基于铌酸锂晶体参量过程产生与探测太赫兹波
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波的众多独特性质使得它在成像、无损检测、环境监测、通信、安全等领域均有重大的科学研究价值和广阔的应用前景。基于铌酸锂晶体参量过程的太赫兹波产生与探测技术具有窄线宽、连续可调谐、室温运转、结构紧凑等优点,近年来受到越来越多的关注。本论文围绕基于铌酸锂晶体中电磁耦子的受激拉曼散射开展了太赫兹波辐射源、窄带太赫兹波长计、辐射源的泵浦阈值和太赫兹波探测的理论和实验研究。主要研究内容有以下几个方面:
     (1)推导出了一般情况下晶体中电磁耦子受激拉曼散射的耦合波方程组。
     (2)实验研究了两种不同耦合输出方式的太赫兹波辐射源:即硅棱镜耦合式太赫兹波参量振荡器(TPO)和浅表面垂直出射式TPO。分析了限制频率调谐范围的主要因素。定量考察了晶体光折变效应对太赫兹波输出效果的影响。测量了三种不同配置的浅表面垂直出射式TPO的太赫兹波输出效率、频率调谐范围。
     (3)设计开发了一款适用于2THz以下频率的新型太赫兹波长计用于直接测量窄带太赫兹波长。
     (4)建立了TPO的阈值理论模型,以典型硅棱镜耦合式TPO为对象实验研究了其泵浦阈值。分析了TPO的损耗来源,并讨论了降低泵浦阈值的有效方法。
     (5)建立了描述铌酸锂晶体参量过程探测太赫兹波的稳态理论模型,推导出其解析表达式并利用数值计算方法考察了模型的合理性。应用稳态模型分析了探测器对不同频率太赫兹波的响应情况,并研究了各物理量的温度特性对探测效果的影响,分析了影响其探测效果的主要因素。考虑到实际泵浦脉冲的准单色性,建立了准单色理论模型,并研究了各种因素对探测效果的影响。
     (6)设计并搭建了铌酸锂晶体参量过程产生、探测太赫兹系统。分析了系统的噪声来源并确定了系统的主要噪声源。定量比较了参量过程有、无谐振腔晶体探测太赫兹波、高莱盒及热释电探测器的探测性能。
Terahertz wave with many unique properties has significant scientific research valuesand wide applications in the field of imaging, non-destructive testing, environmentalmonitoring, communication, security and so on. Recently, Generation and detectionterahertz wave using a parametric process in lithium niobate has attracted more and moreattention due to its advantages such as narrow linewidth, continously tunable, roomtemperature operation, compact structure, etc. Based on the stimulated Raman scattering ofpolariton in lithium niobate, in this thesis, we focus on terahertz wave radiation source,narrow linewidth terahertz wavelength meter, threshold pump of terahertz wave radiationsource, and the theories and experiments of terahertz wave detection. The detailed researchcontents can be found as follows.
     (1) We derive the coupled-wave equations that describing the stimulated polaritonscattering in a crystal.
     (2) We experimentally investigate two different coupling methods, which are siliconprisms coupler TPO and surface emitted TPO. The main factors which limit the frequencytuning range are discussed. Moreover, the impacts of the photorefractive effect in lithiumniobate on the terahertz wave output are quantitatively studied. For surface emitted TPO,terahertz wave output efficiencies and frequency tuning ranges of three differentconfigurations are measured.
     (3) A terahertz wavelength meter for direct wavelength measurements of narrowlinewidth terahertz wave is designed and fabricated.
     (3) We theoretically and experimentally study the threshold pump of a typical TPO.The losses of the TPO are discussed. Moreover, we also provide some effective methods tolower the pump threshold.
     (4) We have established the steady-state theoretical model for detection of terahertzwave using a parametric process in lithium niobate, and obtained its analytical expression.To test the established model, numerical calculation method is employed. The frequencyresponse characteristics and temperature effects of the detector are analyzed by using thesteady-state theoretical model. We also establish the time-dependent theoretical model to explain the practical situation. The effects of various factors on the detection sensitivitiesare discussed.
     (5) We construct the system consisted of both terahertz wave generation and detectionusing a parametric process. The main system noise sources are analyzed and discussed. Wehave measured the signal-to-noise of terahertz wave detection with the parametric processmethod with and without a resonator, Golay cell and pyroelectric detector.
