飞秒激光诱导偏硼酸钡晶体产生圆锥辐射的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆锥辐射是超短激光脉冲与介质相互作用时产生的一种奇特的非线性现象,本论文主要围绕飞秒激光脉冲在二阶非线性介质—BaB2O4(简称BBO)晶体中产生的不同类型的圆锥辐射的特性进行了理论和实验研究,主要研究内容包括:
     研究了在飞秒激光二次谐波产生过程中由于时空耦合调制不稳定性作用下出现的蓝绿色圆锥辐射现象。实验观测了时空耦合调制不稳定性的特征,当入射光强增大、脉冲宽度减小以及晶体厚度增大时,蓝绿色圆锥辐射的光谱都会出现中心波长蓝移的趋势。建立了蓝绿色圆锥辐射产生的物理模型,模拟计算了辐射锥角与波长的变化关系,与实验结果完全一致,说明了蓝绿色圆锥辐射正是源于二次谐波与基波之间的作用。
     研究了飞秒激光二次谐波在BBO晶体中由于时空耦合调制不稳定性作用下产生的彩色圆锥辐射现象。建立了彩色圆锥辐射产生的物理模型,模拟计算了辐射锥角与波长的变化关系,解释了泵浦光的入射角对彩色圆环半径的影响,说明彩色圆锥辐射是由于二次谐波经过参量下转换过程转化而来。
     归纳阐述了近年来解释超连续圆锥辐射现象的多种物理理论模型:四波混频、Cerenkov辐射、非线性X波和自相位调制,并利用前三种物理模型分别模拟计算了二阶非线性晶体和等方性非晶体介质中产生的辐射锥角与波长的变化关系。
     开展了不同偏振方向的飞秒激光在BBO晶体和BK-7玻璃中产生的圆锥辐射的实验研究。实验发现,当飞秒激光的线偏振方向发生改变时,在BBO晶体中伴随二次谐波的蓝绿色圆锥辐射和超连续圆锥辐射会交替出现,而在BK-7玻璃中只出现超连续圆锥辐射。较为精确的测量了超连续圆锥辐射的光谱及其对应的锥角,实验测量结果与非线性X波理论符合。
Conical emission is a kind of interesting phenomenon, which occurs as ultrashort laser pulses interact with media. In this dissertation, theoretical and experimental studies on the properties of different kinds of conical emissions as femtosecond laser pulses propagate in a quadratic nonlinear medium-BBO crystal, the main contents are classified as follows.
     Blue-green conical emissions caused by spatiotemporal modulational instability by means of femtosecond laser pulses second harmonic generation have been investigated. With the larger pumped intensity, the shorter pulse width and the thicker crystal, the central wavelength of the blue-green conical emission spectrum had a blue shift, which was a characteristic of spatiotemporal modulational instability. A theoretical model based on the emergence of blue-green conical emission was numerically calculated conical angles on different wavelengths, which was accord with the experimental results. The observed conical emission was originated from spatiotemporal coupling the fundamental and second harmonic pulses.
     Green and red conical emissions caused by spatiotemporal modulational instability have been investigated pumped by second harmonic femtosecond laser pulses. A theoretical model based on the emergence of green and red conical emissions was numerically calculated conical angles on different wavelengths, which explained the observed phenomenon of green and red conical emission overlapping and inversing. Green and red conical emission was originated from parametric down conversion process, in which second harmonic photons decay into photon pairs.
     Several interpretations on supercontinuum conical emissions have been introduced: four-wave mixing, Cerenkov radiation, nonlinear X-wave and self-phase modulation. The conical angles on different wavelengths were numerically calculated by the former three theoretical models on the quadratic nonlinear medium and isotropic amorphous medium.
     Supercontinuum conical emissions have been experimentally investigated in quadratic nonlinear medium and isotropic amorphous medium by femtosecond laser pulses with different polarization. As the polarization of pumped laser pulses changed, blue-green conical emissions associated with second harmonic pulses and supercontinuum conical emissions occurred alternately in a quadratic nonlinear medium, while only supercontinuum conical emissions occurred alternately in an isotropic amorphous medium. The spectrum and according conical angles of supercontinuum conical emissions was accurately measured experimentally, which can be explained well by nonlinear X-wave model other than FWM model.
