基于盲源分离理论的闪变和间谐波检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着非线性、冲击性负荷等大功率电力电子装置在电力系统中的不断增多,必然产生电压闪变和间谐波干扰,电网被污染,造成电能质量日益下降,影响了人们的日常生活和生产。因此准确检测闪变和间谐波,是评价电能质量的基础,是提高电能质量的前提。目前通常用小波分析法和各种快速傅里叶变换法检测闪变和谐波、间谐波,但易受频谱泄漏和栅栏效应等的影响。为提高检测闪变和谐波、间谐波参数的精度,本文首先研究了用盲源分离算法从产生闪变和谐波、间谐波的畸变电压信号中分离出闪变和谐波、间谐波的波形,再通过计算得到它们的频率;然后研究了分析闪变包络的幅值及间谐波的幅值、相位的粒子群算法,在此基础上研制了验证本文提出的闪变和间谐波检测方法的试验系统,解决了闪变和间谐波检测的若干关键技术问题。论文主要完成的研究工作如下:
     研究了如何利用单只电压互感器输出的信号序列构造延迟矩阵,以代替多个传感器输出信号阵列,满足盲源分离的要求并进行了盲源分离,实现了从含有多个频率分量的闪变、间谐波信号中分离出闪变包络及各谐波、间谐波频率分量的波形。
     为准确得到闪变的频率和波动值,避免频谱混叠和泄漏等问题,用基于互信息最小化准则的Fast-ICA算法从发生闪变的采样信号中分离出闪变包络波形,通过计算得到闪变的波动值和频率;为提高检测精度,进一步提出了先由盲源分离得到载波波形,计算出载波频率和幅值,然后应用免疫粒子群算法对目标函数进行优化,得到闪变的频率和波动值,此算法与希尔伯特-黄变换法相比,提高了检测精度。选取了适合于闪变包络检测的db24小波,将电压采样信号序列进行分解,在低频带得到闪变包络波形,并将基于互信息最小化准则的快速不动点独立分量分析算法与小波算法进行了比较,结果表明该算法的检测误差小于小波算法。为符合实际工作情况,研究了在含有噪声情况下,用盲源分离算法分离闪变包络的方法。由于噪声和闪变信号、载波信号相互独立,因此用鲁棒预白化方法,降低噪声的影响,将闪变包络波形分离出来,省去了去噪过程,节省了软硬件开销,提高了计算效率。
     谐波是电能质量的重要组成部分,为辨识基波、谐波、间谐波的各项参数,提出了基于同时对角化二阶盲辨识算法分离各频率分量波形,通过计算得到具体频率值,用免疫粒子群优化算法辨识基波、各次谐波、间谐波的幅值和相位,结果表明在间谐波频率点处检测精度高于快速傅里叶变换法和Blackman-Harris窗插值快速傅里叶变换算法,尤其是提高了间谐波的相位测量精度。由于免疫粒子群算法避免了早熟现象的发生,本文采用上述算法取得了良好的效果,试验结果证明是间谐波检测的有效方法。
     由于难以在电网上进行实验,设计并实现了验证本文提出的电压闪变、间谐波检测方法的试验硬件平台,实现了闪变包络波形的检测及频率、幅值的计算算法;实现了基波、间谐波频率、幅值、相位参数确定算法;完成了电压传感器的标定和测试,评测了算法的有效性和实时性,验证了试验系统的功能。
With the continuous application of large power electronic devices of the non-linear and impact loads, which cause the voltage flicker and interharmonics, the power grid is polluted and its quality is declined. People’s daily life and production is affected. So detecting the flicker and interharmonics accurately is a basis of evaluating power quality, and a premise of improving power quality. Currently wavelet analysis and various fast Fourier transform methods are used to detect flicker, harmonics, and interharmonics. However, these methods are vulnerable to spectrum leakage and grid effect. In order to improve the precision of detecting flicker, harmonics, and interharmonics, some research have done. Firstly, this dissertation researches blind source separation (BSS) algorithm to separate waveform of flicker, harmonics, and interhamonics from input signals and calculate the frequency of flicker and interharmonics. Secondly, this dissertation deeply studies the methods for calculating the amplitude and phase of flicker and interharmonics. Finally, the testing system of flicker and interharmonics has been developed to validate the proposed detection method and resolve some key technologies in flicker and interharmonics detection. The main contributions of this dissertation are as follows:
     This dissertation proposes a method of constructing a delay matrix using the output signal sequence of single voltage transformer instead of the multiple sensor output signal arrays. The matrix satisfies the basic requirement of BSS so that each frequency component is separated from flicker, harmonics and interharmonics which contain a number of frequencies.