引文
[1] R. M. Woodward, B. E. Cole, V. P.Wallace, et al. Terahertz Pulse imaging inreflection geometry of human skin cancer and skin tissue. Physics in Medicine andBiology,2002,47(21):3853~3863
    [2]谢旭,钟华,袁韬等.使用太赫兹技术研究航天飞机失事的原因.前沿进展,2003,32(9):583~584
    [3] T. K. Ostmann, T. Nagatsuma. A Review on Terahertz Communications Research.Journal of Infrared Millimeter and Terahertz Waves,2011,32(2):143~171
    [4] D. H. Auston, K. P. Cheung, P. R. Smith. Picosecond photoconducting Hertziandipoles. Applied Physics Letters,1984,45(3):284~286
    [5]许景周,张希成.太赫兹科学技术和应用.(第1版).北京:北京大学出版社,2007.27~68
    [6] K. H. Yang, P. L. Richards, Y. R. Shen. Generation of far-infrared radiation bypicosecond light pulses in LiNbO3. Applied Physics Letters,1971,19(9):320~323
    [7] R. Huber, A. Brodschelm, F. Tauser, et al. Generation and field-resolved detection offemtosecond electromagnetic pulses tunable up to41THz. Applied Physics Letters,2000,76(22):3191~3193
    [8] G. Kozlov, A. Volkov. Millimeter and Submillimeter Wave Spectroscopy of Solids.(First edition). Berlin: Springer-Verlag,1998.51~109
    [9] B. Ferguson,张希成.太赫兹科学与技术研究回顾.物理评述,2003,32(5):286~293
    [10] J. Farhoomand, H. M. Pickett. Stable1.25Watts CW far infrared laser radiation atthe119μm methonal line. International Journal of Infrared and Millimeter Waves,1987,8(5):441~447
    [11] R. F. Kazarinov, R. A. Suris. Possibility of the amplification of electromagnetic wavein a semicondouctor with a superlattice. Soviet Physics Semiconductors,1971,5(4):797~800
    [12] R. Kohler, A.Tredicucci, F. Beltram, et al. Terahertz semiconductor-heterostructurelaser. Nature,2002,417:156~159
    [13] B. S. Williams, S. Kumar, Q. Hu, et al. Operation of terahertz quantum-cascadelasers at164K in pulsed mode and at117K in continuous-wave mode. OpticsExpress,2005,13(9):3331~3339
    [14] B. S. Williams, S. Kumar, Q. Hu, et al. High-power terahertz quantum-cascade lasers.Electronics Letters,2006,42(2):89~91
    [15] B. S. Williams. Terahertz quantum-cascade lasers. Nature Photonics,2007,1:517~525
    [16] A. Wade, G. Fedorov, D. Smirnov, et al. Magnetic-field-assisted terahertz quantumcascade laser operating up to225K. Nature Photonics,2009,3:41~45
    [17] P. L. Richards. Bolometers for infrared and millimeter waves. Journal of AppliedPhysics,1994,76(1):1~24
    [18] A. Hossain, M. H. Rashid. Pyroelectric detectors and their applications. IEEETransactions on Industrial Applications,1991,27(5):824~829
    [19] Y. S. Lee. Principles of Terahertz Science and Technology. New York: SpringerScience Business Media, LLC,2009.147~156
    [20] W. Shi, Y. J. Ding. Tunable terahertz waves generated by mixing two copropagatinginfrared beams in GaP. Optics Letters,2005,30(9):1030~1032
    [21] W. Shi, Y. J. Ding. A monochromatic and high-power terahertz source tunable in theranges of2.7-38.4and58.2-3540μm for variety of potential applications. AppliedPhysics Letters,2004,84(10):1635~1637
    [22] T. Tanabe, K. Suto, J. Nishizawa, et al. Tunable terahertz wave generation in the3-to7-THz region from GaP. Applied Physics Letters,2003,83(2):237~240
    [23] W. Shi, Y. J. Ding. Continuously tunable and coherent terahertz radiation by meansof phase-matched difference-frequency generation in zinc germanium phosphide.Applied Physics Letters,2003,83(5):848~850
