study,1995,28:1-5.
    [4]D.Y.Shi,S.C.Chen,Hagiwara Ichiro,Convergence analysis for a nonconforming membrane element on anisotropic meshes,J.Comput.Math.,2005,23(4):373-382.
    [5]S.C.Chen,D.Y.Shi,Accuracy analysis for quasi-Wilson..element,Acta Math.Sci.,2000,20(1):44-48.
    [6]S.C.Brenner,L.R.Scott,The Mathematical Theory of Finite Element Methods,Springer-Verlag,1998.
    [7]林群,严宁宁,高效有限元构造与分析,保定,河北大学出版社,1996.
    [8]王烈衡,许学军,有限元方法的数学基础,北京,科学出版社.2004.
    [9]P.G.Ciarlet,The Finite Element Method for Elliptic Problems,North-Holland,Amsterdam,1978.
    [10]Z.C.Shi,On the accuracy of the quasi-conforming and generalized conforming finite element,Chinese Ann.Math.Set.B,1990,11:148-155.
    [11]D.Y.Shi,S.C.Chen,Accuracy analysis of 12-parameter rectangular plate elements with geometric symmetry,J.Syst.Sci.& Complexity,2000,13(2):146-151.
    [12]石钟慈,关于Wilson元的最佳收敛阶,计算数学,1986,8(2):159-163.
    [13]Q.Lin,J.F.Lin,Finite Element Methods:Accuracy and Improvement,Mathematics Monograph Series 1,Science Press,Beijing,China,2006.
    [14]D.Arnold,J.Douglas,Thom(?)e V.Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable,Math.Comput.,1981,36:53-63.
    [15]石东洋,陈绍春,一类六参数非协调任意凸四边形单元,高校应用数学学报,1996,11A(2):231-238.
    [16]金大永,刘棠,张书华,Sobolev型方程Wilson元解的高精度分析,数学的实践与认识,2003,33(8):84-90.
    [17]Z.C.Shi,B.Jing,W.M.Xue,A new superconvergence property of Wilson nonconforming finite element,Numer.Math.,1997,78(2):259-268.
    [18]R.Ewing,The approximation of certain parabolic equations backward in time by Sobolev equations,SIAM J.Math.Anal.,1975,6:283-294.
    [19]P.Luo,Q.Lin,High accuracy analysis for the Wilson element,J.Comput.Math.,1999,17(2):113-124.
    [20]Q.Lin,N.N.Yah,A.H.Zhou,A rectangle test for interpolated finite elements,Proc.Syst.Sci.& Syst.Engrg,Great Wall(H.K.) Culture Publish Co,1991:217-229.
    [21]Q.Lin,S.H.Zhang,N.N.Yan Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations,J.Comput.Math.,1998,16(1):51-62.
    [22]L.B.Wahlbin,Superconvergence in Galerkin Finite Element Methods,Spring-Verlag,Berlin Heiderberg,1995.
    [23]石东洋,梁慧,各向异性网格下线性三角形元的超收敛性分析,工程数学学报,2007,24(3):487-493.
    [24]D.Y.Shi,H.Liang,C.X.Wang,Superconvergence analysis of a nonconforming triangular element on anisotropic meshes.J.Syst.Sci.& Complexity,2007,20(4):536-544.
    [25]D.Y.Shi,H.Liang,Superconvergence analysis of Wilson element on anisotropic meshes,Applied Math.& Mech.,2007,28(1):119-125.
    [26]D.Y.Shi,S.P.Mao,S.C.Chen,An anisotropic nonconforming finite element with some superconvergence results,J.Comput.Math.,2005,23(3):261-274.
    [27]D.Y.Shi,Y.R.Zhang,A nonconforming anisotropic finite element approximation with moving grids for Stokes problem,J.Comput.Math.,2006,24(5):561-578.
    [28]S.C.Chen,D.Y.Shi,Y.C.Zhao,Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes,IMA J.Numer.Anal.,2004,24(1):77-95.
    [29]石东洋,王彩霞,位移障碍下变分不等式问题的各向异性非协调有限元方法,工程数学学报,2006,23(3):399-406.
    [30]石东洋,郝晓斌,一个新高次Wilson元及其收敛性分析,数学的实践与认识,2008,38(6):158-164.
    [31]E.L.Wachspress,Incompatible quadrilateral basis functions,Numer.Meth.Engrg.,1978,12:589-595.