     To accurately obtain the frequency and fluctuation of the flicker and avoid spectrum aliasing and spectrum leakage, This dissertation uses fast independent component analysis (Fast-ICA) based on minimum mutual information algorithm to separate the flicker envelop curve from sampling signals. Then frequency and fluctuation of the flicker is calculated. In order to improve the precision, BSS and particle swarm optimization are selected to detect flicker, and implement the frequency and amplitude calculation of carrier signal and flicker envelope curve respectively. It improves detection precision compared with Hilbert - Huang transform. With the application of db24 wavelet function for decomposing voltage sampling signals, the flicker envelope curve can be separated in low band. Also, Fast-ICA is compared with this db24 wavelet function and the former results show that detection error is lower than wavelet transform. In the noisy case, we research the BSS method to separate the flicker curve. As the noises, flicker signal and carrier signal are independent of each other, the robust pre-whitening method has been used in BSS and the flicker envelope curve is separated smoothly from the signal. This method eliminates the denoising process, lessens the costs of hardware and software and further improves the calculating efficiency.
     Harmonic is an important part of power quality. To identify the fundamental and interharmonics parameters, this paper proposes the simultaneous diagonalization second order blind identification algorithm to separate each frequency component. Meanwhile, every frequency value is computed. Then the amplitude and phase are calculated by using the immune particle swarm optimization (IPSO) algorithm. Theexperiments results show that the precision of this method is higher than FFT and Blackman-Harris window function interpolation FFT at interharmonics, especially for the phase precision. IPSO avoids the premature phenomena. This dissertation makes good use of these methods and the precision is also higher. Experiment results approve that it is an effective interharmonics detection method.
     The flicker and interharmonics testing hardware platform to validate the proposed voltage flicker and interharmonics detection methods is implemented. It accomplishes the flicker envelope curve detection using the frequency and amplitude calculating algorithm. The fundamental and interharmonics frequency, amplitude and phase calculating algorithm are implemented on this platform, too. The experiments are done including voltage sensor calibration and testing in order to evaluate the reliability and the real-time ability of the algorithm and the function of the testing system.
引文
1肖湘宁.电能质量分析与控制.北京:中国电力出版, 2004.
    2林海雪.新国家标准―电能质量电压波动和闪变‖介绍.供用电. 2001, 18(6):4-10.
    3 K.Srinivasan. Digital Measurement of the Voltage Flicker. IEEE Transactions. on Power Delivery, 1991, 6:1593-1598.
    4赵刚,施围,林海雪.闪变值计算方法的研究.电网技术, 2001, 25(11): 61-64.
    5 V.K.Jain, W.L.Collins, Davis D C. High-Accuracy Analog Measurements Via Interpolated FFT. IEEE Transactions on Instrumentation and Measurement. 1979, 28(2):113-122.
    6 T.Grandke. Interpolation Algorithm for Discrete Fourier Transform of Weighted Signals. IEEE Transactions on Instrumentation and Measurement. 1983, 32(2):350-354.
    7 P.Langlois, R.Bergeron. Interharmonic Analysis by a Frequency Interpolation Method. 2nd International Conference on Power Quality Atlanta, USA:1992.
    8潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(I):窗函数研究.电工技术学报, 1994, 9(1):50-54.
    9张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法.中国电机工程学报, 1999, 19(3): 63-66.
    10庞浩,李东霞,俎云霄,等.应用FFT进行电力系统谐波分析的改进算法.中国电机工程学报, 2003, 6(23):50-54.
    11 D.Agrez. Weighted Multipoint Interpolated DFT to Improve Amplitude Estimation of Multifrequency Signal. IEEE Transactions on Instrumentation and Measurement. 2002, 51(2):287-292.
