超短脉冲激光在二阶非线性介质中的时空调制及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短激光脉冲在正常色散的二阶非线性介质中传输过程中,在级联二阶非线性效应以及衍射、色散等线性效应的相互作用下,输入脉冲的波包能自发转化为X光子弹。所谓“光子弹”即输出脉冲在时间和空间维度被极大的压缩且在传输过程中能保持脉冲包络的形状不变。而“X”是指其时空频谱的特征曲线为一系列双曲线。X光子弹可以广泛的应用于光激发粒子加速、光信息存储、光信息传输以及紫外阿秒脉冲产生等领域。此外,X光子弹的优良的可调谐性使得它有可能成为在量子相干控制技术中理想的光源。
     本论文主要围绕二阶非线性介质中X光子弹的产生条件以及光强、相位失匹、群速度失匹、衍射不对称等参数对X光子弹的调制作用展开了详细讨论。论文的主要内容包括:
     1.以正常色散的BBO倍频晶体为原型,建立了超短脉冲激光传输的三维理论模型。综合考虑了衍射、色散、群速度失匹等线性效应和二阶非线性效应。编写了能够数值求解三维激光脉冲传输模型的软件。数值模拟显示入射的高斯型光束能够自发的转化为X光子弹。并得出了X波产生的必要条件:1.入射激光能量足够大。2.入射脉宽足够短。3.合适大小的自聚焦类型的相位失匹。
     2.研究了X光子弹在不对称衍射情况下的稳定性。发现了在输入椭圆光束导致的衍射不对称情况下,选择合适的相位失匹以及光强等参数,X光子弹仍能稳定存在而不发生分裂。输入的椭圆高斯光束演化为椭圆的X光子弹。并提出稳定传输的机制:脉冲传播过程中产生类似于波导功能的虚拟光纤通道能够对光脉冲起到束缚的作用。
     3.研究了谐波间群速度失匹对X光子弹的调制作用。发现了在合适的相位失匹和入射光强等参数条件下,基波和一部分二次谐波能够克服群速度失匹而形成移动的X光子弹。群速度失匹的调制作用使基波和二次谐波的频谱都发生了显著的频移,频移方向决定于相位失匹类型以及群速度失匹的符号。数值模拟结果显示,移动X光子弹形成过程中能够自发产生倾斜的波阵面,可以抵消两个谐波波包之间由于群速度不同而导致的相互吸引作用,使得X光子弹能够静止的在以基波群速度移动的坐标系中运动。
     4.实验中观察到了X波的产生。在合适的参数下,输出脉冲最短可被压缩到15fs。空间上形成了与数值模拟一致的峰结构能量分布。自制的时空频谱仪显示X波的时空频谱具有明显的双曲线型特征。实验结果验证了数值模拟有关椭圆X光子弹和移动X光子弹的结论。
     5.数值模拟了光稠密三能级系统中选择性共振激发。由于光稠密介质中的偶极—偶极相互作用,入射光场与介质相互作用时可以产生跃迁频率的移动。频移量的大小是可以通过调节输入脉冲的包络、相位以及粒子数密度等参数加以控制的,进而使得我们能够控制三能级系统的跃迁途径,实现选择性激发。
During the propagation of ultra-short laser pulse in normal dispersive quadratic nonlinear media, the input wave-packet can be spontaneously converted into X-shaped light bullets, where "light bullet" is a kind of propagation invariant wave-packet and localized both in space and time, and "X" refers to the hyperbolic structured spatiotemporal spectrum. X-shaped light bullet can be used, for example, light induced particle acceleration, optical information storage and transmission and ultra-violent attosecond pulse generation, etc. In addition, the tunability of X-shaped light bullet makes it becomes a possible pump source for quantum control.
    This article focused on the discussion of the conditions under which X-shaped light bullets forms, together with the modulations on the output wave-packet induced by input parameters, such as pump intensity, phase mismatch, group velocity mismatch, and anisotropic diffraction etc. The main contents are listed below:
    1. We establish 3-D model of ultra-short pulse propagating in normal dispersive quadratic nonlinear media whose prototype is type-I BBO crystal, and this 3-D model can be numerically resolved by our home-made software. The numerical simulation reveals that the input Gaussian wave-packet can be converted into X-shaped light bullets under the conditions of (1). Large enough input intensity, (2). Short enough input pulse width, and (3). Self-focusing type phase mismatch with proper value.
    2. Numerically investigate the stability of X-shaped light bullet with anisotropic diffraction, where we find the input elliptic Gaussian beam can be converted into stable elliptic X-shaped light bullet and no beam splitting occurs. This originates from the virtual waveguide which forms accompany with elliptic X-shaped light bullet and prevents the wave-packets from splitting during propagation.
    3. Numerically investigate the modulation effects of group velocity mismatch. We
    find that with unvanishing group velocity mismatch, wave-packets of fundamental wave and a part of second harmonic wave can still combine together in the form of walking X-shaped light bullets. And the output spectrum is strongly modulated, where the direction of spectrum shifting is governed by the sign of phase mismatch and group velocity mismatch. The numerical simulation indicate that the spontaneously generated phase front tilting can balance the attracting force between harmonics induced by group velosity mismatch and lead to zero-velocity (view in retarded frame) walking X-shaped light bullets.
    4. Experimental research of X-shaped light bullet. We observe the compression of output pulse both in time and space with proper selected parameters. And the hyperbolic structured spatiotemporal spectrum of output wave-packet is also observed via home-made spatiotemporal spectrometer. The experimental results agree well with numerical simulations on elliptic and walking X-shaped light bullets.
    5. Selective resonant excitations can be realized with ultrashort pulse in an optical dense collection of three-level individual atoms, where the near dipole-dipole interactions induce intrinsic frequency shifts of the atomic resonance. The intrinsic frequency shifting can be controlled by modulating the wave-packet profile and phase of excitation pulses or varying the density of optical media, which will lead to constructive or destructive quantum interference between different excitation pathways towards a desired selective resonant excitation.
引文
1. S. Baker, J. S. Robinson, C.A. Haworth, H. Teng, R. A. Smith, C. C. Chirila, M. Lein, J. W. G. Tisch, and J. P. Marangos, "Probing proton dynamics in molecules on an attosecond time scale", Science, 312,424 (2006).
    