    [32]R.L.Taylor,P.J.Beresford,E.L.Wilson,A nonconforming element for stress analysis,Int.J.Numer.Methods Engrg.,1976,10:1211-1219.
    [33]Z.C.Shi,A convergence condition for quadrilateralWilson element,Numer.Math.,1984,44:349-361.
    [34]Y.Q.Long,Y.Xu,Generalized conforming quadrilateral membrance element,Computers & Structures,1994,4:749-755.
    [35]石东洋.非协调有限元问题的研究,博士学位论文,西安交通大学,1997.
    [36]Y.Q.Long,M.F.Huang,A generalized conforming isoparametric element,Applied Math.& Mech.,1988,9(10):929-936.
    [37]J.X.Li,Z.F.Long,Y.Q.Long,Biquadratic generalized conforming rectangular element,Engrg.Mech.,1995,1:46-52.
    [38]D.Y.Shi,Z.C.Shi,J.Z.Wu,A note on quadrilateral mesh condition RDP(N,ψ),J.Comput.Math.,2007,25(1):27-30.
    [39]石钟慈.陈绍春.Specht九参数板元的分析,计算数学,1989,11(3):312-318.
    [40]江金生,程晓良.二阶问题的一个类Wilson非协渊元,计算数学,1992,14(3):274-278.
    [41]石东洋.陈绍春.一类改进的Wilson任意四边形单元,高校计算数学学报,1994,16(2):161-167.
    [42]T.J.R.Hughes,A.N.Brooks,A Multidimensional Upwind Scheme with no Crosswind Diffusion,Volmne 34 of AMD.ASME,New York,1979.
    [43]U.N(a|¨)vert,A finite element method for convection-diffusion problems,PhD thesis,Chalmers University of Technology G(o|¨)teborg,1982.
    [44]C.Johnson,A.H.Schatz,L.B.Wahlbin,Crosswind smear and pointwise errors in the streamline diffusion finite element methods,Math.Comput.,1987,49:25-38.
    [45]K.Eriksson,C.Johnson,Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems,Math.Comput.,1993,60:167-188.
    [46]V.John,J.M.Maubach,L.Tobiska,Nonconforming streamline-diffusion-finiteelement -methods for convection-diffusion problems,Numer.Math.,1997,78:165-188.
    [47]M.Stynes,L.Tobiska,The streamline-diffusion methods for nonconforming Q_1~(rot)elements on rectangular tensor-product meshes,IMA J.Numer.Anal.,2001,21:123-142.
    [48]P.Knobloch,L.Tobiska,The p_1~(mod) element:.a new nonconforming finite element for convection-diffusion problems,SIAM J.Numer.Anal.,2003,41(2):436-456.
    [49]P.G.Ciarlet,Basic Error Estimates for Elliptic Problems,in Handbook of Numerical Analysis,Vol.2-Finite Element Methods(pt.1),P.G.Ciarlet and J.L.Lions,eds.,NorthHolland,Amsterdam,1991.
    [50]H.G.Roos,M.Stynes,L.Tobiska,Numerical Methods for Singularly Perturbed Differential Equatious:Convection-Diffusion and Flow Problems,Springer-Verlag,Berlin,1996.
    [51]M.Fortin,M.Soulie,A non-conforming piecewise quadratic finite element on triangles,Int.J.Numer.Methods Engrg.,1983,19:505-520.
    [52]H.Lee,D.Sheen,A new quadratic nonconforming finite element on rectangles,Numer.Meth.for PDEs,2005,22(4):954-970.
    [53]石东洋,江松玉,陈绍春,两类各向异性非协调元的某些超收敛性质分析,计算数学,2007,29(3):263-272.
    [54]石东洋,谢萍丽,陈绍春,双曲积分微分方程的各向异性非协调有限元逼近,应用数学学报,2007,30(4):654-666.
    [55]D.Y.Shi,H.B.Guan,A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes,Hokkaido Math.J.,2007,36:687-709.
    [56]D.Y.Shi,S.P.Mao,S.C.Chen,A locking-free anisotropic nonconforming finite element for planar linear elasticity problem,Acta Math.Sci.,2007,27B(1):193-202.
    [57]G.Q.Zhu,D.Y.Shi,S.C.Chen,Superconvergence analysis of lower order anisotropic finite element,Applied Math.& Mech.,2007,28(8):1119-1130.
