单光子频率上转换探测及其量子特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外单光子探测具有非常重要的意义,在光通信、光雷达、激光测距、激光制导、量子信息学、物质检测与分析等诸多实际应用中发挥着重要的作用,既具有民事技术的普遍性,又有国防科技的特殊性。然而现今的铟镓砷雪崩光电二极管红外单光子探测器性能却差强人意,其探测效率、工作速率和背景噪声等指标与硅雪崩光电二极管可见光单光子探测器相比具有相当大的差距。单光子频率上转换技术是利用非线性光学的方法将红外单光子信号频率上转换为可见光波段的“镜像”光子,而且初始光子与“镜像”光子被证明是具有相同的量子态。这使得我们可以使用性能更好的硅雪崩光电二极管代替铟镓砷雪崩光电二极管实现红外单光子信号的高效探测。本文主要围绕如何实现长时间稳定的单光子频率上转换,如何实现高效率的单光子频率上转换过程,如何实现精确可控的单光子上转换波长调谐,如何降低单光子频率上转换的背景噪声等一系列关键问题开展研究,发展了多种新方案,构建了高性能的单光子频率上转换系统,并对其中一些新的量子特性和机制进行了探索。
     利用激光器腔内高强度,高稳定的光场作为泵浦光,利用腔内的周期极化的铌酸锂(PPLN)晶体实现了高效率的光通信波段单光子频率上转换。这种新方案充分发挥了固体激光器性能稳定,结构简单的优点,不需要使用复杂的伺服控制装置来锁定泵浦光强度。实验上我们获得几个小时内强度非常稳定的和频单光子信号,强度抖动的标准方差约为2.2%。
     通过使用激光模式控制技术对泵浦光的空间模式和光谱线宽等参数进行进一步的优化,可以有效提高泵浦光束质量和利用效率。使用单向环行腔激光器腔内泵浦的方案,实现了1.55μm单光子频率上转换,达到了迄今为止最高的单光子频率上转换效率——96%。由于强度均匀分布的泵浦光抑制了纵模竞争和光折变效应,和频信号的强度在几个小时内保持稳定,上转换抖动标准方差仅约为2%,稳定性指标在国际同类系统中领先。
     利用成熟的固体激光器的波长调谐技术,本文提出了可实时控制的高精度频率可调谐的上转换探测的实现方法。利用腔内标准具在PPLN晶体准相位匹配带宽内实现了频率可调谐的单光子频率上转换过程,经过实验研究确定了实现频率调谐的工作条件和参数允许范围。
     为了探索降低背景噪声的方法,本文使用掺铒光纤激光器和放大器作为泵浦源,实现了超低噪声的1.06μm单光子频率上转换过程。基本上消除了上转换荧光的非线性噪声影响,在93%单光子转换效率的条件下背景噪声仅为150/s。报导了迄今为止上转换探测器中最低的噪声等效光子数。由于背景噪声是限制上转换探测器性能的最重要因素之一,这项研究对提升上转换探测器的探测效率和灵敏度具有重要价值。
     最后,本论文通过分析多纵模泵浦条件下的单光子频率上转换过程,对其中一些新的物理机制开展了研究。入射光子的量子态会依据泵浦光的纵模分布而演化成相应的频率叠加态,这提供了一种通过控制经典的泵浦光来操控单光子量子态的手段,本文发展了一种简便的非破坏性的量子态路由器模型。
Efficient infrared photon counting probe is of great importance in variable practical applications, such as optical communications, optical time domain reflectometer, laser ranging, laser-guided techniques, quantum information, and so forth. Compared with the visible single-photon detectors based on Si-avalanch photodiodes (APDs), however, the current infrared photon counters based on InGaAs APDs are just passable, especially in quantum efficiency, working repetition rate and background noise. Single-photon frequency up-conversion technology provides an another solution to detect the infrared single-photons, which is the use of nonlinear optical method to convert the infrared signal photons into visible "mirror" photons. The original photon and the "mirror" photon would share the identical quantum feature. Thereby, Si-APDs with better performance can replace the InGaAs-APDs for the enhanced infrared single-photon counting. We focused on a series of key issues in frequency up-conversion detection, such as how to realize long-term stable conversion process, how to achieve unitary conversion efficiency, how to achieve precise frequency tuning, how to reduce the background noise, and so forth. A number of new methods were developed for upgrading the performance of the single-photon frequency converter, and some new quantum properties and mechanisms were investigated.
     Taking the advantage of the high-intensity and high-stability intracavity laser beam as the pump field, the efficient frequency up-conversion of the c-band single photon was achieved in bulk periodically poled lithium niobate (PPLN). The advanced method could give full play to the merits of solid-state lasers as stable and robust in single-photon frequency up-conversion system, so that the complex servo system was not necessary for sustaining the high pump intensity. In our experiments, the intensity of the SFG signal remained very stable in a few hours, where the standard deviation of the intensity fluctuation was measured to be only 2.2%.