引文
[1]U. Keller. Recent developments in compact ultrafast lasers. Nature,2003,424(14): 831~838
    [2]M. Protopapas, C. H. Keitel, P. L. Knight. Atomic physics with super-high intensity lasers. Rep. Prog. Phys.,1997,60(4):389~486
    [3]T. Wilhelm, J. Piel, E. Riedle. Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt. Lett.,1997,22(19): 1494~1496
    [4]A. shirakawa, T. Kobayashi. Noncollinearly phase-matched femtosecond optical parametric amplification with a 2000 cm-1 bandwidth. Appl. Phys. Lett.,1998, 72(2):147~149
    [5]P. Tzankov, T. Fiebig, I. buchvarov. Tunable femtosecond pulses in the near-ultraviolet from ultrabroadband parametric amplification. Appl. Phys. Lett., 2003,82(4):517~519
    [6]D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun.,1985,56(3):219~221
    [7]T. Brabec, F. Krausz. Intense few-cycle laser fields:Frontiers of nonlinear optics. Rev. Mod. Phys.,2000,72(2):545~591
    [8]F. Krausz, T. Brabec, M. Schnurer, C. Spielmann. Extreme nonlinear optics: Exploring matter to a few periods of light. Opt. Photon. News,1998,9(7):46~51
    [9]A. M. Weiner, D. E. Leaird, D. H. Reitze, et al. Femtosecond spectral holography. IEEE J. Quantum Electron.,1992,28(10):2251~2261
    [10]A. Couairona, A. Mysyrowiczb. Femtosecond filamentation in transparent media. Phys. Rep.,2007,441:47~189
    [11]S. L. Chin, S. A. Hosseini, W. Liu, et al. The propagation of powerful femtosecond laser pulses in optical media:physics, applications, and new challenges. Can. J. Phys.,2005,83:863~905
    [12]A. Braun, G. Korn, X. Liu, et al. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett.,1995,20(1):73~75
    [13]E. T. J. Nibbering, P. F. Curley, G. Grillon, et al. Conical emission from self-guided femtosecond pulses in air. Opt. Lett.,1996,21(1):62~64
    [14]B. La. Fontaine, F. Vidal, Z. Jiang, et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air. Phys. Plasmas, 1996,6(5):1615~1622
    [15]G. Mechain, C. D. Amico, Y.-B. Andre, et al. Range of plasma filaments created in air by a multiterawatt femtosecond laser. Opt. Commun.,2005,247(2):171~180
    [16]G. Mechain, A. Couairon, Y.-B. Andre, et al. Long range self-channeling of infrared laser pulses in air:a new propagation regime without ionization. Appl. Phys. B, 2004,79(3):379~382
    [17]L. Woste, C. Wedekind, H. Wille, et al. Femtosecond atmospheric lamp. Laser and Optolektronik,1997,29(5):51~53
    [18]M. Rodriguez, R. Bourayou, G. Mejean, et al. Kilometric-range nonlinear propagation of femtosecond laser pulses. Phys. Rev. E,2004,69(3):036607
    [19]J. Kasparian, R. Sauerbrey, D. Mondelain, et al. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett.,2000,25(18):1397~1399
    [20]S. Petit, A. Talebpour, A. Proulx, et al. Some consequences during the propagation of an intense femtosecond laser pulse in transparent optical media:a strongly deformed white light laser. Laser Phys.,2000,10(1):93~100
    [21]J. Kasparian, R. Sauerbrey, S. L. Chin. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B,2000,71(6):877~879
    [22]A. Becker, N. Akozbek, K. Vijayalakshmi, et al. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B,2000, 73(3):287~290
    [23]W. Liu, S. Petit, A. Becker, et al. Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun.,2002,202(1):189~197
    [24]C. P. Hauri, W. Kornelis, F. W. Helbing, et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B,2004,79(6):673~677
    [25]H. S. Chakraborty, M. B. Gaarde, A. Couairon. Single attosecond pulses from high harmonics driven by self-compressed filaments. Opt. Lett.,2006,31(24): 3662~3664
    [26]B. Prade, M. Franco, A. Mysyrowicz, et al. Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett.,2006,31(17):2601~2603
