基于非线性频率上转换的红外单光子探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进的探测技术在人类探索自然的进程中起着至关重要的作用。作为灵敏度达到量子极限的红外单光子探测,不仅对于未来长距离量子信息网络的构建具有重要的应用价值,同时也是很多红外物理技术领域,如:激光雷达、制导、传感等的核心技术。鉴于目前广泛使用的可见光波段和红外波段的单光子探测器在探测性能上的显著差异,引发了对红外单光子的跨波长探测的设想,并且该设想的可行性已经获得了理论和实验的证实。
     本文以实用的红外单光子探测为研究目的,围绕高效、稳定、灵敏三个主要技术目标,论述了我们对1.55μm和1.06μm两个重要而典型的红外波段单光子进行的上转换探测。
     1.讨论了用频率上转换方法实现红外单光子量子态转移的可行性以及达到完全量子态转移所需要的实验条件,包括泵浦光强度、相位匹配条件、空间重合条件等。
     2.以二极管泵浦的固体激光器为基础,利用单向激光腔内泵浦的方案实现了高效、稳定的1.55μm红外单光子上转换探测。探测效率达到了96%,而稳定性的标准误差仅为1.9%,并且在此基础上进行了可调谐频率上转换的实验探索。
     3.以更加便携、灵敏的高效单光子探测为目标,在1.55μm的锁模光纤激光器和掺铒光纤放大器的基础上,用脉冲泵浦的方案实现了1.06μm超灵敏的红外单光子上转换探测。由于使用了单光子能量低于信号光子能量的泵浦光源,探测灵敏度获得了极大的提高,得到了大于12000的信噪比。
Advanced detection technology plays an important role in the process of human being's exploration into the natural world. The detection of infrared single photons-the ultimate limit in detector sensitivity- is the core technology and of great application value for future long-distance quantum information network construction as well as many infrared physics technology, such as lidar, guidance and sensor etc. While the performance of current widely-used infrared single-photon detectors are much worse than the ones for visible light, and this significant difference has inspired us with an assumption: should we up-convert the infrared single-photons to the visible region? During the past decade, the feasibility of this assumption has been proved theoretically and experimentally.
     Our purpose is to establish a practical infrared single-photon detection system, so efficiency, stability and sensitivity are most emphasized in our research. This dissertation documents our main results on single-photon frequency up-conversion detection at 1.55μm and 1.06μm respectively, which are both important and typical wavelength in infrared region.
     1. We discussed experimental feasibility for quantum-state preserving frequency translation with single-photon frequency up-conversion and its experimental conditions for near-unity up-conversion, including pumping intensity, phase matching and space coincidence conditions.
     2. Based on diode-pumped solid-state laser, we realized efficient and stable single-photon detection at 1.55μm by intra-cavity frequency up-conversion in a unidirectional ring laser, with the efficiency and standard deviation of stability being 96% and 1.9% respectively. And with this experimental setup we also made exploration on tunable frequency up-conversion.
     3. Aiming at more portable and sensitive infrared single-photon detection, we obtained single-photon detection at 1.06μm with ultra-low dark counts, which was pulse pumped by an amplified passively mode-locked fiber laser at 1.55μm. With the energy of the pump photon lower than that of the signal photon, the sensitivity of this long-wavelength-pumping setup was greatly enhanced, with its signal-to-noise ratio larger than 12000.
引文
[1] F. Zappa, A. Giudice, et al., "Fully-integrated active-quenching circuit for single-photon detection", Solid-State Circuits Conference, Proceedings of the 28th European, 24, 355 (2002).
    
    [2] F. Zappa, A. Lotito, et al., "Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors", IEEE J. Solid-State Circuits 38, 1298 (2003).
    
    [3] X. L. Sun, M. A. Krainak, et al., "Space-qualified silicon avalanche-photodiode single-photon-counting modules", J. Mod. Opt. 51,1333 (2004).
    
    [4] D. Stucki, G. Ribordy, et al., "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs", J. Mod. Opt. 48,1967 (2001).
    
    [5] M. Bourennane, A. Karlsson, et al., "Single-photon counters in the telecom wavelength region of 1550 nm for quantum information processing", J. Mod. Opt. 48, 1983 (2001).
    
    [6] P. L. Voss, K. G. Koprulu, et al., "14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes", J. Mod. Opt. 51,1369 (2004).
    