     The mature technologies on the laser mode control could optimize the spatial mode and spectral line-width to improve the beam quality and the efficiency of the pump field. A unidirectional ring laser was built to improve the performance of the intracavity frequency up-conversion of 1.55μm single photons. So far the highest conversion efficiency of 96% was reported, which could maintain within a few hours. Because the mode hopping and the photorefractive effects were suppressed by the uniform-intensity pump field, the stability of the SFG signal was further improved.
     On the other hand, the flexible solid-state laser wavelength tuning technique allowed a high-precision real-time frequency control of pump field. Using an intracavity etalon, we demonstrated the wavelength-tunable single-photon frequency conversion process within the spectral bandwidth of the quasi-phase-matching interaction. The working condition and the tolerant parameter values were experimentally investigated in our frequency-tunable single-photon upconversion system.
     The efficient frequency up-conversion of the 1.06μm single photon with ultra-low background noise was successfully operated by using the Er-doped mode-locking fiber laser and amplifier as the pump source. The single-photon conversion efficiency was 93%, and the corresponding background noise was only 150 /s. We achieved so far the lowest noise equivalent power among the reported up-conversion detectors. Since the background noise was one of the most important factors which restricted the performance of the up-conversion detector, our research is of great significance to upgrade the up-conversion detection technology.
     In the end, the efficient single-photon frequency upconversion was demonstrated under strong multi-longitudinal-mode pump, where the incident single-photon state was converted to a superposition state according to the intensity distribution of the multi-mode pump field. This new phenomenon allowed us to manipulate the quantum state by having control on the classical laser beam, based on which we developed a simple non-destructive quantum state router model.
引文
[1]K.J.Gordon,V.Fernandez,and G.S.Buller,"Quantum key distribution system clocked at 2 GHz," Opt.Express 13,3015(2005).
    [2] P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, "14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes," J. Mod. Opt. 51,1369 (2004).
    
    [3] N. Namekata, Y. Makino, and S. Inoue, "Single-photon detector for long-distance fiber-optic quantum key distribution," Opt. Lett. 27,954 (2002).
    
    [4] G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, "Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance," J. Mod. Opt. 51,1381 (2004).
    
    [5] C. kurtsiefer, P. Zarda, M. Haider, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step towards glabal key distribution," Nature 419, 450 (2002).
    
    [6] J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82 (2002).
    
    [7] P. J. Edwards, P. Lynam, C. Cochran, and A. Blake, "Simulation of ground-satellite quantum key exchange using a dedicated atmospheric free-space test-bed," Proc. of SPIE 5156,152 (2004).
    
    [8] C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, and F. Y. Feng, "Experimental free-space distribution of entangled photon pairs over 13 km: Towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501,(2005).
    
    [9] S. Tanzilli, W. Tittel, M. Haider, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437,116 (2005).
    
    [10] E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature (London) 409,46 (2001).
    
    [11] J. H. Shapiro, "Architectures for long-distance quantum teleportation," New J. Phys. 4,47.1 (2002).
    
    [12] K. Resch, J. Lundeen, and A. Steinberg, "Conditional-Phase Switch at the Single-Photon Level," Phys. Rev. Lett. 89, 037904 (2002).
    [1]www.hamamatsu.com;www.burle.com/mcp_pmts.htm
    [2]A.J.Shields and M.P.O'Sullivan,I.Farrer,D.A.Ritchie,R.A.Hogg,M.L.Leadbeater,C.E.Norman,and M.Pcppcrb,"Detection of single photons using a field-effect transistor gated by a layer of quantum dots," Appl.Phys.Lett.76,3673(2000).
    [3]J.C.Blakesley,P.See,A.J.Shields,B.E.Kardyna,P.Atkinson,I.Farrer,and D.A.Ritchie,"Efficient Single Photon Detection by Quantum Dot Resonant Tunneling Diodes," Phys.Rev.Lett.94,067401(2005).
    [4]S.S.Hees,B.E.Kardynal,et al.,"Effect of InAs dots on noise of quantum dot resonant tunneling single-photon detectors," Appl.Phys.Lett.89,153510(2006).
    [5]G.N.Goltsman,O.Okunev,G.Chulkova,A.Lipatov,A.Semenov,K.Smirnov,B.Voronov,A.Dzardanov,C.Williams,and R.Sobolewski,"Picosecond superconducting single-photon optical detector," Appl.Phys.Lett.79,705(2001).