    2. A. H. Zewail, "Femtochemistry: Recent progress in studies of dynamics and control of reactions and their transition states", Journal of physical chemistry, 100,12701 (1996).
    
    3. D. Meshulach and Y. Silberber, "Coherent Quantum Control of Two-Photon Transitions by a Femtosecond Laser Pulse", Nature, 396, 239 (1998).
    
    4. V. Malka, S. Fritzler, E. Lefebvre, M. M. Aleonard, F. Burgy, J. P. Chambaret, J. F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. pittman, J. P. Rousseau, J. N. Scheurer, B. Walton, and A. E. Dangor, "Electron acceleration by a wake field forced by an intense ultrashort laser pulse", Science, 298,1596 (2002).
    
    5. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, "Studies of multiphoton production of vacuum-ultraviolet radiation on the rare gases", J. Opt. Soc. Am. B, 4,595 (1987).
    
    6. M. Ferray, A. L'Huillier, X. F. Li, L. A. Lormpre, G. Mainfray, and C. Manus, "Multiple-harmonic conversion of 1064 nm radiation in rare gases", Journal of Physics B, 21, 31 (1988).
    
    7. F. Le Kien, K. Midorikawa, and A. Suda, "Attosecond pulse generation using high harmonics in the multicycle regime of the driver pulse", Phys. Rev. A, 78, 1251 (1997).
    
    8. M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology", Nature, 414, 509 (2001).
    
    9. R. Kienberger, E. Goulielmakis, M. Uiberacher, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, T. Westerwalbeshioh, U. Kleineberg, U. heinzmann, M. Drescher, and F. Krausz,"Atomic transient recorder", Nature, 427, 817 (2004).
    