    [27]I. Golub. Optical characteristics of supercontinuum generation. Opt. Lett.,1990, 15(6):305~307
    [28]O. G Kosareva, V. P. Kandidov, A. Brodeur, et al. Conical emission from laser-plasma interactions in the filamentation of powerful ultrashort laser pulses in air. Opt. Lett.,1997,22(17):1332~1334
    [29]O. G. Kosareva, V. P. Kandidov, A. Brodeur, et al. From filamentation in condensed media to filamentation in gases. J. Nonlinear Opt. Phys. Mater.,1997,6(4): 485~494
    [30]Q. Xing, K. M. Yoo, R. R. Alfano. Conical emission by four-photon parametric generation by using femtosecond laser pulses. Appl. Opt.,1993,32(12):2087~2089
    [31]G. G Luther, A. C. Newell, J. V. Moloney, et al. Short pulse conical emission and spectral broadening in normally dispersive media. Opt. Lett.,1994,19(11):789~791
    [32]P. Di Trapani, G. Valiulis, A. Piskarskas, et al. Spontaneously generated X-shaped light bullets. Phys. Rev. Lett.,2003,91(9):093904
    [33]C. Conti, S. Trillo, P. Di Trapani, et al. Nonlinear electromagnetic X-waves. Rev. Lett.,2003,90(17):170406
    [34]D. Faccio, M. Porras, A. Dubietis, et al. Conical emission pulse splitting and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys. Rev. Lett.,2006,96(19):193901
    [35]S. L. Chin. The physics and the challenge of the propagation of powerful femtosecond laser pulses in optical media. Phys. Can.,2004,60(5):273-281
    [36]S. Trillo, C. Conti, P. D. Trapani, et al. Colored conical emission by means of second-harmonic generation. Opt. Lett.,2002,27(16):1451-1453
    [37]H. P. Zeng, J. Wu, H. Xu, et al. Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium. Phys. Rev. Lett.,2004, 92(14):143903
    [38]J. Bi, X. Liu, Y. H. Li, et al. Colored conical emission in BBO crystal induced by intense femtosecond pulses. Opt. Commun.,2011,284(2):670~674
    [39]J. Bi, Y. H. Li, J. J. Yin, et al. Coloured conical emission in BBO crystal pumped by second harmonic femtosecond pulses. Chin. Phys. Lett.,2009,26(1):014207
    [40]P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of Optical Harmonics. Phys. Rev. Lett,1961,7(4):118~119
    [41]张克从,王希敏.非线性光学晶体材料科学.(第二版).北京:科学出版社,1996.1~541
    [42]S. E. Harris, M. K. Oshman, R. L. Byer. Observation of tunable optical parametric fluorescence. Phys. Rev. Lett.,1967,18(18):732~734
    [43]D. Magde, H. Mahr. Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16000A. Phys. Rev. Lett.,1967,18(21): 905~907
    [44]P. G. Kwiat, K. Mattle, H. Weinfurter, et al. New High-Intensity Source of Polarization-Entangled Photon Pairs. Phys. Rev. Lett.,1995,75(24):4337~4341
    [45]P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, et al. Proposal for a loophole-free Bell inequality experiment. Phys. Rev. A.,1994,49(5):3209~3220
    [46]P. G Kwiat, A. J. Berglund, J. B. Altepeter, et al. Experimental verification of decoherence-free subspaces. Science,2000,290(5491):498~501
    [47]A. Aspect, J. Dalibard, G Roger. Experimental Test of Bell's Inequalities Using Time-varying Analyzers. Phys. Rev. Lett.,1982,49(25):1804~1807
    [48]J. G Rarity, P. R. Tapster. Experimental violation of Bell's inequality based on phase and momentum. Phys. Rev. Lett.,1990,64(21):2495~2498
    [49]J. Brendel, E. Mohler, W. Martienssen. Experimental Test of Bell's Inequality for Energy and Time. Europhys. Lett.,1992,20(7):575~580
    [50]P. G Kwiat, A. M. Steinberg, R. Y. Chiao. High-visibility interference in a Bell-inequality experiment for energy and time. Phys. Rev. A,1993,47(4): R2472~2475
    [51]P. R. Tapster, J. G. Rarity, P. C. M. Owens. Violation of Bell's Inequality over 4km of Optical Fiber. Phys. Rev. Lett.,1994,73(14):1923~1926
    [52]R. W. Boyd. Nonlinear Optics. (Second Edition). Academic Press,2003.189~236