    [6]A.Verevkin,J.Zhang,R.Sobolewski,A.Lipatov,O.Okunev,G.Chulkova,A.Komeev,K.Smimov,G.N.Goltsman,and A.Semenov,"Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl.Phys.Lett.80,4687(2002).
    [7]A.Komeev,P.Kouminov,V.Matvienko,G.Chulkova,K.Smimov,B.Voronov,G.N.Gol'tsman,M.Currie,W.Lo and K.Wilsher,"Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl.Phys.Lett.84,5338(2004).
    [8]W.Slysz,M.Wegrzecki,et al.,"Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies," Appl.Phys.Lett.88,261113(2006).
    [9]A.J.Kermart,E.A.Dauler,J.K.W.Yang,K.M.Rosfjord,V.Anant,K.K. Berggren,G.N.Gol'tsman and B.M.Voronov "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl.Phys.Lett.90,101110(2007).
    [10]G.Ribordy,J.D.Gautier,H Zbinden,and N Gisin,"Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters," Appl.Opt.37,2272(1998).
    [11]A.Tomita and K.Nakamura,"Balanced,gated-mode photon detector for quantum-bit discrimination at 1550 nm," Opt.Lett.27,1827(2002).
    [12]A.Yoshizawa,R.Kaji,and H.Tsuchida,"Gated-mode single-photon detection at 1550 nm by discharge pulse counting," Appl.Phys.Lett.84,3606(2004).
    [13]G.Ribordy,N.Gisin,O.Guinnard,D.Stucki,M.Wegmuller,and H.Zbinden,"Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes:current performance," J.Mod.Opt.51,1381(2004).
    [14]G.Wu,C.Y.Zhou,X.L.Chen,H.X.Li,and H.P.Zeng,"High performance of gated-mode single-photon detector at 1.55 μm," Opt.Comm.265,126(2006).
    [15]M.A.Albota and F.N.C.Wong,"Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt.Lett.29,1449(2004).
    [16]Aaron P.Vandevender,Paul G.Kwiat,"High efficiency single photon detection via frequency up-conversion," J.Mod.Opt.51,1433(2004).
    [17]R.V.Roussev,C.Langrock,J.R.Kurz,and M.M.Fejer,"Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt.Lett.29,1518(2004).
    [18]Haifeng Pan,Huafang Dong,Wei Lu,and Heping Zeng,"Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser," Appl.Phys.Lett.89,191108(2006).
    [19]E.Diamanti,C.Langrock,M.M.Fejer,Y.Yamamoto and H.Takesue,"1.5 um photon-counting optical time domain reflectometry with a single-photon detector using up-conversion in a PPLN waveguide," in Conference on Lasers and Electro-Optics,OSA Technical Digest 2005,paper CTuY6.
    [20]www.jdsu.com;www.sensorsinc.com;www.amplificationtechnologies.com;www.fujitsu.com.
    [21]Z.Zhao,Y.A.Chen,A.N.Zhang,T.Yang,H.J.Briegel,"Experimental demonstration of five-photon entanglement and open-destination teleportation,"Nature 430,54(2004);C.Kurtsiefer et.al.,"quantum cryptography:A step towards global key distribution," Nature,419,450(2002);Z.Zhao et.al.,"Experimental demonstration of five-photon entanglement and open-destination teleportation," Nature,430,54(2004)
    [22]P.Kumar,"Quantum frequency conversion," Opt.Lett.15,1746(1990).
    [23] J. Huang and P. Kumar, "Observation of quantum frequency conversion," Phy. Rev. Lett. 68,2153 (1992).
    [24] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO_3," J. Opt. Soc. Am. B 12,2102 (1995).
    [25] D. A. Roberts, "Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions," IEEE J. Quantum Electron. 28,2057 (1992).
    [26] H. Ito, C. Takyu, and H. Inaba, "Fabrication of periodic domain grating in LiNbO_3 by electron beam writing for application of nonlinear optical processes," Electron. Lett. 27,1221 (1991).
    [27] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, "Quasi-phase-matched 1.064 μm pumped optical parametric oscillator in bulk periodically poled LiNbO_3," Opt. Lett. 20,52 (1995).
    [28] C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, and H. Takesue, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO_3 waveguides," Opt. Lett. 30,1725 (2005).
    [29] R. Thew, S. Tanzilli, L. Krainer, S. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
    [30] S. Tanzilli, W. Tittel, M. Haider, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, "A photonic quantum information interface," Nature 437,116 (2005).
    [31] T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe and K. Inoue, "Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors," Opt. Express 15,13957 (2007)
    [32] Hai Xu, Lijun Ma, Alan Mink, Barry Hershman, and Xiao Tang, "1310 nm quantum key distribution system with up-conversion pump wavelength at 1550 nm," Opt. Express 15, 7247 (2007).