    10. A. B. Blagoeva, S. G. Dinev, A. A. Dreischuh and A. Naidenov, "Light bullets formation in a bulk media,"IEEE Journal of Quantum Electronics, QE-27, 2060 (1991).
    
    11. N. N. Akhmediev, V. I. Korneev and R. F. Nabiev, "Modulation instability of the ground state of the nonlinear wave equation: optical machine gun," Opt. Lett., 15, 393 (1992).
    
    12. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion pairs of prisms", Opt. Lett., 9,150 (1984).
    
    13. R. E. Sherriff, "Analytic expressions for group-delay dispersion and cubic dispersion in arbitary prism sequences", J. Opt. Soc. Am. B, 15,1224 (1998).
    
    14. M. Yamashita, M. Ishikawa, K. Torizuka, and T. Sato, "Femtosecond-pulse laser chirp compensated by cavity-mirror dispersion", Opt. Lett., 11,504 (1986).
    
    15. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, "Chirped multilayer coatings for broadband despersion control in femtosecond lasers", Opt. Lett., 19, 201 (1994).
    
    16. R. Szipocs, A. Kohazi-kis, "Theory and design of chirped dielectric laser mirrors", App. Phys. B, 65,115 (1997).
    
    17. E. B. Treacy, "Optical pulse compression with diffraction gratings", IEEE Journal of Quantum Elctronics, QE-5,454 (1997).
    
    18. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15 fs high-energy pulse generation", Opt. Lett., 25, 587 (2000).
    19. A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, "AOPDF-shaped optical parametric amplifier output in the visible", App. Phys. B, 81,177 (2005).
    
    20. N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, and M. Yamashita, "Optical pulse compression of 5.0 fs by use of only a spatial light modulator for phase compensation", J. Opt. Soc. Am. B, 18,1742 (2001).
    
    21. M. Nisoli, S. De Silverstri, and O. Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique", App. Phys. Lett., 68, 2793 (1996).
    
    22. M. Nisoli, S. Stagira, S. De silvestri, O. Svelto, S. Satania, Z, Cheng, M. Lenzner, C. Spielmann, and F. Krausz, "A novel high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses", App. Phys. B, 65, 189 (1997).
    
    23. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulse below 5 fs", Opt. Lett., 22, 522 (1997).
    
    24. M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Sil Vestri, and O. Svelto, Ultra-broadband continuum generation by hollow-fiber cascading", App. Phys. B, 75, 601 (2002).
    
    25. G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, "Mirror dispersion control of a hollow fiber supercontiuum", App. Phys. B, 78, 551 (2004).
    
    26. C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, "Optimal spectral broadening in hollow-fiber compressor systems", App. Phys. B, 80, 285 (2005).
    
    27. P. Russell, "Photonic Crystal Fibers", Science, 299, 358 (2003).
    28. J. C. Knight, T. A. Briks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett., 21,1547 (1996).
    
    29. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible contiuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm", Opt. Lett., 25, 25 (2000).
    
    30. A. L. Gaeta, "Nonlinear propagation and continuum generation in microstructured optical fibers", Opt. Lett., 27, 924 (2002).
    
    31. O. Shorokhov, A. Pukhov, and I. Kostyukov, "Self-Compression of Laser Pulses in Plasma", Phys. Rev. Lett., 91, 265002 (2003).
    
    32. L. Berge and A. Couairon, "Gas-induced solitons", Phys. Rev. Lett., 86, 1003 (2001).
    
    33. A. L. Gaeta, "Catastrophic Collapse of Ultrashort Pulses", Phys. Rev. Lett., 84, 3582 (2000).
    
    34. M. Hatayama, A. Suda, M. Nurhuda, K. Nagasaka, and K. Midorikawa, "Spatiotemproal dynamics of high-intensity femtosecond laser pulses propagation in argon", J. Opt. Soc. Am. B, 20, 603 (2003).
    