    [24] Y. J. Ding, P. Zhao, S. Ragam, et al. Review on Parametric Generation of TerahertzWave from Maximum Conversion Efficiency to New Route to Compact and PortableSources. Journal of Nonlinear Optical Physics and Materials,2011,20(3):249~270
    [25] W. Shi, Y. J. Ding, N. Fernelius, et al. Observation of difference-frequencygeneration by mixing of terahertz and near-infrared laser beams in a GaSe crystal.Applied Physics Letters,2006,88(10):101101-1~101101-3
    [26] Y. J. Ding, W. Shi. Observation of THz to near-Infrared parametric conversion inZnGeP2crystal. Optics Express,2006,14(18):8311~8316
    [27] H. Minamide, J. Zhang, R. X. Guo, et al. High-sensitivity detection of terahertzwaves using nonlinear up-conversion in an organic4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal. Applied Physics Letters,2010,97(12):121106-1~121106-3
    [28] K. Huang. On the interaction between the radiation field and ionic crystals.Proceedings of The Royal Society of London A,1951,208(1094):352~365
    [29] R. Loudon. Theory of stimulated Raman scattering from Lattice vibrations.Proceedings of the Physical Society,1963,82:393~400
    [30] R. Loudon. The Raman effect in crystals. Advance in Physics,2001,50(7):813~864
    [31] Y. R. Shen, Theory of Stimulated Raman Effect II. Physical Review,1965,138(6A):1741~1746
    [32] A. S. Barker, JR. Transverse and longitudinal optic mode study in MgF2and ZnF2.Physical Review,1964,136(5A): A1290~A1295
    [33] A. S. Barker, JR., R. Loudon. Response Functions in the Theory of Raman Scatteringby Vibrational and Polariton Modes in Dielectric Crystals. Reviews of ModernPhysics,1972,44(1):18~47
    [34] C. H. Henry, C. G. B. Garrett. Theory of parametric gain near a lattice resonance.Physical Review,1968,171(3):1058~1064
    [35] S. S. Sussman. Tunable Light Scattering from Transverse Optical Modes in LithiumNiobate: Microwave Laboratory Technical Report NO.1851. California: StanfordUniversity,1970.22~91
    [36] C. H. Henry, J. J. Hopfield. Raman scattering by polaritons. Physical Review Letters,1965,15(25):964~966
    [37] W. L. Faust, C. H. Henry. Mixing of Visible and Near-Resonance Infrared Light inGaP. Physical Review,1966,17(25):1265~1268
    [38] C. K. N. Patel, R. E. Slusher. Raman scattering by polaritons in presence of electronplasma in GaAs. Physical Review Letters,1969,22(7):282~284
    [39] J. F. Scott, P. A. Fleury, J. M. Worlock. Light Scattering from Polaritons inCentrosymmetric Crystals. Physical Review,1969,177(3):1288~1281
    [40] S. P. S. Porto, B. Tell, T. C. Damen. Near-forward Raman Scattering in Zinc Oxide.Physical Review Letters,1966,16(11):450~453
    [41] H. E. Puthoff, R. H. Pantell, B. G. Huth, et al. Near-foward Raman scattering inLiNbO3. Journal of Applied Physics,1968,39(4):2144~2146
    [42] D. N. Klyshko, V. F. Kutsov, A. N. Penin, et al. Scattering of light by polaritons in abiaxial crystal (-HIO3). Soviet Physics Journal of Experimental and TheoreticalPhysics,1972,35(5):960~964
    [43] Y. U. Polivanov. Raman scattering of light by polaritons. Soviet Physics Uspekhi,1978,21(10):805~831
    [44] J. M. Yarborough, S. S. Sussman, H. E. Puthoff, et al. Tunable optical emission fromLiNbO3without a resonator. Applied Physics Letters,1969,15(3):102~105
    [45] K. Kawase, M. Sato, T. Taniuchi, et al. Coherent tunable THz-wave generation fromLiNbO3with monolithic grating coupler. Applied Physics Letters,1996,68(18):2483~2485
    [46] K. Kawase, J. Shikata, H. Minamide, et al. Arrayed silicon prism coupler for aterahertz-wave parametric oscillator. Applied Optics,2001,40(9):1423~1426