    [33] M. A. Albota, F. N. C. Wong, and J. H. Shapiro, "Polarization-independent frequency conversion for quantum optical communication," J. Opt. Soc. Am. B 23,918(2006).
    [34] H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "1.5 μm single photon counting using polarization-independent up-conversion detector," Opt. Express 14,13067 (2006).
    [35] C. J. McKinstrie, J. D. Harvey, S. Radic and M. G. Raymer, "Translation of quantum states by four-wave mixing in fibers," Opt. Express 13,9131 (2005)
    [36] M. G. Raymer, "Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering," J.Mod.Opt.51,1739(2004)
    [37]Huafang Dong,Haifeng Pan,Yao Li,and Heping Zeng,"Highly Efficient single-photon frequency up-conversion with ultra-low background counts,"(Submitted)
    [38]Haifeng Pan,E Wu,Huafang Dong,and Heping Zeng,"Single-photon frequency up-conversion with multimode pumping," Phys.Rev.A 77,033815(2008).
    [1].P.G.Kwiat,K.MaRie,H.Weinfurter,A.Zeilinger,A.V.Sergienko,and Y.Shih,"New High-Intensity Source of Polarization-Entangled Photon Pairs,"Phys.Rev.Lett.75,4337(1995).
    [2].P.G.Kwiat,E.Waks,A.G.White,I.Appelbaum,and P.H.Eberhard,"Ultrabright source of polarization-entangled photons," Phys.Rev.A 60,R773 (1999).
    [3].L.A.Wu,H.J.Kimble,J.L.Hall,and H.Wu,"Generation of squeezed states by parametric down conversion," Phys.Rev.Lett.57,2520(1986).
    [4].R.E.Slusher,P.Grangier,A.LaPorta,B.Yurke,and M.J.Potasek,"Pulsed Squeezed Light," Phys.Rev.Lett.59,2566(1987).
    [5].S.Tanzilli,W.Tittel,M.Hairier,O.Alibart,P.Baldi,N.Gisin,and H.Zbinden,"A photonic quantum information interface," Nature 437,116(2005).
    [6].Y.R.Shen.The Principles of Nonlinear Optics(Wiley,New York,1984),Chap.6.
    [7].G.D.Boyd and D.A.Kleinman,"Parametric interaction of focused gaussian light beams," J.Appl.Phys.39,3597(1968).
    [8].M.Albota and F.Wong,"Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt.Lett.29,1449(2004).
    [9].B.Gross and J.T.Manassah,"Supercontinuum in the anomalous group-velocity dispersion region," J.Opt.Soc.Am.B 9,1813(1992).
    [10].G.A.Nowak,J.Kim,and M.N.Islam,"Stable Supercontinuum Generation in Short Lengths of Conventional Dispersion-Shifted Fiber," Appl.Opt.38,7364(1999).
    [11].I.Bar-Joseph,A.A.Friesem,R.G.Waarts,and H.H.Yaffe,"Parametric interaction of a modulated wave in a single-mode fiber," Opt.Lett.11,534(1986).
    [12].W.Margulis and U.Osterberg,"Four-photon fiber laser," Opt.Lett.12,519(1987)
    [13].M.E.Marhic,N.Kagi,T.-K.Chiang,and L.G.Kazovsky,"Broadband fiber optical parametric amplifiers," Opt.Lett.21,573(1996)
    [14].D.K.Serkland and P.Kumar,"Tunable fiber-optic parametric oscillator," Opt.Lett.24,92(1999)
    [15].C.J.McKinstrie,S.Radic and M.G.Raymer,"Quantum noise properties of parametric amplifiers driven by two pump waves," Opt.Express 12,5037(2004).
    [16].C.J.McKinstrie,M.Yu,M.G.Raymer and S.Radic,"Quantum noise properties of parametric processes," Opt.Express 13,4986(2005).
    [17].C.J.McKinstrie,J.D.Harvey,S.Radic and M.G.Raymer,"Translation of quantum states by four-wave mixing in fibers," Opt.Express 13,9131(2005).
    [18].M.Skorobogatiy and A.V.Kabashin,"Photon crystal waveguide-based surface plasmon resonance biosensor," Appl.Phys.Lett.89,143518(2006).