    [7] B. F. Levine and C. G. Bethea, "10-MHz single photon counting at 1.3 μm", Appl. Phys. Lett. 44, 581 (1984).
    
    [8] N. Namekata, Y. Makino, and S. Inoue, "Single-photon detector for long-distance fiber-optic quantum key distribution", Opt. Lett. 27, 954 (2002).
    
    [9] G. Ribordy, J. D. Gautier, et al., "Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters", Appl. Opt. 37,2272 (1998).
    
    [10] A. Tomita and K. Nakamura, "Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm", Opt. Lett. 27, 1827 (2002).
    
    [11] A. Yoshizawa, R. Kaji, and H. Tsuchida, "Gated-mode single-photon detection at 1550 nm by discharge pulse counting", Appl. Phys. Lett. 84, 3606 (2004).
    
    [12] G. Ribordy, N. Gisin, et al., "Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance", J. Mod. Opt. 51,1381(2004).
    
    [13] G. N. Gol'tsman, O. Okunev, et al., "Picosecond superconducting single-photon optical detector", Appl. Phys. Lett. 79, 705 (2001).
    
    [14] A. Verevkin, J. Zhang, et al., "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range", Appl. Phys. Lett. 80,4687 (2002).
    
    [15] A. Korneev, P. Kouminov, et al., "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors", Appl. Phys. Lett. 84, 5338 (2004).
    [16] W. Slysz, M. Wegrzecki, et al., "Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies", Appl. Phys. Lett. 88, 261113 (2006).
    [17] A. J. Kerman, E. A. Dauler, et al, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors", Appl. Phys. Lett. 90, 101110(2007).
    [18] A. J. Miller, S. W. Nam, et al., "Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination", Appl. Phys. Lett. 83, 791 (2003).
    [19] P. Verhoeve and R. den Hartoga, et al., "Time dependence of tunnel statistics and the energy resolution of superconducting tunnel junctions", J. Appl. Phys. 92, 6072 (2002).
    [20] K. Segall, J. J. Mazo, et al., "Multiple junction biasing of superconducting tunnel junction detectors", Appl. Phys. Lett. 86, 153507 (2005).
    [21] D. D. E. Martin, P. Verhoeve, et al., "Resolution limitation due to phonon losses in superconducting tunnel junctions", Appl. Phys. Lett. 88,123510 (2006).
    [22] A. J. Shields and M. P. O'Sullivan, et al., "Detection of single photons using a field-effect transistor gated by a layer of quantum dots", Appl. Phys. Lett. 76, 3673 (2000).
    [23] J. C. Blakesley, P. See, et al, "Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes", Phys. Rev. Lett. 94, 067401 (2005).
    [24] S. S. Hees, B. E. Kardynal, et al., "Effect of InAs dots on noise of quantum dot resonant tunneling single-photon detectors", Appl. Phys. Lett. 89, 153510 (2006).
    [25] M. D. Petroff, M. G. Stapelbroek, and W. A. Kleinhans, "Detection of individual 0.4-28 μm wavelength photons via impurity-impact ionization in a solid-state photomultiplier", Appl. Phys. Lett. 51, 406 (1987).
    [26] S. Takeuchi, J. Kim, et al., "Development of a high-quantum-efficiency single-photon counting system", Appl. Phys. Lett. 74, 1063 (1999).
    [27] A. Gulian, K. Wood, et al., "Cryogenic thermoelectric (QVD) detectors: Emerging technique for fast single-photon counting and non-dispersive energy characterization", J. Mod. Opt. 51, 1467 (2004).
    [28] O. Astafiev, S. Komiyama, et al., "Single-photon detector in the microwave range", Appl. Phys. Lett. 80,4250 (2002).
    [29] R. H. Hadfield, M. J. Stevens, et al., "Single photon source characterization with a superconducting single photon detector", Opt. Express 13, 10846 (2005).
    [30] M. J. Stevens, R. H. Hadfield, et al., "Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector", Appl. Phys. Lett. 89,031109(2006).
    [31] M. A. Jaspana, J. L. Habif, et al., "Heralding of telecommunication photon pairs with a superconducting single photon detector", Appl. Phys. Lett. 89, 031112 (2006).
    [32] Marius A. Albota, "Single-Photon Frequency Upconversion for Long-Distance Quantum Teleportation and Communication", Massachusetts Institute of Technology (2006).