    [58]D.Y.Shi,H.H.Wang,Nonconforming H~1—Galerkin mixed finite element method for Sobolev equations on anisotropic meshes,Acta Math.Appl.Sinica.(to appear)
    [59]B.Li,Superconvergence for higher order triangular elements,J.Comput.Math.,1989,7(4):413-417.
    [60]A.Zienissek,M.Vanmaele,The interpolation theorem for narrow quadrilateral isotropic metric finite elements,Numer.Math.,1995,72:123-141.
    [61]A.Zienissek,M.Vanmaele,Applicability of the Bramble-Hilbert lemma in interpo- lation problems of narrow quadrilateral isoparametric finite elements,J.Comput.Appl.Math.,1995.65:109-122.
    [62]Th.Apel,M.Dobrowolski,Anisotropic interpolation with applications to the finite element method,Computing,1992,47:277-293.
    [63]Th.Apel,Anisotropic Finite Elements:Local Estimate and Applications,B.G.Teubner Stuttgart:Leipzig,1999.
    [64]Th.Apel,S.Nicaise,J.Sch(o|¨)berl,Crouzeix-Raviart type finite elements on anisotropic meshes.Nuiner.Math..2001,89:193-223.
    [65]D.Y.Shi,C.X.Wang,A locking-free anisotropic nonconforming rectangular finite element approximation for the planar elasticity problem,Appl.Math.J.Chinese Univ.,2008.23(1):9-18.
    [66]D.Y.Shi,S.P.Mao,H.Liang,Anisotropic Biquadratic Element with Superclose Result,J.Syst.Sci.& Complexity.2006,19(4):566-576.
    [67]M.Deng,G.S.Shen,P.Yu,J.W.Deng,The marine magnetotelluric prospecting technique based on the Maxwell's theory,Ocean.Technology,2003,22(2):44-47.
    [68]C.F.Ma,Convergence of finite element A-φ method for solving time-dependent Maxwell's equations,Appl.Math.Comput.,2006,176:621-631.
    [69]C.F.Ma,Finite-element method for time-dependent Maxwell's equations based on an explicit-magnetic-field scheme,J.Comput.Appl.Math.,2006,194:409-424.
    [70]J.C.Li,Error analysis of finite element methods for 3-D Maxwell's equations in dispersive media,J.Comput.Appl.Math.,2006,188:107-120.
    [71]J.C.Li,Y.Chen,Analysis of a time-domain finite element method for 3-D Maxwell's equations in dispersive media,Comput.Methods Appl.Mech.Engrg.,2006,195:4220-4229.
    [72]L.L.Robert,K.M.Niel,A mixed finite element formulation for Maxwell's equations in the time domain,J.Comput.Phys.,1990,88:284-305.
    [73]J.Nedelec,Mixed finite elements in R~3,Numer.Math.,1980,35:315-341.
    [74]P.Monk,A mixed method for approximating Maxwell's equations,SIAM.J.Numer.Anal.,1991,28(6):1610-1635.
    [75]P.Monk,A comparison of three mixed methods for the time-dependent Maxwell's equations,SIAM J.Sci.Stat.Comput.,1992,13:1097-1122.
    [76]P.Monk,Analysis of a finite element method for Maxwell's equations,SIAM J.Numer.Anal.,1992,29(3):714-729.
    [77]P.Monk,Superconvergence of finite element approximation to Maxwell's equations,Numer.Math.for PDEs.,1994,10:793-812.
    [78]林群,严宁宁,关于Maxwell方程混合元方法的超收敛,工程数学学报,1996.13:1-10.
    [79]Q.Lin,N.N.Yah,Global superconvergence for Maxwell's equations.Math.Comput.,1999,69:159-176.
    [80]J.Douglas,Jr.,J.E.Santos,D.Sheen,X.Ye,Nonconforming Galerkin Methods based on quadrilateral element for second order elliptic problems,Math.Model.Numer.Anal.,1999,33:747-770.
    [81]J.Douglas,Jr.,J.E.Santos,D.Sheen,A nonconforming mixed finite element method for Maxwell's equations,Math.Meth.Appl.Sci.,2000,10(4):593-613.
    [82]H.Lee,D.Sheen,Basis for the quadratic nonconforming triangular element of Fortin and Soulie,Int.J.Numer.Anal.Model.,2005,2(4):409-421.