    35. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, "Optically turbulent femtosecond light guide in air", Phys. Rev. Lett., 83, 2938 (1999).
    
    36. D. Mikalauskas, A. Dubietis, and R. Danielius, "Observation of light filaments induced in air by visible picosecond laser pulses", App. Phys.B, 75, 899 (2002).
    
    37. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, "Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient", Opt. Lett., 30, 2657 (2005).
    
    38. N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulse through ionization-induced spatiotemporal reshaping", Phys. Rev. Lett., 93,173902 (2004).
    39. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, "Self-compression of millijoule pulses to 7.8 fs duration on a white-light filament", Opt. Lett., 31, 274 (2006).
    
    40. C. R. Menyuk, R. Schiek, and L. Tomer, "Solitary waves due to X(2):X(2) cascading", J. Opt. Soc. Am. B, 11, 2434 (1994).
    
    41. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, "Observation of Temporal Solitons in Second-Harmonic Generation with Tilted Pulses", Phys. Rev. Lett., 81, 570 (1998).
    
    42. X. Liu, L. J. Qian, and F. W. Wise, "Generation of Optical Spatiotemporal Solitons", Phys. Rev. Lett., 82,4631 (1999).
    
    43. Xiang Liu, Liejia Qian, and Frank Wise, "High-energy pulse compression by use of negative phase shifts produced by the cascade c (2) c (2) nonlinearity", Opt. Lett., 24,1777 (1999).
    
    44. F. Wise, L. Qian, and X. Liu, "Application of cascaded quadratic nonlinearities to femtosecond pulse generation", J. Nonlinear Opt. Phys. Master, 11, 317 (2002).
    
    45. S. Ashihara, T. Shimura, and K. Kuroda etc., "Optical pulse compression using cascaded quadratic nonlinearities in periodically poled lithium niobate", App. Phys. Lett., 84,1055 (2004).
    
    46. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. D. Trapani, and R. Righini, "Traveling-wave parametric generation of widely tunable, high coherent femtosecond light pulses", J. Opt. Soc. Am. B, 10, 2222 (1993).
    
    47. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, "Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible", Opt. Lett., 23, 1283 (1998).
    
    48. A. Shirakawa, I. Sakane, and T. Kobayashi, "Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared", Opt. Lett., 23,1292 (1998).
    49. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplifcation", App. Phys. Lett., 74,2268 (1999).
    
    50. A. Baltuska, T. Fuji, and T. Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control", Opt. Lett., 27,306 (2002).
    
    51. H. J. Bakker, P. C. Planken, L. Kuipers, and A. Lagendijk, "Phase modulation in second-order nonlinear-optical processes", Phys. Rev. A, 42, 4085 (1990).
    
    52. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. I. Stegeman, E. W. Van Stryland, and H. Vanherzeele, "Self-focusing and self-defocusing by cascaded second-order effects in KTP", Opt. Lett., 17, 28 (1992).
    
    53. Y. Silberberg, "Collapse of optical pulses", Opt. Lett., 15,1282 (1990).
    
    54. A. Dubietis, G. Valiulis, G. Tamosauskas, R. Danilius, and A. Piskarskas, "Nonlinear second-harmonic pulse compression with tilted pulses", Opt. Lett., 22,1071 (1997).
    
    55. X. Liu, K. Beckwitt, F. Wise, "Two-dimensional optical spatiotemporal solitons in quadratic media", Phys. Rev. E, 62,1328 (2000).
    
    56. F. Ilday, K. Beckwitt, Y. Chen, H. Lim, and F. Wise, "Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes", J. Opt. Soc. Am. B, 21,376 (2004).
    
    57. S. Polyakov, R. Malendevich, L. Jankovic, G. Stegeman, C. Bosshard, and P. Gunter, "Effects of anisotropic diffraction on quadratic multisoliton excitation in noncritically p hase-matched crystals", Opt. Lett., 27,1049 (2002).
    
    58. X. Liu, K. Beckwitt, and F. Wise, "Transverse Instability of Optical Spatiotemporal Solitons in Quadratic Media", Phys. Rev. Lett., 85,1871 (2000).
    