    [19].Y.J.Chen and G M.Carter,"Measurement of third order nonlinear susceptibilities by surface plasmons," Appl.Phys.Lett.41,307(1982)
    [20].D.E.Chang,A.S.Serensen,P.R.Hemmer,and M.D.Lukin,"Quantum optics with surface plasmons," Phys.Rev.Lett.97,053002(2006)
    [21].D.E.Chang,A.S.Sorensen,E.A.Darnler,and M.D.Luldn,"A single-photon transistor using nanoscale surface plasrnons," Nature Physics 3,708(2007)
    [22].J.Takahara,S.Yamagishi,H.Tald,A.Morimoto,and T.Kobayashi,"Guiding of a one-dimensional opticalbeam with nanometer diameter," Opt.Lett.22,475(1997)
    [23].L.Tong,R.R.Gattass,J.B.Ashcoml,S.He,J.Lou,M Shenl,I.Maxwell,and E.Mazur,"Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426,816(2003)
    [24].K.P.Nayak,P.N.Melentiev,M.Morinaga,F.L.Kien,V.I.Balykin,and K.Hakuta,"Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence," Opt.Express 15,5431(2007)
    [25].L.Tong,J.Lou,and E.Marzur,"Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," opt.Express 12,1205(2004)
    [26].Yu.E.Lozovik,S.P.Merkulova,M.M.Nazarov,A.P.Shkurinov,"From two-beam surface plasmon interaction to femtosecond surface optics and spectroscopy," Phys.Lett.A 276,127(2000)
    [27].A.V.Andreev,M.M.Nazarov,I.R.Prudnikov,A.P.Shkurinov,and P.Masselin,"Noncollinear excitation of surface electromagnetic waves:Enhancement of nonlinear optical surface response," Phys Rev.B 69,035403(2004)
    [28].P.Berini,R.Charbonneau,N.Lahoud and G.Mattiussi,"Characterization of long-range surface-plasmon-polariton waveguides," J.Appl.Phys.98,043109(2005)
    [29].A.M.Dykhne,A.K.Sarychev,and V.M.Shalaev,"Resonant transmittance through metal films with fabricated and light-induced modulation," Phys.Rev.B.67,195402(2003)
    [30].M.G.Raymer,"Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering," J.Mod.opt.51,1739(2004)
    [1].T.Kushida and J.E.Geusic,"Optical Refrigeration in Nd-Doped Yttrium Aluminum Garnet," Phys.Rev.Lett.21,1172(1968).
    [2].W.F.Krupke,M.D.Shinn,J.E.Marion,J.A.Caird,and S.E.Stokowski,"Spectroscopic,optical,and thermomechanical properties of neodymium-and chromium-doped gadolinium scandium gallium garnets," J.Opt.Soc.Am.B 3,102(1986).
    [3].R.W.Wallace and S.E.Harris,"Oscillation and doubling of the 0.946 μm line in Nd~(3+):YAG," Appl.Phys.Lett.15,111(1969).
    [4].S.Singh,R.G.Smith,and L.G.Van Uitert,"Stimulated-emission cross section and fluorescent quantum efficiency of Nd~(3+)in yttrium aluminum garnet at room temperature," Phys.Rev.B 10,2566(1974).
    [5].L.De Shazer:Laser Focus World,p.88(February 1994)
    [6].A.I.Zagumennyi,V.G.Ostroumov,I.A.Shcherbakov,T.Jensen,J.P.Meyn,and G.Huber,"Nd:GdVO_4 crystal:a now material for diodepumped lasers,"Sov.J.Quantum Electron.22,1071(1992)
    [7].R.Fluck,G.Zhang,U.Keller,K.J.Weingarten,and M.Moser,"Diode pumped passively mode-locked 1.3 μm Nd:YVO4 and Nd:YLF lasers using semiconductor saturable absorbers," Opt.Lett.21,1378(1996)
    [8].Y.Chen,E.Wu,Z.Sun,and H.Zeng,"A novel ring laser resonator of linear geometry with twin off-axially cut Nd:YVO_4," Opt.Commun.220,179(2003)
    [9].K.Suzuki,K.Shimomura,A.Eda,and K.Muro,"Low-noise diode-pumped intracavity-doubled laser with off-axially cut Nd:YVO4," Opt.Lett.19,1624(1994).