    12张德丰. MATLAB小波分析.北京:机械工业出版社,2009.
    13赵勇,王学伟.小波Malla谐波测量的带内泄漏误差分析与算法改进.电力自动化设备, 2009, 29(8):59-62.
    14陈长升,黄险峰.基于小波变换抗混叠谐波检测的一种新方法.电力系统保护与控制, 2008,36(23):23-26.
    15 J. Barros, R.I. Diego. Analysis of Harmonics in Power Systems Using the Wavelet-Packet Transform. IEEE Transactions on Instrumentation and Measurement. 2008, 57(1):63-69.
    16 A.Mazloomzadeh, M Mirsalim, H.Fathi. Harmonic and Inter-harmonic Measurement Using Discrete Wavelet Packet Transform with Linear Optimizatio. Proceedings of the IEEE Industrial Electronics and Applications. Xi'an, China, 2009:825-830.
    17李天云,赵妍,李楠等.基于HHT的电能质量检测新方法.中国电机工程学报,2005,25(17):52-56.
    18聂永辉,高磊,唐威. Hilbert-Huang变换在电力系统暂态信号分析中的应用.电力系统及其自动化学报,2009, 21(4):63-69.
    19 T.K.Abdel-galil, E.F.Ei-saadany, M.M.Salama. Online Tracking of Voltage Flicker Utilizing Energy Operator and Hilbert Transform. IEEE Transactions on Power Delivery, 2004, 19(2):861-867.
    20 H.Akagi, Y.Kanazawa, A.Nabae. Generalized Theory of The Instantaneous Reactive Power in Three-Phase Circuits. Proceedings IPEC.Tokyo:IEEE, 1983:1375-1386.
    21李明,王晓茹.一种用于电力系统间谐波谱估计的自回归模型算法.中国电机工程学报. 2010, 30(1):72-76.
    22张君俊,杨洪耕.间谐波参数估计的TLS-ESPRIT算法.电力系统及其自动化学报. 2010, 22(2):70-75.
    23马秉伟,周莉.基于TLS-ESPRIT算法和支持向量机的间谐波检测.高电压技术. 2009, 35(6):1468-1471.
    24郑连清,何立新.基于支持向量回归机的谐波分析电力自动化设备, 2008, 2(28):73-75.
    25 A.A.Girgis, J.W.Stephens, Makram E B. Measurement and Prediction of Voltage Flicker Magnitude and Frequency. IEEE Transactions on Power Delivery. 1995, 10(3):1600-1605.
    26 T.K. Panigrahi, P.K. Dash, P.K. Hota. A self-tuning optimised unscented Kalman filter for voltage flicker and harmonic estimation. Power and Energy Conversion.2010,2(3):250-278.
    27 M. Aiello, A.Cataliotti, S.Nuccio. A Chirp-Z Transform Based Synchronizerfor Power System Measurements. IEEE Transactions on Instrumentation and Measurement. 2005, 54(3):1025-1032.
    28 A.Hyv(a|¨)rinen, J.Karhunen, E.Oja. Independent Component Analysis. John Wiley&Sons. Inc., 2001.
    29 A.Cichocki, S.Amari. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, 2003.
    30 Y. Sato. Two Extensional Applications of the Zero-forcing Equalization method. IEEE Transactions on Communication.1975, 23(6):688-672.
    31 B.Widrow, J.R.Glover, J.M.Mclool,et al. Adaptive Noise Cancelling: Principles and Applications. Porceedings of the IEEE, 1975:1692-1716.
    32 C.Jutten, J. Herault. Blind Separation of Soucres, partⅠ: An Adaptive Algorithm Based on Neuromimetic Architecture.Singal Processing. 1991: 1-10.
    33 P.Comon. Blind Separation of Sources, PartⅡ: Problem Statement.Signal Processing, 1991, 24(1):11-20.
    34 E.Sorouchyari. Blind Separation of Sources, PartⅢ: Stability Analysis. Signal Processing, 1991,24(1):21-29.
    35 L.Tong, R.W.Li, V.C.Soon. Indeterminacy and Identifiability of Blind Identification. IEEE Transactions on Circuits and Systems, 1991, 38(5):499-509.