    [53]R. G. Brewer, C. H. Lee. Self-Trapping with Picosecond Light Pulses. Phys. Rev. Lett,1968,21(5):267~270
    [54]R. Y. Chiao, E. Garmire, C. H. Townes. Self-Trapping of Optical Beams. Phys. Rev. Lett.,1964,13(15):479~482
    [55]J. H. Marburger. Self-focusing:Theory. Prog. Quant. Electron.,1975,4(1):35~110
    [56]Y. R. Shen. Self-focusing:Experimental. Prog. Quant. Electron.,1975,4(1):1~34
    [57]D. Strickland, P. B. Corkum. Resistance of short pulses to self-focusing. J. Opt. Soc. Am. B,1994,11(3):492~497
    [58]P. Chernev, V. Petrov. Self-focusing of light pulses in the presence of normal group-velocity dispersion. Opt. Lett.,1992,17(3):172~174
    [59]G. G. Luther, J. V. Moloney, A. C. Newell, et al. Self-focusing threshold in normally dispersive media. Opt. Lett,1994,19(12):862~864
    [60]J. E. Rothenberg. Pulse splitting during self-focusing in normally dispersive media. Opt. Lett.,1992,17(8):583~585
    [61]J. Ranka, R. W. Schirmer, A. Gaeta. Observation of Pulse Splitting in Nonlinear dispersive Media. Phys. Rev. Lett.,1996,77(18):3783~3786
    [62]G. Y. Yang, Y. R. Shen. Spectral broadening of ultrashort pulses in a nonlinear medium. Opt. Lett.,1984,9(11):510~512
    [63]M. Gu, X. S. Gan. Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam. J. Opt. Soc. Am. A,1996,13(4):771~778
    [64]J. Anderson, C. Roychoudhuri. Diffraction of an extremely short optical pulse. J. Opt. Soc. Am. A,1998,15(2):456~463
    [65]JianChao Li, HaiFeng Zhang, Dennis R. Alexander, et al. Diffraction characteristics of 10 fs laser pulses passing through an aperture. J. Opt. Soc. Am. A,2005,22(7): 1304~1310
    [66]K. Tai, A. Hasegawa, A. Tomita. Observation of modulational instability in optical fibers. Phys. Rev. Lett.,1986,56(2):135~138
    [67]R. Malendevich, L. Jankovic, G. Stegeman, et al. Spatial modulation instability in a Kerr slab waveguide. Opt. Lett.,2001,26(23):1879~1881
    [68]R. A. Fuerst, D. M. Baboiu, B. Lawrence, et al. Spatial Modulational Instability and Multisolitonlike Generation in a Quadratically Nonlinear Optical Medium. Phys. Rev. Lett.,1997,78(14):2756~2759
    [69]S. Trillo, S. Wabnitz. Dynamic spontaneous fluorescence in parametric wave coupling. Phys. Rev. E,1997,55(5):R4897~R4900
    [70]S. Trillo, P. Ferro. Modulational instability in second-harmonic generation. Opt. Lett.,1995,20(5):438-440
    [71]R. Schiek, H. Malendevich, G. I. Stegeman. Measurement of modulational instability gain of second-order nonlinear optical eigenmodes in a one-dimensional system. Phys. Rev. Lett.,2001,86(20):4528~4531
    [72]H. Fang, R. Malendevich, R. Schiek, et al. Spatial modulational instability in one-dimensional lithium niobate slab waveguides. Opt. Lett.,2000,25(24): 1786~1788
    [73]W. E. Torruellas, Z. Wang, D. J. Hagan, et al. Observation of two-dimensional spatial solitary waves in a quadratic medium. Phys. Rev. Lett.,1995,74(25): 5036~5039
    [74]S. Minardi, J. Yu, G Blasi, et al. Red solutions:Evidence of spatiotemporal instability in X(2) spatial solution dynamics. Phys. Rev. Lett.,2003,91(12): 123901
    [75]C. Conti. X-wave-mediated instability of plane waves in Kerr media. Phys. Rev. E, 2003,68(1):016606
    [76]L. W. Liou, X. D. Cao, C. J. McKinstrie, et al. Spatiotemporal instabilities in dispersive nonlinear media. Phys. Rev. A,1992,46(7):4202~4208
    [77]H. J. Bakker, P. C. Planken, L. Kuipers, et al. Phase modulation in second-order nonlinear optical processes. Phys. Rev. A,1990,42(7):4085~4101
    [78]R. Desalvo, D. J. Hagan, M. S. Bahae, et al. Self-focusing and self-defocusing by cascaded second-order effects in KTP. Opt. Lett.,1992,17(1):28~30