    59. M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Di Trapani, "Nonlinear Unbalanced Bessel Beams: Stationary Conical Waves Supported by Nonlinear Losses", Phys. Rev. Lett., 93, 153902 (2004).
    60. P. Di Trapani, G. Valiulis, A. Piskaraskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, "Spontaneously Generated X-Shaped Light Bullets", Phys. Rev. Lett., 91, 093904 (2003).
    61. J. Diels, W. Rudolph, "ULtrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale", ACADEMIC PRESS (1995).
    62. G. P. Agrawal, "Nonlinear Fiber Optics (Second Edition)", Academic Press, pp. 51 (1995).
    63.陈钟贤,“计算物理学”,哈尔滨工业大学出版社 (2003).
    64. D.E. Spence, P. N. Kean, and W. Sibbett, "60-fs pulse generation from a selfmode-locked Ti: sapphire laser", Opt. Lett., 16, 42 (1991).
    65. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electricfield reconstruction of ultrashort optical pulses", Opt. Lett., 23, 792 (1998).
    66. K.W. DeLong, R. Trebino, "Improved ultrashort pulse-retrieval algorithm for frequency resolved optical gating", J. Opt. Soc. Am. A, 11, 2429 (1994).
    67. P. Di Trapani, S. Minaradi, A. Bramati, F. Bragheri, C. Liberale, V. Degiorgio, "Farfield spectral characterization of conical emission andfilamentation in Kerr medi", J. Opt. Soc. Am. B, 22, 862 (2005).
    68. F. Bragheri, C. Liberale, V. Degiorgio, D. Faccio, A. Matijosius, G. Tamosauskas, A. Varanavicius, P. Di Trapani, "Time-Gated Spectral characterization of ultrashort laser pulses", Opt. Commun., 256, 166 (2005).
    69. L.W. Liou, X. D. Cao, C. J. McKinstrie, and G. P. Agrawal, "Spatiotemporal instabilities in dispersive nonlinear media", Phys. Rev. A, 46, 4202 (1992).
    70. M. Peccianti, C. Conti, and G. Assanto, "Optical modulational instability in a nonlocal medium", Phys. Rev. E, 68,025602 (2003).
    
    71. J. Meier, G. I. Stegeman, D. N. Christodoulides, Y. Silberberg, R. Morandotti, H. Yang, G. Salamo, M. Sorel, and J. S. Aitchison, "Experimental Observation of Discrete Modulational Instability", Phys. Rev. Lett., 92,103902 (2004).
    
    72. R. Malendevich, L. Jankovic, G. Stegema, J. S. Aitchison, "Spatial Modulation instability in a Kerr slab waveguide", Opt. Lett., 26,1879 (2001).
    
    73. D. Amans, E. Brainis, and S. Massar, "Higher order harmonics of modulational instability", Phys. Rev. E, 72,066617 (2005).
    
    74. C. Conti, M. Peccianti, and G. Assanto, "Spatial solitons and modulational instability in the presence of large birefringence: the case of highly nonlocal liquid crystals", Phys. Rev. E, 72,066614 (2005).
    
    75. M. Stepic, C. Wirth, C. Ruter, D. Kip, "Observation of modulational instability in discrete media with self-defocusing nonlinearity", Opt. Lett., 31,247 (2006).
    
    76. D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, P. Di Trapani, "Noise-seeded spatiotemporal modulation instability in normal dispersion" , Phys. Rev. E, 70,065603 (2004).
    
    77. A. Kobyakov, F. Lederer, "Cascading of quadratic nonlinearities: An analytical study", Phys. Rev. A, 54, 3455 (1996).
    
    78. K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers", Phys. Rev. Lett., 56,135 (1986).
    
    79. G. P. Agrawal, "Transvers modulation instability of copropagating optical beams in nonlinear Kerr media", J. Opt. Soc. Am. B, 7,1072 (1990).
    