    [83]H.Lee,D.Sheen,A new quadratic nonconforming finite element on rectangles,Numer.Meth.for PDEs,2005,22(4):954-970.
    [84]J.H.Brandts,Superconvergence of mixed finite element semi-discretizations of two time-dependent problems,Appl.Math.,1999,44(1):43-53.
    [85]J.F.Lin,Q.Lin,Global superconvergence of mixed finite element methods for 2-D Maxwell's equations,J.Comput.Math.,2003,21:637-646.
    [86]P.D.Ledger,K.Morgan,O.Hassan,N.P.Weatherill,Plane wave H(curl;Ω) conforming finite elements for Maxwell's equations,Comput.Mech.,2003,31:272-283.
    [87]L.M.Maria,S.Jitka,W.Gerald,Z.Yousef,On evolution Galerkin methods for the Maxwell and the linearized Euler equations,Appl.Math.,2004,49(5):415-439.
    [88]D.Y.Shi,L.F.Pei,Low order Crouzeix-Raviart type nonconforming finite element methods for approximating Maxwell's equations,Int.J.Numer.Anal.Model.,2008,5(3):373-385.
    [89]B.Specht,Modified shape functions for the three-node plate bending element passing the patch test,Int.J.Numer.Methods Engrg.,1988,26(3):705-715.
    [90]D.Y.Shi,L.F.Pei,S.C.Chen,A nonconforming arbitrary quadrilateral fonite element method for approximating Maxwell's equations,Numer.Math.J.Chinese Univ.,2007,16(4):289-299.
    [91]R.Rannacher,S.Turek,A simple nonconforming quadrilateral Stokes element,Numer.Math.for PDEs..1992,8:97-111.
    [92]石东洋,张熠然,非定常Stokes问题的矩形Crouzeix-Raviart型各向异性非协调元变网格方法,数学物理学报A辑.2006:26(5):659-670.
    [93]R.A.Nicolaides,Analysis and convergence of the MAC scheme Ⅱ:Navier-Stokes equations,SIAM J.Numer.Anal.,1992,65:29-44.
    [94]R.Eymard,R.Herbin,A staggered finite volume scheme on general meshes for the Navier-Stokes equations in two space dimensions,Int.J.Finite Volumes.,2005,2(electronic).
    [95]K.Djidel,S.Nicaise,Some refined finite volume methods for the Stokes and Navier-Stokes systems with corner singularities,J.Numer.Math.,2004,12:255-284.
    [96]V.Girault,P.A.Raviart,Finite Element Method for Navier-Stokes Equations:Theory and Algorithms,Springer-Verlag,New York,1986.
    [97]J.Lazaar,S.Nicaise,A non-conforming finite element method with anisotropic mesh grading for the incompressible domains with edges,Calcolo,2001,39:123-168.
    [98]R.Temam,Navier-Stokes Equation,Theory and Numerical Analysis,North-Hoolland,Amsterdam.New York,1984.
    [99]F.Thomasset,Implementation of Finite Element Methods for Navier-Stokes Equations,Springer,Berlin,1981.
    [100]D.N.Arnold,F.Brezzi,M.Fortin,A stable finite element for the Stokes equations,Calcolo,1984,21:337-344.
    [101]P.Hood,C.Taylor,Navier-Stokes equations using mixed interpolation,Finite Elements in Flow Problems,J.T.Oden et.al.,Eds.,University of Alabama in Huntsville (UAH) Press,1974,121-132.
    [102]M.Crouzeix;P.A.Raviart,Conforming and nonconforming finite element methods for solving the stationary Stokes equations,RAIRO Anal.Numer.,1973,7:33-76.
    [103]A.Ait Ou Ammi,M.Marion,Nonlinear Galerkin methods and mixed finite elements:two-grid algorithms for the Navier-Stokes equations,Numer.Math.,1994,68:189-213.
    [104]李开泰.周磊.加罚N-S方程的有限元非线性Galerkin方法,计算数学,1995,17(4):360-380.
    [105]R.A.Adams,Sobolev Spaces,Academic Press,New York,1975.
    [106]李开泰.黄艾香,黄庆怀,有限元方法及其应用(Ⅱ),西安,西安交通大学出版社,1988.
    [107]任国彪,纯位移平面弹性问题二阶收敛Locking-free有限元,博士学位论文,郑州大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700