    [10].M.Oka and S.Kubota,"Stable intracavity doubling of orthogonal linearly polarized modes in diode-pumped Nd:YAG lasers," Opt.Lett.13,805(1988)
    [11].S.Konno,T.Kojima,S.Fujikawa,and K.Yasui,"High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser," Opt.Lett.25,105(2000)
    [12].T.Baer,"Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers," J.Opt.Soc.Am.B 3,1175(1986)
    [13].J.T.Murray,R.C.Powell,N.Peyghambarian,D.Smith,W.Austin,and R.A.Stolzenberger,"Generation of 1.5 μm radiation through intracavity solid-state Raman shifting in Ba(NO_3)_2 nonlinear crystals," Opt.Lett.20,1017(1995)
    [14].E Wu,H.Pan and H.Zeng,"Single-mode ring laser of twin off-axially cut neodymium-doped yttrium orthovanadate crystals in a linear cavity," J.Opt. Soc.Am.B 21,1463(2004)
    [15].E Wu,H.Pan,S.Zhang and H.Zeng,"High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO_4 crystal,"Appl.Phys.B 80,459(2005)
    [16].H.Pan,S.Xu and H.Zeng,"Passively Q-switched Single-longitudinal-mode c-cut Nd:GdVO_4 laser with a twisted-mode cavity," Opt.Express 13,2755(2005)
    [17].S.Zhang,E Wu,H.Pan and H.Zeng,"Passive mode locking in a diode-pumped Nd:GdVO_4 laser with a semiconductor saturable absorber mirror," IEEE J.Quan.Electron.40,505(2004)
    [18].S.Zhang,E Wu,H.Pan and H.Zeng,"Q-switched mode-locking with Cr~(4+):YAG in a diode pumped Nd:GdVO_4 laser," Appl.Phys.B 75,335(2004)
    [19].H.Chert,E Wu and H.Zeng,"Comparison between a-cut and off-axially cut Nd:YVO_4 lasers passively Q-switched with a Cr~(4+):YAG crystal," Opt.Comm.230,175(2004)
    [20].S.Zhang,E Wu and H.Zeng,"Q-switched mode-locking by Cr~(4+):YAG in a laser-diode-pumped c-cut Nd:GdVO_4 laser," Opt.Comm.231,365(2004)
    [21].L.E.Myers,R.C.Eckardt,M.M.Fejer,R.L.Byer,W.R.Bosenberg,and J.W.Pierce,"Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO_3," J.Opt.Soc.Am.B 12,2102(1995)
    [22].G.J.Dixon:Laser Focus World,p.105(May 1997)
    [23].M.M.Fejer,G.A.Magel,D.H.Jundt,and R.L.Byer,"Quasi-phase-matched second harmonic generation:Tuning and tolerances," IEEE J.Quan.Electron.28,2631(1992).
    [24].M.Yamada,N.Nada,M.Saitoh,and K.Watanabe,"First-order quasi-phase matched LiNbO_3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation," Appl.Phys.Lett.62,435(1992).
    [25].D.H.Jundt,"Temperature-dependent Sellmeier equation for the index of refraction,ne,in congruent lithium niobate," Opt.Lett.22,1553(1997)
    [26].H.Pan and H.Zeng,"Efficient and stable single-photon counting at 1.55 μm by intracavity frequency upconversion," Opt.Lett.31,793(2006)
    [1].Haifeng Pan,Huafang Dong,Wei Lu,and Heping Zeng,"Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser," Appl.Phys.Lett.89,191108(2006).
    [2].L.W.Davis,"Effects of transverse-mode selection on the wavefront of a ruby laser," J.Appl.Phys.39,5331(1968).
    [3].J.E.Geusic,H.J.Levinstein,S.Singh,R.G.Smith,and L.G.Van Uitert,"Continuous 0.532 μm solid-state source using Ba_2NaNb_5O_(15)," Appl.Phys.Lett.12,306(1968).
    [4].S.C.Tidwell,J.F.Seamans,M.S.Bowers,and A.K.Cousins,"Scaling cw diode-end-pumped Nd:YAG lasers to high average powers," IEEE J.Quan.Electron.28,997(1992).
    [5].W.Koechner,Solid-State Laser Engineering,Springer-Verlag(1999).
    [6].E Wu,H.Pan,S.Zhang and H.Zeng,"High power single-longitudinal-mode operation in a twisted-mode-cavity laser with a c-cut Nd:GdVO_4 crystal," Appl.Phys.B 80,459(2005)
    [7].V.Etuhov,A.E.Siegman,Appl.Opt.4,142(1965)
    [8].Y.Louyera,F.Balemboisb,M.D.Plimmera,T.Badra,P.Georgesb,P.Juncara,M.E.Himbert,"Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock," Opt.Commun.217,357(2003)
    [9].C.S.Adams,J.Vorberg,J.Mlynek,"Single-frequency operation of a diode-pumped lanthanum-neodymium-hexaaluminate laser by using a twisted-mode cavity," opt.Lett.18,420(1993)
    [10].H.Pan,S.Xu and H.Zeng,"Passively Q-switched Single-longitudinal-mode c-cut Nd:GdVO_4 laser with a twisted-mode cavity," Opt.Express 13,2755(2005)
    [11].U.Keller,D.A.B.Miller,G.D.Boyd,T.H.Chiu,J.F.Ferguson,and M.T.Asom,"Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber," Opt.Lett.17,505(1992).