    [33] D. V. Strekalov, T. B. Pittman, et al., "Postselection-free energy-time entanglement", Phys. Rev. A 54, R1 (1996).
    [34] W. Tittel, J. Brendel, et al., "Violation of Bell Inequalities by Photons More Than 10 km Apart", Phys. Rev. Lett. 81, 3563 (1998).
    [35] J. Brendel, N. Gisin, et al., "Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication", Phys. Rev. Lett. 82, 2594 (1999).
    [36] R. T. Thew, S. Tanzilli, et al., "Experimental investigation of the robustness of partially entangled qubits over 11 km", Phys. Rev. A 66, 062304 (2002).
    [37] Katsuya NAGAYAMA, Masahiko MATSUI, et al., "Ultra Low Loss (0.1484 dB/km) Pure Silica Core Fiber", SEI Tech. Rev. 57, 3 (2004).
    [38] J.C. Bienfang, A. J. Gross, et al., "Quantum key distribution with 1.25 Gpbs clock synchronization," Opt. Express 12, 2011 (2004).
    [39] Marius A. Albota and Franco N. C. Wong, "Efficient single-photon counting at 1.55 urn by means of frequency upconversion," Opt. Lett. 29, 1449 (2004).
    [40] C. Langrock, E. Diamanti, et al., "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725(2005).
    [41] G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597 (1968).
    [42] Prem Kumar, "Quantum frequency conversion," Opt. Lett. 15, 1476 (1990).
    [43] Jianming Huang, and Prem Kumar, "Observation of quantum frequency conversion," Phys. Rev. Lett. 68, 2153 (1992).
    [44] M. A. Albota and F. N. C. Wong, in Conference on Lasers and Electro-Optics (CLEO), Vol. 88 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), paper QTh-PDB11.
    [45] Aaron P. VanDevender and Paul G. kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51,1433 (2004).
    [46] R. V. Roussev, C. Langrock, et al., "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt. Lett. 29,1518 (2004).
    [47] R T Thew, S Tanzilli, L Krainer, et al., "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
    [48] H Takesue, E Diamanti, et al., "Differential phase shift quantum key distribution experiment over 105 km fiber," New J. Phys. 7,232 (2005).
    [49] Hiroki Takesue, Eleni Diamanti, et al., "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14, 9522 (2006).
    [50] Hiroki Takesue, Eleni Diamanti, et al., "1.5-μm single photon counting using polarization-independent up-conversion detector," Opt. Express 14, 13067 (2006).
    [51] Marius A. Albota, Franco N. C. Wong, et al., "Polarization-independent frequency conversion for quantum optical communication," J. Opt. Soc. Am. B 23,918(2006).
    [52] Aaron P. VanDevender and Paul G. kwiat, "Quantum transduction via frequency upconversion," J. Opt. Soc. Am. B 24,295 (2007).
    [53] Hai Xu, Lijun Ma, et al., "1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm," Opt. Express 15, 7247 (2007).
    [54] B. Braun, F. X. Krtner, et al., "56-ps passively Q -switched diode-pumped microchip laser," Opt. Lett., 22, 381 (1997).
    [55] Y. Chen, S. W. Tsai, et al., "High-power diode-pumped Q-switched and mode-locked Nd: YVO_4 laser with a Cr~(4+): YAG saturable absorber". Opt. Lett. 25, 1442 (2000).
    [56] G.J. Spiihler, R. Paschotta, et al., "A passively Q-switched Yb:YAG microchip laser," Appl. Phys. B 72, 285 (2001).
    [57] R. Haring, R. Paschotta, et al., "Passively Q-switched microchip laser at 1.5 μm," J. Opt. Soc. Am. B, 18, 1805 (2001).
    [58] G. J. Spiihler, R. Paschotta, et al, "Diode-pumped passively mode-locked Nd:YAG laser with10-W average power in a diffraction-limited beam," Opt. Lett., 24, 528(1999).
    [59] R. Paschottal, J. Aus der Au, et al., "Diode-pumped passively mode-locked lasers with high average power," Appl. Phys. B 70, 25 (2000).
    [60] Krainer, L. et al., "Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz," IEEE J. Quantum Electron 38,1331 (2002).
    [61] Sanjun Zhang, E Wu, et al, "Q-switched mode-locking by Cr~(4+):YAG in a laser-diode-pumped c-cut Nd:GdVO4 laser," Opt. Comm. 231, 365 (2004).