    80. S. Trillo, C. Conti, P. Di Trapani, O. Jedrkiewicz, J. Trull, G. Valiulis, and G. Bellanca, "Colored conical emission by means of second-harmonic generation", Opt. Lett., 27,1451 (2002).
    
    81. Heping Zeng, Jian Wu, Han Xu, Kun Wu, and E Wu, "Colored Conical Emission by Means of Second Harmonic Generation in a Quadratically Nonlinear Medium", Phys. Rev. Lett., 92, 143903 (2004).
    82. M.A. Porras, A. Parola, and P. Di Trapani, "Nonlinear unbalanced O waves: nonsolitary, conical light bullets in nonlinear dissipative media", J. Opt. Soc. Am. B, 22, 1406 (2005).
    83. B.A. Malomed, P. Drummeond, H. He, A. Berntson, D. Anderson, and M. Lisak, "Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity", Phys. Rev. E, 56, 4725 (1997).
    84. F. Wise, and P. Di Trapani, "Spatiotemporal solitons", Opt. Photonics News, 13,28 (2002).
    85. J. Salo, J. Fagerholm, A. T. Friberg, and M. M. Salomaa, "Nondiffracting Bulk-Acoustic X waves in Crystals", Phys. Rev. Lett., 83, 1171 (1999).
    86. J. Salo, J. Fagerholm, A. T. Friberg, and M. M. Salomaa, "Unified description of nondiffracting X and Y waves", Phys. Rev. E, 62, 4261 (2000).
    87. J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction free beam", Phys. Rev. Lett., 58, 1499 (1987).
    88.姚建铨,“非线性光学频率变换及激光调谐技术”,科学出版社(1995).
    89. R. Malendevich, L. Jankovic, S. Polyakov, R. Fuerst, G. Stegeman, C. Bosshard, and P. Gunter, "Two-dimensional type Ⅰ quadratic spatial solitons in KNbO_3 near noncritical phase matching", Opt. Lett., 27, 631 (2002).
    90. H. Kim, L. Jankovic, G. Stegeman, S. Carrasco, L. Torner, D. Eger, and M. Katz, "Quadratic spatial solitons in periodically poled KTiOPO4", Opt. Lett., 28, 640(2003).
    91. S. Carrasco, S. Polyakov, H. Kim, L. Jankovic, and G. Stegeman, "Observation of multiple soliton generation mediated by amplification of asymmetries", Phys. Rev. E, 67, 046616 (2003).
    92. M. T. G. Canva, R. A. Fuerst, S. Baboiu, G. I. Stegeman, and G. Assanto, "Quadratic spatialsoliton generation by seeded downconversionof a strong harmonic pump beam", Opt. Lett., 22,1683 (1997).
    
    93. S. Polyakov, H. Kim, L. Jankovic, G. Stegeman, and M. Katz, "Weak beam control of multiple quadratic soliton generation", Opt. Lett., 28,1451 (2003).
    
    94. H. Zeng, J. Wu, H. Xu, and K. Wu, "Generation and Weak Beam Control of Two-Dimensional Multicolored Arrays in a Quadratic Nonlinear Medium", Phys. Rev. Lett., 96,083902 (2006).
    
    95. H. Xu and H. Zeng, "Elliptic X-shaped light bullets", Opt. Lett., 32, 820 (2007).
    
    96. A. Kobyakov, E. Schmidt, and F. Lederer, "Effect of group-velocity mismatch on amplitude and phase modulation of picosecond pulses in quadratically nonlinear media", J. Opt. Soc. Am. B, 14, 3242 (1997).
    
    97. L. Tomer, W. E. Torruellas, G. Stegeman, and C. R. Menyuk, "Beam steering by chi (2) trapping", Opt. Lett., 20,1952 (1995).
    
    98. M. Marangoni, C. Manzoni, R. Ramponi, G. Cerullo, F. Baronio, C. De Angelis, and K. Kitamura, "Group-velocity control by quadratic nonlinear interactions", Opt. Lett., 31, 534 (2006).
    