    [12].K.J.Weingarten,U.Keller,T.H.Chiu,and J.E Ferguson,"Passively mode-locked diode-pumped solid-state laser using an antiresonant Fabry-Perot saturable absorber," opt.Lett.18,640(1993).
    [13].U.Keller,T.H.Chiu,and J.F.Ferguson,"Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers," Opt.Lett.15,1077(1993).
    [14].N.D.Lai,M.Brunel,E Bretenaker,and A.L.Floch,"Stabilization of repetition rate of passively Q-switched diode-pumped solid-state lasers," Appl.Phys.Lett.79,1073(2001).
    [15].H.Pan and H.Zeng,"Passively O-switched Nd:GdVO_4 solid-state lasers with stabilized repetition rates," Chin.Opt.Lett.3,520(2005).
    [16].X.Li,Q.Pan,J.Jing,C.Xie and K.Peng,"LD pumped intracavity frequency-doubled and frequency-stabilized Nd:YAP/KTP laser with 1.1 W output at 540 nm," Opt.Comm.201,165(2002).
    [17].M.V.Okhapkin,M.N.Skvortsov,A.M.Belkin and S.N.Bagayev,"Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm," Opt.Comm.194,207(2001).
    [18].J.Harrison,G.A.Rines,P.F.Moulton,and J.R.Leger,"Coherent summation of injection-locked,diode-pumped Nd:YAG ring lasers," Opt.Lett.13,111(1988)
    [1].Huafang Dong,Haifeng Pan,Yao Li,and Heping Zeng,"Highly efficient single-photon frequency up-conversion with ultra-low background counts,"(Submitted)
    [2].M.J.F.Digonnet,Ed.,Rare Earth Doped Fiber Lasers and Amplifiers(Marcel Dekker,New York,1997)
    [3].V.J.Matsas,T.P.Newson,D.J.Richardson and D.J.Payne,"Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation",Electron.Lett.28,1391(1992)
    [4].K.Tamura,H.A.Haus and E.P.Ippen,"Self-starting additive pulse mode-locked erbium fiber ring laser",Electron.Lett.28,2226(1992).
    [5].Holger Hundertmark,Dietmar Kracht,et al.,"Stable sub-85 fs passively mode-locked Erbium-fiber oscillator with tunable repetition rate," Opt.Express 12,3178(2004).
    [6].Shenping Li,Xin Chen,et al.,"Wavelength tunable stretched-pulse mode-locked all-fiber erbium ring laser with single polarization fiber," Opt.Express 14,6098(2006).
    [7].J.W.Nicholson and M.Andrejco,"A polarization maintaining,dispersion managed,femtosecond figure-eight fiber laser," Opt.Express 14,8160(2006).
    [8].Ying-Tsung Lin and Gong-Ru Lin,"Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation," Opt.Lett.31,1382(2006).
    [9].C.K.Nielsen,B.Ortac,et al.,"Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt.Express 13,9346(2005).
    [10].F.O.IIday,J,Chen,et al.,"Generation of sub-100-fs pulse at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser," Opt.Express 13,2716(2005).
    [11].Thomas Schreiber,Carsten K.Nielsen,et al.,"Microjoule-level all-polarization-maintaining femtosecond fiber source," Opt.Lett.31,574(2006).
    [12].V.P.Kalosha,Liang Chen,et al.,"Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser," Opt.Express 14,4935(2006).
    [13].Michael Schultz,Oliver Prochnow,et al.,"Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation," Opt.Lett.32,2372(2007).
    [14].Thomas F.Caruthers and Irl N.Duling Ⅲ,"10-GHz,1.3-ps erbium fiber laser employing soliton pulse shortening," Opt.Lett.21,1927(1996).
    [15].M.Rusu,R.Herda,and O.G.Okhotnikov,"Passively synchronized erbium (1550-nm)and ytterbium(1040-nm)mode-locked fiber lasers sharing a cavity," Opt.Lett.29,2246(2004).
    [16].M.Rusu,R.Herda and O.G.Okhotnikov,Opt.Express 12,4719(2004).
    [17].Aaron P.Vandevender,Paul G.Kwiat,"High efficiency single photon detection via frequency up-conversion," J.Mod.Opt.51,1433(2004).
    [1].M.A.Albota and F.N.C.Wong,"Efficient single-photon counting at 1.55 μm by means of frequency upconvcrsion," Opt.Lett.29,1449(2004).
    [2].Aaron P.Vandevender,Paul G.Kwiat,"High efficiency single photon detection via frequency up-conversion," J.Mod.Opt.51,1433(2004).
    [3].R.V.Roussev,C.Langrock,J.R.Kurz,and M.M.Fcjer,"Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt.Lctt.29,1518(2004).