    36 G.Burel. Blind Separation of Sources: A Nonlinear Neural Algorithm. Neural Network, 1992, 5:937-947.
    37 P.Comon. Independent Component Analysis-A New Concept?. Signal Processing, 1994, 36:287-314.
    38 A.Cichocki, R.Unbehauuen, L.Moszczynski, et al. A New On-line Adaptive Learning Algorithm for Blind Separation of Source Signals. 1994 International Symposium on Artificial Neural Networks (ISANN94), Taiwan, 1994:406-411.
    39 A.Bell, T.Sejnowski. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 1995, 7(6): 1004-1034.
    40 K.Matsuoka. A Neural Net for Blind Separation of Nonstationary Signals. Neural Network, 1995, 3:311-319.
    41 S.Amari. Neural Gradient Works effieiently in Learning, Neural Computation. 1998, 10:251-276.
    42 J.Cardoso. Informax and Maximum Likelihood for Source Separation. IEEE Signal Processing Letters, 1997, 4:109-111.
    43 A.Hyv(a|¨)rinen, E.Oja. A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation. 1997:1487-1492.
    44 A.Hyv(a|¨)rinen. Fast and Robust Fixed-point Algorithm for Independent Component Analysis. IEEE Trnasactionson Neural Networks.1999, 10(3): 626-634.
    45 H.Valpola. Nonlinear Independent Component Analysis Using Ensemble Learning: Theory. International Workshop on Independent Component Analysis and Blind Signal Separation 2000(ICA2000), Helsinki, Finland, 2000:251-256.
    46 H.Valpola, X.Giannakopoulos, A.Honkela, et al. Nonlinear Independent Analysis Using Ensemble Learning: Experiments and Discussion. International Workshop on Independent Component Analysis and Blind Signal Separation 2000(ICA2000), Helsinki, Finland, 2000:351-356.
    47 J.Cardoso, J.Delabrouille, G.Patanchon. Independent Component Analysis of the Cosmic Microwave background. International Workshop on Independent Component Analysis and Blind Signal Separation 2003(ICA2003), Nara, Japan, 2003:1111-1116.
    48 Z.Yuan, E.Oja. A Fast ICA Algorithm for Non-negative Independent Component Analysis. International Workshop on Independent Component Analysis and Blind Signal Separation. 2004(ICA2004), Granada, Spain, 2004: 1-8.
    49 Y.Li, S.Amari, A.Cichocki, C.Guan. Probability Estimation for Recoverability Analysis of Blind Source Separation Based on Sparse Representation. IEEE Transactions on Information Theory. 2006, 52(7):3139-3152.
    50 W.Nakamura, K.Anami, T.Mori, et al. Removal of Ballistocardiogram Artifacts from Simultaneously Recorded EEG and fMRI Data using Independent Component Analysis. IEEE Transactions on Biomedical Engineering. 2006, 53(7):1294-1308.
    51 Yuanqing Li, A.Cichocki, S.Amari. Blind Estimation of Channel Parameters and Source Components for EEG Signals: A Sparse Factorization Approach. IEEE Transactions on Neural Networks. 2006, 17(2):419-431.
    52 Wei Liu; D.P.Mandic, A.Cichocki. Blind Second-Order Source Extraction of Instantaneous Noisy Mixtures. IEEE Transactions on. Circuits and Systems II: Express Briefs. 2006, 53(9):931-935.
    53 P.Comon. Blind Identification and Source Separation in 2×3 Under- determined Mixtures. IEEE Transactions on Signal Processing. 2004, 52(1): 11-22.
    54 A.Kachenoura, L.Albera, L.Senhadji, et al. Ica: A Potential Tool for Bci System. Siggnal Processing, 2008, 25(1):57-68.
    55 V.Zarzoso, P.Comon. Robust Independent Component Analysis for Blind Source Separation and Extraction with Application in Electrocardiography. 30th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society, 2008(EMBS2008), Vancouver, Canada. 2008: 3344-3347.
    56 R.Phlypo, V.Zarzoso, P.Comon, et al. Cumulant Matching for Independent Source Extraction. 30th Annual International Conference of the IEEE in Engineering in Medicineand Biology Society, 2008(EMBS2008), Vancouver, Canada. 2008:3340-3343.