    [62] Sanjun Zhang, E Wu, et al., "Q-switched mode-locking with Cr~(4+):YAG in a diode-pumped Nd:GdVO4 laser," Appl. Phys. B 78, 335 (2004).
    [63] Alphan Sennaroglu, "Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible" Progress in Quantum Electronics 26, 287 (2002).
    [64] Wenxue Li, Shixiang Xu, et al., "Efficient tunable diode-pumped Yb:LYSO laser," Opt. Express 14, 6681 (2006).
    [65] Wenxue Li, Haifeng Pan, et al., "Efficient diode-pumped Yb: Gd_2SiO_5 laser," Appl. Phys. Lett. 88,221117 (2006).
    [66] Wenxue Li, Qiang Hao, et al., "Low-threshold and continuously tunable Yb: Gd_2SiO_5 laser," Appl. Phys. Lett. 89,101125 (2006).
    [67] Shifeng Zhou, Huafang Dong, et al., "Broadband optical amplification in Bi-doped germanium silicate glass", Appl. Phys. Lett. 91, 061919 (2007).
    [68] Shifeng Zhou, Huafang Dong, et al., "Broadband near-infrared emission from transparent Ni~(2+)-doped silicate glass ceramics", J. Appl. Phys. 102, 063106 (2007).
    [69] Jinjun Ren, Huafang Dong, et al., "Ultrabroadband Infrared Luminescence and Optical Amplification in Bismuth-Doped Germanosilicate glass", IEEE Photonics technology letters 19, 1395 (2007).
    [70] ShiFeng Zhou, HuaFang Dong, et al., "Broadband optical amplification in silicate glass-ceramic containing β-Ga2O3:Ni~(2+) nanocrystals", Opt. Express 15, 5477 (2007).
    [71] J. Ren, B. Wu, X. Jiang, et al., "Broadband optical amplification near 1300nm in bismuth-doped germanate glass", Appl. Phys. B 88, 363 (2007).
    [72] Shifeng Zhou, Nan Jiang, et al., "Size-induced crystal field parameter change and tunable infrared luminescence in Ni~(2+)-doped high-gallium nanocrystals embedded glass ceramics", Nanotechnology 19, 015702 (2008).
    [73] Holger Hundertmark, Dietmar Kracht, et al., "Stable sub-85 fs passively mode-locked Erbium-fiber oscillator with tunable repetition rate," Opt. Express 12,3178(2004).
    [74] Shenping Li, Xin Chen, et al., "Wavelength tunable stretched-pulse mode-locked all-fiber erbium ring laser with single polarization fiber," Opt. Express 14, 6098 (2006).
    [75] J. W. Nicholson and M. Andrejco, "A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser," Opt. Express 14, 8160 (2006).
    [76] Ying-Tsung Lin and Gong-Ru Lin, "Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation," Opt. Lett. 31,1382 (2006).
    [77] C. K. Nielsen, B. Ortac, et al., "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13,9346 (2005).
    [78] F. O. IIday, J, Chen, et al., "Generation of sub-100-fs pulse at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser," Opt. Express 13, 2716 (2005).
    [79] Thomas Schreiber, Carsten K. Nielsen, et al., "Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574 (2006).
    [80] V. P. Kalosha, Liang Chen, et al., "Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser," Opt. Express 14,4935 (2006).
    [81] Michael Schultz, Oliver Prochnow, et al., "Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation," Opt. Lett. 32, 2372 (2007).
    [82] Thomas F. Caruthers and Irl N. Duling III, "10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening," Opt. Lett. 21,1927 (1996).
    [83] Matei Rusu, Robert Herda, et al., "Passively synchronized erbium (1550nm) and ytterbium (1040 nm) mode-locked fiber lasers sharing a cavity," Opt. Lett. 29, 2246 (2004).
    [84] Matei Rusu, Robert Herda, et al., "Passively synchronized two-color mode-locked fiber system based on master-slave lasers geometry," Opt. Express 12,4719(2004).
    [85] D. S. Bethune and W. P. Risk, "An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light", IEEE J. of Quantum Electron. 36, 340 (2000).
    [86] A. Karlsson, M. Bourennane, et al., "Single-photon counting at 1550 nm using InGaAs/InP avalanche Photodiodes", IEEE Circuits & Dev. (November) 34 (1999).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700