    [4].A.Frenkel and C.Lin,"In-line turnable etalon filter for optical channel selection in high density wavelength-division-multiplexed fiber systems," Electron.Lctt.,24,1.59(1988).
    [5].C.Lin et al.,"Wavelength-tunable 16 optical channel transmission experiment at 2 Gb/s and 600 Mb/s for broadband subscriber distribution," Electron.Lett.,24,1215(1988).
    [6].C.Y.Chert,M.M.Choy,M.J.Andrejco,M.A.Saifi,and C.Lin,"A widely tunable erbium-doped fiber laser pumped at 532 um," IEEE Photonics Technology Letters 2,18(1990)
    [7].Y.Zhu,X.Chen,J.Shi,Y.Chen,Y.Xia,and Y.Chen,"Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt.Comm.228,139(2003).
    [8].A.Agnesi,E.Piccinini,G.C.Reali,and C.Solcia,"All-solid-state picosecond tunable source of near-infrared radiation," Opt.Lett.22,1415(1997).
    [9].S.Sanders,R.J.Lang,L.E.Myers,M.M.Fejer,and R.L.Byer,"Broadly tunable mid-IR radiation source based on difference frequency mixing of high power wavelength-tunable laser diodes in bulk periodically poled LiNbO_3,"Electronics Letters 32,218(1996)
    [10].A.Balakrishnan,S.Sanders,S.DeMars,J.Webjom,D.W.Nam,R.J.Lang,D.G.Mehuys,R.G.Waarts,and D.F.Welch,"Broadly tunable laser-diode-based mid-infrared source with up to 31 μW of power at 4.3 μm wavelength," Opt.Lett.21,952(1996).
    [11].Haifeng Pan and H.Zeng,"Efficient and stable single-photon counting at 1.55μm by intracavity frequency upconversion," Opt.Lett.31,793(2006).
    [12].H.Pan,H.Dong,H.Zeng,and W.Lu,"Efficient single-photon counting at 1.55μm by intracavity frequency upconversion in a unidirectional ring laser," Appl.Phys.Lett.89,191108(2006).
    [13].R.J.Glauber,"The Quantum Theory of Optical Coherence," Phys.Rev.130,2529(1963).
    [14].R.J.Glauber,"Coherent and Incoherent States of the Radiation Field," Phys.Rev.131,2766(1963).
    [15].M.A.Albota,F.N.C.Wong,and J.H.Shapiro,"Polarization-independent frequency conversion for quantum optical communication," J.Opt.Soc.Am.B 23,918(2006).
    [16].Ralf Faber and Keqi Zhang,"Design and manufacturing of WDM narrow-band interference filters," Proceedings of SPIE 4094,58(2000)
    [17].Jin-Cherng Hsu,Kuan-Tin Lin,Huang-Lu Chen,Ching-Chin Chen,Ching-Yi Wei,"The spectral shift of 100 GHz DWDM narrow bandpass interference filter," The 5th Pacific Rim Conference on Lasers and Electro-Optics,.CLEO/Pacific Rim 1,207(2003).
    [18].H.Dong,Haifeng Pan,H.Zeng,and W.Lu,"Quantum manipulation of infrared single photons for efficient detection and quantum interface by means of intracavity frequency upconversion," Proc.of SPIE 6542,65420N(2007)
    [19].H.Takesue,E.Diamanti,C.Langrock,M.M.Fejer and Y.Yamamoto,"1.5 μm single photon counting using polarization-independent up-conversion detector,"Opt.Express 14,13067(2006).
    [1].M.A.Albota and E N.C.Wong,"Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt.Lett.29,1449(2004).
    [2].Aaron P.Vandevender,Paul G Kwiat,"High efficiency single photon detection via frequency up-conversion," J.Mod.Opt.51,1433(2004).
    [3].Haifeng Pan,Huafang Dong,Wei Lu,and Heping Zeng,"Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser," Appl.Phys.Lett.89,191108(2006)
    [4].R.V.Roussev,C.Langrock,J.R.Kurz,and M.M.Fejer,"Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths," Opt.Lett.29,1518(2004).
    [5].C.Langrock,E.Diamanti,R.V.Roussev,Y.Yamamoto,and M.M.Fejer,and H.Takesue,"Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO_3 waveguides," Opt.Lett.30,1725(2005).
    [6].Hai Xu,Lijun Ma,Alan Mink,Barry Hershman,and Xiao Tang,"1310-nm quantum key distribution system with up-conversion pump wavelength at 1550nm," Opt.Express 15,7247(2007).
    [7].Huafang Dong,Haifeng Pan,Yao Li,and Heping Zeng,"Highly Efficient single-photon frequency up-conversion with ultra-low background counts,"(Submitted)
    [8].华东师范大学SPDIII红外单光子探测器

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700