    [47] J. Shikata, M. Sato, T. Taniuchi, et al. Enhancement of terahertz-wave output fromLiNbO3optical parametric oscillators by cryogenic cooling. Optics Letters,1999,24(4):202~204
    [48] J. Shikata, K. Kawase, K. Karino, et al. Tunable terahertz-wave parametricoscillators using LiNbO3and MgO: LiNbO3crystals. Transactions on MicrowaveTheory and Technique,2000,48(4):653~661
    [49] K. Imai, K. Kawase, J. Shikata, et al. Injection-seeded terahertz-wave parametricoscillator. Applied Physics Letters,2001,78(8):1026~1028
    [50] K. Kawase, J. Shikata, K. Imai, et al. Transform-limited, narrow-linewidth,terahertz-wave parametric generator. Applied Physics Letters,2001,78(19):2819~2820
    [51] R. X. Guo, K. Akiyama, H. Minamide, et al. All-solid-state, narrow linewidth,wavelength-agile terahertz-wave generator. Applied Physics Letters,2006,88(9):091120-1~091120-3
    [52] K. Imai, K. Kawase, H. Minamide, et al. Achromatically injection-seeded terahertz-wave parametric generator. Optics Letters,2002,27(4):2173~2175
    [53] T. Ikari, X. Zhang, H. Minamide, et al. THz-wave parametric oscillator with asurface-emitted configuration. Optics Express,2006,14(4):1604~1610
    [54] T. Ikari, R. X. Guo, H. Minamide, et al. Energy scalable terahertz-wave parametricoscillator using surface-emitted configuration. Journal of European Optical Society-Rapid Publications,2010,5:10054-1~10054-4
    [55] S. Hayashi, K. Nawata, H. Sakai, et al. High-power, single-longitudinal-modeterahertz-wave generation pumped by a microchip Nd: YAG laser. Optics Express,2012,20(3):2881~2886
    [56] A. Sato, K. Kawase, H. Minamide, et al. Tabletop terahertz-wave parametricgenerator using a compact, diode-pumped NdYAG laser. Review of ScientificInstruments,2001,72(9):3501~3503
    [57] T. J. Edwards, D. Walsh, M. B. Spurr, et al. Compact source of continuously andwidely-tunable terahertz radiation. Optics Express,2006,14(4):1582~1589
    [58] D. J. M. Stothard, T. J. Edwards, D. Walsh, et al. Line-narrowed, compact, andcoherent source of widely tunable terahertz radiation. Applied Physics Letters,2008,92(14):141105-1~141105-3
    [59] T. D. Wang, Y. Y. Lin, S. Y. Chen, et al. Low-threshold,narrow-line THz-waveparametric oscillator with an intra-cavity grazing-incidence grating. Optics Express,2008,16(17):12571~12576
    [60] D. H. Wu, T. Ikari. Enhancement of the output power of a terahertz parametricoscillator with recycled pump beam. Applied Physics Letters,2009,95(14):141105-1~141105-3
    [61] D. Molter, M. Theuer, R. Beigang. Nanosecond terahertz optical parametric oscillatorwith a novel quasi phase matching scheme in lithium niobate. Optics Express,2009,17(8):6623~6628
    [62] D. A. Walsh, P. G. Browne, M. H. Dunn, et al. Intracavity parametric generation ofnanosecond terahertz radiation using quasi-phase-matching. Optics Express,2010:18(13):13951~13963
    [63] B. Sun, S. X. Li, J. S. Liu, et al. Terahertz-wave parametric oscillator with amisalignment-resistant tuning cavity. Optics Letters,2011,36(10):1845~1847
    [64] Z. Y. Li, J. Q. Yao, D. G. Xu, et al. High-power terahertz radiation fromsurface-emitted THz-wave parametric oscillator. Chinese Physics B,2011,20(5):054207-1~054207-5
    [65] D. G. Xu, H. Zhang, H. Jiang, et al. High Energy Terahertz Parametric OscillatorBased on Surface-Emitted configuration. Chinese Physics Letters,2013,30(2):024212-1~024212-4