    99. K. Beckwitt, F. Ilday, and F. W. Wise, "Frequency shifting with local nonlinearity management in nonuniformly poled quadratic nonlinear materials", Opt. Lett., 29, 763 (2004).
    
    100. J. Moses, and F. Wise, "Controllable Self-Steepening of Ultrashort Pulses in Quadratic Nonlinear Media", Phys. Rev. Lett., 97,073903 (2006).
    
    101. F. Baronio and C. De Angelis, "Spectral shift of femtosecond pulses in nonlinear quadratic PPSLT Crystals", Opt. Express, 14,4774 (2006).
    
    102. D. Mihalache, D. Mazilu, L.-C. Crasovan, and L. Torner, "Walking solitons in type II second-harmonic generation", Phys. Rev. E, 56, R6294 (1997).
    103. D. Mihalache, D. Mazilu, B. A. Malomed, and L. Tomer, "Asymmetric spatio-temporal optical solitons in media with quadratic nonlinearity", Opt. Commun., 152, 365 (1998).
    
    104. D. Mihalache, D. Mazilu, B. A. Malomed, L. Torner, "Walking light bullets", Opt. Commun., 169, 341 (1999).
    
    105. D. Mihalache, D. Mazilu, L. -C. Crasovan, L. Tomer, B. A. Malomed, and F. Lederer, "Three-dimensional walking spatiotemporal solitons in quadratic media", Phys. Rev. E, 62, 7340 (2000).
    
    106. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Toumois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping", Opt. Lett., 25, 575 (2000).
    
    107. T. Feurer, J. C. Vaughan, R. M. Koehl, and K. A. Nelson, "Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix", Opt. Lett., 27, 652 (2002).
    
    108. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation", Opt. Lett., 25, 587 (2000).
    
    109. N. Dudovich, B. Dayan, S. M. Gallagher Faeder, and Y. Silberberg, "Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions", Phys. Rev. Lett., 86,47 (2001).
    
    110. D. Meshulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses", Phys. Rev. A, 60,1287 (1999).
    
    111. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Quantum control of coherent anti-Stokes Raman processes", Phys. Rev. A, 65,043408 (2002).
    
    112. N. Dudovich, D. Oron and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy", Nature, 418,512 (2002).
    113. R. Netz, T. Feurer, G. Roberts, and R. Sauerbrey, "Coherent population dynamics of a three-level atom in spacetime", Phys. Rev. A, 65,043406 (2002).
    
    114. M. E. Crenshaw, M. Scalora, and C. M. Bowden, "Ultrafast intrinsic optical switching in a dense medium of two-level atoms", Phys. Rev. Lett., 68, 911 (1992).
    
    115. M. E. Crenshaw, and C. M. Bowden, "Quasiadiabatic following approximation for a dense medium of two-level atoms", Phys. Rev. Lett., 69, 3475 (1992).
    
    116. A. Manka, J. Dowling, C. M. Bowden, and M. Fleischhauer, "Piezophotonic Switching Due to Local Field Effects in a Coherently Prepared Medium of Three-Level Atoms", Phys. Rev. Lett., 73,1789 (1994).
    
    117. H. Zeng, and H. Xu, "Quantum controllable optical selective resonant excitation in a dense medium", Phys. Rev. A, 69,043803 (2004).
    
    118. H. Xu, and H. Zeng, "Optical selectivity in optically dense media driven by optimized Gaussian-type ultrashort pulse pairs", Opt. Lett., 30,1198 (2005).
    
    119. E. Tokunaga, A. Terasaki, and T. Kobayashi, "Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy", Opt. Lett., 17,1131 (1992).
    
    120. R. Netz, A. Nazarkin, and R. Sauerbrey, "Observation of Selectivity of Coherent Population Transfer Induced by Optical Interference", Phys. Rev. Lett., 90, 063001 (2003).
    
    121. R. L. Haupt, and S. E. Hau(?)t, "Practical Genetic Algorithms", Wiley, New York (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700