    [79]A. Kobyakov, F. Lederer. Cascading of quadratic nonlinearities:An analytical study. Phys. Rev. A,1996,54(4):3455~3471
    [80]C. R. Menyuk, R. Schiek, L. Torner. Solitary waves due to X(2):X(2) cascading. J. Opt. Soc. Am. B,1994,11(12):2434~2443
    [81]P. Di. Trapani, D. Caironi, G. Valiulis, et al. Observation of temporal solitons in second-harmonic generation with tilted pulses. Phys. Rev. Lett.,1998,81(3): 570~573
    [82]X. Liu, L. J. Qian, F. W. Wise. Generation of optical spatiotemporal solitons. Phys. Rev. Lett.,1999,82(43):4631~4634
    [83]X. Liu, L. J. Qian, F. W. Wise. High-energy pulse compression by use of negative phase shifts produced by the cascade c(2) c(2) nonlinearity. Opt. Lett.,1999,24(23): 1777~1779
    [84]F. W. Wise, L. J. Qian, X. Liu. Application of cascaded quadratic nonlinearities to femtosecond pulse generation. J. Nonlinear Opt. Phys. Master,2002,11(3): 317~338
    [85]S. Ashihara, T. Shimura, K. Kuroda, et al. Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate. Appl. Phys. Lett., 2004,84(7):1055~1057
    [86]吴健.亚飞秒脉冲产生及控制:[博士论文].上海:华东师范大学图书馆,2007
    [87]许智雄.自发参量转换产生纠缠彩虹:[硕士论文].上海:华东师范大学图书馆,2007
    [88]R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000 A via four-photon coupling in glass. Phys. Rev. Lett.,1970,24(11):584~587
    [89]A. Penzkofer, A. Laubereau, W. Kaiser. Stimulated Short-Wave Radiation due to Single-Frequency Resonances of X(3). Phys. Rev. Lett.,1973,31(14):863-866
    [90]N. Bloembergen. The influence of electron plasma formation on superbroadening in light filaments. Opt. Commun.,1973,8(4):285~288
    [91]W. L. Smith, P. Liu, N. Bloembergen. Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser. Phys. Rev. A,1977,15(6): 2396~2403
    [92]R. L. Fork, C. V. Shank, C. Hirlimann, et al. Femtosecond white-light continuum pulses. Opt. Lett.,1983,8(1):1-3
    [93]P. B. Corkum, C. Rolland, T. S. Rao. Supercontinuum generation in gases. Phys. Rev. Lett.,1986,57(18):2268~2271
    [94]V. Francois, F. A. Ilkov, S. L. Chin. Supercontinuum generation in CO2 gas accompanied by optical breakdown. J. Phys. B:At. Mol. Phys.,1992,25(11): 2709~2724
    [95]F. A. Ilkov, L. S. Ilkova, S. L. Chin. Supercontinuum generation versus optical breakdown in CO2 gas. Opt. Lett.,1993,18(9):681~683
    [96]G. S. He, G C. Xu, Y. Cui, et al. Difference of spectral superbroadening behavior in Kerr-type and non-Kerr-type liquids pumped with ultrashort laser pulses. Appl. Opt., 1993,32(24):4507~4512
    [97]A. Brodeur, F. A. Ilkov, S. L. Chin. Beam filamentation and the white light continuum divergence. Opt. Commun.,1996,129(3):193~198
    [98]R. R. Alfano. The supercontinuum laser source. Springer-Verlag, New York,1998
    [99]K. R. Wilson, V. V. Yakovlev. Ultrafast rainbow:tunable ultrashort pulses from a solid-state kilohertz. J. Opt. Soc. Am. B,1997,14(2):444~448
    [100]E. N. Glezer, Y. Siegal, L. Huang, et al. Laser-induced band-gap collapse in GaAs. Phys. Rev. B,1995,51(11):6959~6970
    [101]O. Jedrkiewicz, J. Trull, G. Valiulis, et al. Nonlinear X-wave in second-harmonic generation:Experimental results. Phys. Rev. E,68(2):026610
    [102]D. Aumiler, T. Ban, G. Pichler. Femtosecond laser-induced cone emission in dense cesium vapor. Phys. Rev. A,2005,71(6):063803
    [103]A. Couairon, L. Berge. Modeling the filamentation of ultra-short pulses in ionizing media. Phys. Plasmas,2000,7(1):193~209
    [104]D. Faccio, M. A. Porras, A. Dubietis, et al. Angular and chromatic dispersion in Kerr-driven conical emission. Opt. Commun.,2006,265(2):672677
    [105]D. Faccio, P. Di Trapani, S. Minardi, et al. Far-field spectral characterization of conical emission and filamentation in Kerr media. J. Opt. Soc. Am. B,2005,22(4): 862~869