    [66] A. A. Babin, V. N. Petryakov, G. I. Freidman. Use of stimulated scattering bypolaritons in detection of submillimeter radiation. Soviet Journal of QuantumElectronics,1983,13(7):958~960
    [67] R. X. Guo, S. Ohno, H. Minamide, et al. Highly sensitive coherent detection ofterahertz waves at room temperature using a parametric process. Applied PhysicsLetters,2008,93(2):021106-1~021106-3
    [68] R. X. Guo, S. Ohno, H. Minamide, et al. Phase Detection of Pulsed NarrowbandTHz-Wave Radiation with High Sensitivity. Conference on Lasers and Electro-Optics,2008. CThD2
    [69] R. X. Guo, T. Ikari, J. Zhang, et al. Frequency-agile THz-wave generation anddetection system using nonlinear frequency conversion at room temperature. OpticsExpress,2010,18(16):16430~16436
    [70] J. J. Hopfield. Theory of the Contribution of Excitons to the Complex DielectricConstant of Crystals. Physical Review,1958,112(5):1555~1567
    [71] E. Burstein, F. D. Martini. Polaritons. New York: Pergamon Press.1974.46~51
    [72]方容川.固体光谱学.(第1版).合肥:中国科学技术大学出版社,2001.237~245
    [73]黄昆,韩汝琦.固体物理学.(第1版).北京:高等教育出版社,1988.111~115
    [74]李振亚,方俊鑫.固体中的元激发,自然杂志,1984,7(5):333~340
    [75]张显斌.基于LiNbO3晶体耦合场量子的THz电磁波辐射源研究:[博士学位论文],西安:西安理工大学,2007
    [76]张光寅,蓝国祥,王玉芳.晶格振动光谱学.(第2版).北京:高等教育出版社,2001.112~138
    [77]孙博.基于差频技术及光学参量方法可调谐THz波的研究:[博士学位论文].天津:天津大学,2007
    [78]中本一雄著.无机和配位化合物的红外和拉曼光谱.(第1版).黄德如,汪仁庆译.北京:化学工业出版社,1986.11~14
    [79]方俊鑫,陆栋.固体物理学(上册).(第1版).上海:上海科学技术出版社,1980.101~125
    [80] A. J. Sievers, J. B. Page. Generalized Lydanne-Sachs-Teller Relation and disorderedsolids. Physical Review B,1990,41(6):3455~3459
    [81]范琦康,吴存恺,毛少卿.非线性光学.南京:江苏科学技术出版社,1989.112~113
    [82] C. V. Raman. A new radiation. Indian Journal of Physics,1928,2:387~398
    [83] L. Brillouin. Diffusion de la lumière et des rayons x par un corps transparenthomogène-influence de l'agitation thermique. Annals Physics,1922,17:88~122
    [84] G. D. Boyd, R. C. Miller, K. Nassau, et al. LiNbO3: An efficient phase matchablenonlinear optical material. Applied Physics Letters,1964,5(11):234~236
    [85] E. D. Palik. Handbook of Optical Constants of Solids.(Volum1). New York:Academic Press,1985.695~697
    [86] G. J. Edwards, M, Lawrence. A temperature-dependent dispersion equation forcongruently grown lithium niobate. Optical and Quantum Electronics.1984,16(4):373~375
    [87]张克从,王希敏.非线性光学晶体材料科学.(第1版).北京:科学出版社,1996.3~8
    [88] I. Shoji, T. Kondo, A. Kitamoto, et al. Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optics Society of America B,1997,14(9):2268~2294
    [89] W. D. Johnston, JR., I. P. Kaminow. Temperature Dependence of Raman andRayleigh Scattering in LiNbO3and LiTaO3. Physical Review,1968,168(3):1045~1054
    [90] A. S. Baker, and R. Loudon. Dielectric and optical phonons in LiNbO3. PhysicalReview,1967,158(2):433~445
    [91] M. Yamaguchi, M. Wang, P. Suarez. THz phonon-polariton spectroscopic imaging.Proceedings of SPIE,2006,6212,621209-1~621209-8
    [92] D. A. Kleinman, Nonlinear dielectric polarization in optical media, Physical Review,1962,126(6),1977~1979
    [93]李铭华,杨春晖,徐玉恒.光折变晶体材料科学导论.(第1版).北京:科学出版社,2003.1~14
    [94] K. Kawase, J. Shikata, H. Ito. Terahertz wave parametric source. Journal of PhysicsD: Applied Physics,2002,35(2): R1~R14
    [95] M. Scheller, J. M. Yarborough, V. Jerome, et al. Room temperature continuous wavemilliwatt terahertz source. Optics Express,2010,18(26):27112~27116.