    57 C.Gouy-Pailler, M.Congedo, C.Brunner, et al. Nonstationary Brain Source Separation for Multiclass Motor Imagery. IEEE Transactions on Biomedical Engineering. 2010, 57(2):469-478.
    58 L.T.Duarte, B.Rivet, C.Jutten. Blind Extraction of Smooth Signals Based on a Second-Order Frequency Identification Algorithm. Signal Processing Letters, Signal Processing Letters, IEEE. 2010, 17(1):79-82.
    59 T.DuarteL, C.Jutten, S.Moussaoui. A Bayesian Nonlinear Source Separation. Method for Smart Ion-Selective Electrode Arrays. Sensors. 2009, 9(12):1763- 1771.
    60 T.Tsalaile, R.Sameni, S.Sanei, et al. Sequential Blind Source Extraction for Quasi-periodic Signals with Time-varying Period. IEEE Transactions on Biomedical Engineering. 2009, 56(3):646-655.
    61 L.T.Duarte, C.Jutten, B.Rivet, et al. Source Separation of Baseband Signalsin Post-nonlinear Mixtures. IEEE Workshops on Machine Learning for Signal Processing Conference and Journal(MLSP2009), Grenoble, France, 2009:1-6.
    62 Z.Y.He, J.Liu, L.X.Yang. Blind Separation of Images using Edgeworth Expansion Based on ICA Algorithm. Chinese Journal of Electronics, 1999, 18(3): 278-282.
    63 Z.Y.He, L.Yang,J.Liu,et al. Blind Source Separation using Clustering Based Multivariate Density Estimation Algorithm. IEEE Transactions on Signal Processing, 2000,48(2):575-579.
    64何振亚,刘琚,杨绿溪.盲均衡和信道参数估计的一种ICA和进化计算方法.中国科学E辑. 2000, 30(1):1-7.
    65凌燮亭.近场宽带信号源的盲分离.电子学报. 1996, 24(7):87-92.
    66乔建苹,刘琚.基于支持向量机的盲超分辨率图像复原算法.电子学报. 2007, 35(10):1927-1933.
    67闫华,刘琚,孙建德,等.基于误差—参数分析的超分辨率盲辨识和复原算法.通信学报. 2009,30(8):62-68.
    68 Da-Zheng Feng, Wei-Xing Zheng, A.Cichocki. Matrix-Group Algorithm via Improved Whitening Process for Extracting Statistically Independent Sources From Array Signals. IEEE Transactions on Signal Processing. 2007, 55(3): 962-977.
    69刘琚,何振亚.利用高阶累积量和独立分量分析网络进行盲均衡与系统辨识.数据采集与处理. 1998, 13(3): 201-205.
    70聂卫科,冯大政,张斌.谐波恢复的联合对角化算法.电子与信息学报. 2009, 31(2):331-334.
    71张华,冯大政,庞继勇.卷积混迭语音信号的联合块对角化盲分离算法.声学学报. 2009, 34(2): 167-174.
    72倪晋平,马远良.基于高阶累积量的复数混合矩阵盲估计算法.电子与信息学报. 2002, 24(11):1506-1511.
    73倪晋平,陈亚林,马时亮.非线性LMS算法实现盲源分离.西安工业大学学报. 2006, 26(5):413-416.
    74丁志刚,朱孝龙,焦李成.基于独立分量分析的DS-CDMA系统接收机.电子学报. 2000, 28(11A):97-100.
    75焦李成,马海波,刘芳.多用户检测和独立分量分析:进展与展望.自然科学进展. 2002, 12(4):365-371.
    76张玲,张贤达. MIMO-OFDM系统的盲信道估计算法综述.电子学报. 2007, 35(B06):1-6.
    77朱孝龙,张贤达.基于奇异值分解的超定盲信号分离.电子与信息学报. 2004, 26(3):337-343.
    78赵锡凯,张贤达.基于最大峰度准则的非因果AR系统盲辨识.电子学报. 1999, 27(12):126-128.
    79张贤达,保铮.盲信号分离.电子学报. 2001, 29(12A):1766-1771.
    80张贤达,保铮.通信信号处理.北京:国防工业出版社, 2000.