    [106]D. Faccio, A. Matijosius, A. Dubietis, et al. Near-and far-field evolution of laser pulse filaments in Kerr media. Phys. Rev. E,2005,72(3):037601
    [107]M. Kolesik, J. V. Moloney. Nonlinear optical pulse propagation simulation:from maxwell's to unidirectional equations. Phys. Rev. E,2004,70(3):036604
    [108]A. Couairon, E. Gaizauskas, D. Faccio, et al. Nonlinear X-wave formation by femtosecond filamentation in Kerr media. Phys. Rev. E,2006,73(1):016608
    [109]S. L. Chin, A. Brodeur, S. Petit, et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (shite light laser). J. Nonlinear Opt. Phys. Mater.,1999,8(1):121~146
    [110]V. P. Kandidov, O. G. Kosareva, A. Brodeur, et al. State of the art of investigations into the filamentation of high-power subpicosecond laser pulses in gases. Atmos. Oceanic,1997,10(12):966~972
    [111]I. S. Golubtsov, O. G. Kosareva, E. I. Mozhaev. Nonlinear optical spectral transformation of the powerful femtosecond laser pulse in air. Phys. Vibr.,2000, 8(2):73~78
    [112]I. S. Golubtsov, V. P. Kandidov, O. G Kosareva. Conical emission of high-power femtosecond laser pulse in the atmosphere. Atmos. Oceanic,2001,14(12):303~315
    [113]V. P. Kandidov, I. S. Golubtsov, O. G Kosareva. Supercontinuum sources in a high-power femtosecond laser pulse propagation in liquids and gases. Quant. Electron.,2004,34(4):348~354
    [114]V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media or supercontinuum generation. Appl. Phys. B,2003,77(2):149~165
    [115]I. S. Golubtsov, O. G Kosareva. Influence of various physical factors on the generation of conical emission in the propagation of high-power femtosecond laser pulses in air. J. Opt. Technol.,2002,69():462~
    [116]B. I. Sturman, S. G. Odoulov, M. Yu. Goulkov. Parametric four-wave processes in photorefractive crystals. Phys. Rep.,1996,275(4):197~254
    [117]M. O. Ramirez, D. Jaque, L. E. Bausa, et al. Coherent light generation from a Nd: SBN nonlinear laser crystal through its ferroelectric phase transition. Phys. Rev. Lett.,2005,95(26):267401
    [118]M. Goulkov, O. Shinkarenko, L. Ivleva, et al. New parametric scattering in photorefractive Sr0.61Ba0.39Nb2O6:Cr. Phys. Rev. Lett.,2003,91(24):243903
    [119]M. Goulkov, S. Odoulov, I. Naumova, et al. Degenerate parametric light scattering in periodically poled LiNbO3:Y:Fe. Phys. Rev. Lett.,2001,86(18):4021~4024
    [120]A. Dreischuh, U. Reiter-Domiaty, D. Gruber, et al. Nonlinear alignment between conical emissions generated in a four-wave parametric mixing process. Appl. Phys. B,1998,66(2):175~180
    [121]W. Chalupczak, W. Gawlik, J. Zachorowski. Conical emission as cooperative flurescence. Phys. Rev. A,1994,49(4):R2227-R2230
    [122]J. Liu, H. Schroeder, S. L. Chin, et al. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation. Opt. Express.,2005,13(25): 10248~10259
    [123]Y. Li, Z. Ji, J. Liu, et al. Conical emission by femtosecond pulses with different spectral bandwidths. Opt. Commun.,2008,281(18):4780~4783
    [124]D. Faccio, A. Averchi, A. Couairon, et al. Spatio-temporal reshaping and X Wave dynamics in optical filaments. Opt. Exp.,2007,15(20):13077~13095
    [125]R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000A via four-photon coupling in glass. Phys. Rev. Lett.,24(11):584~587
    [126]P. Maioli, R. Salame, N. Lascoux, et al. Ultraviolet-visible conical emission by multiple laser filaments. Opt. Express.,2009,17(6):4726~4731
    [127]F. Theberge, M. Chateauneuf, V. Ross, et al. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air. Opt. Lett.,2008,33(21):2515~2517
    [128]H. Xu, H. P. Zeng. Spontaneously generated walking X-shaped light bullets. Opt. Lett.,2007,32(13):1944~1946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700