    [96] R. Ulrich, K. F. Renk, L. Genzel. Tunable submillimeter interferometers of theFabry-Perot type. IEEE Transactions on Microwave Theory and Techniques,1963,11(5):363~371
    [97]曹铁岭,姚建铨,郑义.基于法布里-珀罗干涉仪的太赫兹波波长测试方法.光学仪器,2008,30(2):13~16
    [98] L. B. Whitbourn, R. C. Compton. Equivalent-circuit formulas for metal gridreflectors at a dielectric boundary. Applied Optics,1985,24(2):217~220
    [99] N. Marcuvitz. Waveguide Handbook. New York: Mc Graw-Hill Press,1951.280~285
    [100] R. C. Hansen, W. T. Pawlewicz. Effective conductivity and Microwave reflectivity ofthin metallic films. IEEE Transactions on Microwave Theory and Technique,1982,30(11):2064~2066
    [101] R. Ulrich, T. J. Bridges, M. A. Pollack. Variable metal mesh coupler for far infraredlasers. Applied Optics,1970,9(11):2511~2516
    [102] P. Belland, J. C. Lecullier. Scanning Fabry-Perot interferometer performance andoptimum use in the far infrared range. Applied Optics,1980,19(12):1946~1952
    [103] S. Biber, J. Schur, L. P. Schmidt. Technological Issues for Micromachining of NewPassive THz Components Based on Deep-Trench Silicon Etching. Infrared andMillimeter waves,2004and12th Internatioal Conference on Terahertz Electronics,2004:145~146
    [104] N. Laman, D. Grischkowsky. Terahertz conductivity of thin metal films. AppliedPhysics Letters,2008,93(5):051105-1~051101-3
    [105] A. K. Azad, W. Zhang. Resonant terahertz transmission in subwavelength metallichole arrays of sub-skin-depth thickness. Optics Letters,2005,30(21):2945~2947
    [106] S. J. Brosnan, R. L. Byer. Optical parametric oscillator threshold and linewidthstudies. IEEE Journal of Quantum Electronics,1979,15(6):415~431
    [107]周炳琨,高以智,陈倜嵘等.激光原理.(第5版).北京:国防工业出版社,2004.42~55
    [108] M. H. Dunn, M. Ebrahimzadeh. Parametric Generation of Tunable Light fromContinuous-Wave to Femtosecond Pulses. Science,1999,286(5444):1513~1517
    [109] J. A. C. Terry, Y. Cui, Y. Yang, et al. Low-threshold operation of an all-solid-stateKTP optical parametric oscillator. Journal of the Optics Society of America B,1994,11(5):758~769
    [110] A. G. Fox, T. Li. Resonant Modes in a Maser interferometer. Bell System TechnicalJournal,1961,40(2):453~488
    [111] D. J. Gettemy, W. C. Harker, G. Lindholm, et al. Some optical properties of KTP,LiIO3, and LiNbO3, IEEE Journal of Quantum Electronics,1988,24(11):2231~2237
    [112] Z. Y. Li, J. Q. Yao, N. N. Zhu, et al. Threshold Analysis of a THz-Wave ParametricOscillator, Chinese Physics Letters,2010,27(6):064202-1~064202-4
    [113] U. P. Jepsen, S. R. Keiding. Radiation patterns from lens-coupled terahertz antennas.Optics Letters,1995,20(8):807~809
    [114] Q. Wu, X. C. Zhang. Electro-optic sampling of freely propagating THz field. Optics&Quantum Electronics,1996,28(7):945~951
    [115] H. Jundt. Temperature-Dependent sellmeier equation for the index of refraction, ne,in congruent lithium niobate. Optics Letters,1997,22(20):1553~1555
    [116] Y. S. Kim, R. T. J. Smith. Thermal Expansion of Lithium Tantalate and LithiumNiobate Single Crystals. Journal of Applied Physics,1969,40(11):4637~4641
    [117] R. C. Miller, A. Savage. Temperature dependence of the optical properties offerroelectric LiNbO3and LiTaO3. Applied Physics Letters,1966,9(4):169~171
    [118] S. Kojima. Composition Variation of Optical Phonon Damping in Lithium NiobateCrystals. Japanese Journal of Applied Physics,1993,32(9):4373~4376
    [119] B. D. Silverman. Microwave Absorption in Cubic Strontium Titanate. PhysicalReview,1962,125(6):1921~1930
    [120] P. P. Banerjee. Nonlinear Optics Theory, Numerical Modeling, and Applications.New York: Marcel Dekker, Inc.,2004.158~165
    [121] R. W. Boyd. Nonlinear Optics.(Third Edition). San Diego: Academic Press,2008.25~28
    [122] M. A. Porras. Ultrashot Pulsed Gaussian light beams. Physical Review E,1998,58(1):1086~1093
    [123] R. W. Ziolkowski, J. B. Judkins. Propagation characteristics of ultrawide-bandwidthpulsed Gaussian beams. Journal of the Optics Society of America A,1992,9(11):2021~2030
    [124]徐晗.超短脉冲激光在二阶非线性介质中的时空调制及其应用:[博士学位论文].上海:华东师范大学,2007
    [125] X. B. Zhang, W. Shi, T. Ikari, et al. Surface emitting THz wave parametricaloscillator using MgO: LiNbO3. Chinese Physics Letters,2007,24(11):3153~3156
    [126] G. Rieke. Detection of light-from the ultraviolet to the submillimeter.(SecondEdition). London: Cambridge University Press,2003.46~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700