    81刘阳,杨洪耕.盲信号分离在电压闪变分析中的应用.电工技术学报, 2007, 22(3):138-142.
    82刘阳,杨洪耕.基于独立分量分析的电压闪变检测方法.电力自动化设备. 2007, 27(11):34-37.
    83 S.Makeig, T.P.Jung, T.J.sejnowski. Independent Component Analysis in Electroencelographic Data.In Neural Information Processing Systems Cambridge 1996, 145-151.
    84 R.N.Vigario. Extraction of Ocular Artifacts from EEG Using Independent Component Analysis. Electroencephalography and Clinical Neurophysiology, 1997, 103:395-404.
    85 A.Ziehe, K.R.Muller, G.Nolte, et al. Artifact Reduction in Biomagnetic Recordings Based on Time-delayed Second Order Correlations. IEEE Transactions on Biomedical Engineering, 2000, 47:75- 87.
    86 A.Taleb, C. Jutten. Source Separation in Post-nonlinear Mixtures.IEEE Transactions on Signal Processing. 1999, 47(10):2807-2820.
    87 C.Fyfe, P.Lai. ICA Using Kernel Canonical Correlation Analysis. Proc.2nd International Conference on Independent Component Analysis and Blind Signal Separation (ICA2000), 2000:279-284.
    88 P.O.Hoyer, A.Hyv(a|¨)rinen. Independent Component Analysis Applied to Feature Extraction from Colour and Stereo Imgaes. Network Computation in Neural Systems. 2000:191-210.
    89 J.S(a|¨)rel(a|¨), H.Valpola. Denoising Source Separation. Machine Learning Research. 2005, 6(3):233-272.
    90 Haritopoulos, H.J.Yin, N.M.Allinson. Image Denoising Using self-organizing Map-based Nonlinear Indpendent Component Analysis. Neural Network. 2002, 15:1085-1098.
    91 M.Cooke, D.P.W.Ellis. The Auditory Organization of Speech and other Sources in Listeners and Computational Models.Speech Communication. 2001, 35(3-4):141-177.
    92 M.Rajih, P.Comon, D.Slock. A Deterministic Blind Receiver for MIMO OFDM Systems. IEEE 7th Workshop on In Signal Processing Advances in Wireless Communications, 2006(SPAWC'06), Cannes, France, 2006: 1-5.
    93 H.Valpola. Nonlinear Independent Component Analysis Using Ensemble Learning: Theory. International Workshop on Independent Component Analysis and Blind Signal Separation 2000(ICA2000), Helsinki, Finland, 2000: 251-256.
    94 M.Haritopoulous, H.Yin, N.Allison. Image Denosing Using Self-Organizing Map-Based Nonlinear Independent Component Analysis.Neural Networks. 2002, 15(8-9):1085-1098.
    95 F.Rojas, I.Rojas, R.Clemente. Nonlinear Blind Source Separation Using Genetic Algorithms.International Workshop on Independent Component Analysis and Signal Separation (ICA2001). San Diego, USA, 2001, 400-405.
    96 R.M.Everson, S.J.Roberts.Particle Filters for Non-stationary ICA. Cambridge: CambridgeUniversity Press. 2001, 280-298.
    97戚玉鹏,张朝阳,黄爱苹等.基于非正交对角化算法的非平稳信号盲分离.浙江大学学报. 2004, 38(4):433-436.
    98黄青华,基于源信号模型的盲分离技术研究及应用.博士学位论文.上海交通大学, 2007, 5-6.
    99 A.Taleb, C.Jutten.On Underdetermined Source Separation. IEEE Interna- tional Conference On Acoustics, Speech, and Signal Processing (ICASSP99), Phoenix, USA, 1999, 3:1445-1448.
    100 M.Zibulevsky, B. Pearlmutter. A Blind Source Separation by Sparse Decomposition. Neural Computations. 2001, 13(4):863-882.
    101周林,夏雪,万蕴杰等.基于小波变换的谐波测量方法综述.电工技术学报. 2006, 21(9):67-73.
    102 F.Takens. Detecting Strange Attractors in Turbulence. Dymatical System and Turbulence. Lecture Notes in Mathematics. New York:Springer-verlag,.1981,898:366-381.
    103孙树勤.电能质量技术丛书之四-电压波动与闪变.北京:中国电力出版社, 1999, 6.
    104 J.Kennedy, R.C.Eberhart. Particle Swarm Optimization. Proceedings of the IEEE Internationa1 Conference on Neura1 Networks. Perth, Australia, 1995:1942-1948.
    105 J.Kennedy, R.C.Eberhart. Particle Swarm Optimization. Proceedings of the IEEE Internationa1 Conference on Neura1 Networks. Perth, Australia, 1995:1942-1948.
    106 Y.Shi, R.C.Eberhart. A modified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation. Proceedings of the Piscataway, 1998b, 69-73.
    107 Y.Shi, R.C.Eberhart. Proceedings of the empirical congress study of particle swarm optimization. Evolutionary Computation(CEC), 1999, 1945-1950.
    108张利彪,周春光,刘小华等.粒子群算法在求解优化问题中的应用.吉林大学学报(信息科学版), 2005, 23(4):385-389.
    109倪庆剑,邢汉承,张志政等.粒子群优化算法研究进展.模式识别与人工智能, 2007, 20(3):349-357.
    110王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析.系统工程学报, 2005, 20(2): 194-198.
    111沈茂亚,丁晓群,王宽等.自适应免疫粒子群算法在动态无功优化中应用.电力自动化设备, 2007, 27(1):31-35.
    112 Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. Lond. A. 1998, 454:903-995.
    113于德介,陈森峰,程军圣等.一种基于经验模式分解与支持向量机的转子故障诊断方法.中国电机工程学报. 2006, 26(16):162-167.
    114李天云,赵妍,韩永强等. Hilbert-Huang变换方法在谐波和电压闪变检测中的应用.电网技术, 2005, 29(1):73-77.
    115 A.Belouchrani, A.Cichocki. Robust whitening procedure in blind source separation context. Electronics Letters, November 2000, 36(24):2050-2051.
    116王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社, 2002.
    117李红伟,李在玉. FFT分析电力系统谐波的加窗插值算法.电工技术杂志. 2004(10):62-64.
    118黄纯,江亚群.谐波分析的加窗插值改进算法.中国电机工程学报. 2005, 25(15):26-32.
    119蒋春芳,刘敏.基于双插值FFT算法的间谐波分析.电力系统保护与控制, 2010, 38(3):11-14.
    120潘文,钱俞寿,周鹗.基于加窗插值FFT的电力谐波测量理论(Ⅱ):窗函数研究.电工技术学报. 1994, 9(2):50-54.
    121曾博,滕召胜.纳托尔窗改进FFT动态谐波参数估计方法.中国电机工程学报. 2010,30(1):65-71.
    122惠锦,杨洪耕.一种新的电力系统谐波间谐波两步检测法.电力系统保护与控制. 2009,37(23):28-34.
    123祁才君,王小海.基于插值FFT算法的间谐波参数估计.电工技术学报. 2003, 18(1):92-95.
    124钱昊,赵荣祥.电力系统中谐波分析的高精度FFT算法.江南大学学报(自然科学版). 2006, 5(5):547-555.
    125钱昊,赵荣祥.基于插值FFT算法的间谐波分析.中国电机工程学报. 2005, 25(21):87-91.
    126高云鹏,滕召胜,温和等.凯塞窗插值FFT的电力谐波分析与应用.中国电机工程学报. 2010, 30(4):43-48.
    127赵成勇,刘娟. Prony算法在电力系统暂态信号分析中的应用.电力系统及其自动化学报. 2008, 20(2):60-64.
    128丁屹峰,程浩忠,吕干云等.基于Prony算法的谐波和间谐波频谱估计.电工技术学报. 2005, 20(10):94-97.
    129贾秀芳,陈清,赵成勇等.电压闪变检测算法的比较.高电压技术. 2009,35(9):2126-2132.
    130马秉伟,周莉.基于TLS_ESPRIT算法和支持向量机的间谐波检测.高电压技术. 2009, 35(6):1468-1471.
    131李涛,何怡刚.基于支持向量机与神经网络的间谐波测量混合方法.高电压技术. 2008, 34(8):1710-1714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700