自发参量转换产生纠缠彩虹
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带可调谐多波长纠缠对于量子信息在量子网络、原子存储以及量子界面等方面的进一步的发展至关重要。目前大多数的高度纠缠的光子对都是通过参量下转换的方法来实现。由于参量上转换在实验上受到很多限制,很难在同一个晶体或泵浦源中得到宽带可调谐的纠缠光子对,或者将纠缠光子对扩展到短波紫外区域。
     本论文主要围绕自发参量上转换和下转换产生紫外和可见区域可调谐的time-bin纠缠彩虹对的实验展开论述。主要包括以下三个方面:
     1.讨论了在二阶非线性介质的参量混频过程中的时空调制不稳定性造成了彩色圆锥辐射的产生,主要研究了飞秒脉冲倍频过程的调制不稳定性。同时在实验上研究了简并参量光散射蓝环。
     2.基于二阶非线性晶体中的连续和脉冲种子光注入的非共线光参量放大(NOPA)过程,同步实现了自发参量上转换和下转换,得到了紫外和可见区域可调谐的彩虹对。相关的自发参量上转换和下转换光子表现出光束亮度高、空间发散小以及在很宽频谱范围内可调谐等特点。所有过程可以通过一束连续光来控制,用全光学控制高度相关的高能量光子对。
     3.基于NOPA过程得到的紫外和可见区域可调谐彩虹对构建了多波长time-bin纠缠彩虹。首先,紫外彩虹和可见彩虹的光子具有一一对应的关系,形成相关的光子对。其次,通过搭建一个具有固定臂长差的干涉仪,控制泵光功率,实现多波长time-bin纠缠彩虹。
Broadband tunable and multipartite entanglements are essential for further developments of quantum information applications, such as quantum network, atomic memory, and photonic interface of quantum bits. Though most highly entangled photon pairs have been generated by means of parametric down-conversion, it is difficult for parametric up-conversion process to implement the broadband tune ability or extend to short wavelength with the one nonlinear crystal or pump source, as parametric up-conversion has been thus far limited in experiments.
    This dissertation provides our experimental investigations for simultaneous spontaneous parametric up conversion and down conversion to generate time-bin entangled rainbows tunable in the ultraviolet and visible regions. Our research work can be summarized as followings.
    1. The generation of colored conical emission from modulation instability (MI) during nonlinear optical parametric process in quadratic media. This part includes the spatiotemporal MIs by means of second harmonic (SH) generation, quadratic nonlinear coupling between fundamental and SH fields, as well as the degenerate parametric light scattering.
    2. The generation of tunable correlated rainbow pairs, which results from some cascade non-collinear optical parametric amplification (NOPA) in a quadratic medium seeded with a continuous-wave (cw) and pumped with pulsed-wave. The correlated spontaneous up conversion and down conversion photons exhibits a high beam brightness, small spatial divergence, and broad spectral tunability. Such processes could be controlled by continuous-wave light beams for the all-optical control of highly correlated pairs of energetic photons.
    3. First observation of a continuously select multi-wavelength entangled photon pairs based on rainbow pairs in NOPA in the ultraviolet and visible regions. The multi-wavelength entangled photon pairs are formed and characterized with an interferometer with a fixed optical path length difference between its short and long arms. The pumping intensity shall be low enough to ensure negligible generation rate of more than one photon pairs so that the ultraviolet and visible
    photon pairs are concurrently generated at one of the two well-defined times.
引文
1. Tittel, W. & Weihs, G. Photonic entanglement for fundamental tests and quantum communication. Quant. Inform. Comput. 1,3-56 (2001).
    
    2. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791-794 (2001).
    
    3. Schmidt-Kaler, F. et al. Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408-411 (2003).
    
    4. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412-415 (2003).
    
    5. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937-940 (2003).
    
    6. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400-403 (2001).
    
    7. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563-3566 (1998).
    
    8. Marcikic, 1. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).
    
    9. Weihs, G., Jennewein, T., Simon, C, Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039-5043 (1998).
    
    10. Resch, K. J. et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202-209 (2005).
    
    11. Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005).
    
    12. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145 -195 (2002).
    
    13. Julsgaard, B., Sherson, J., Cirac, J. I., Fiura'sek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482 -486 (2004).
    
    14. T. Jennewein et al., Quantum Cryptography with Entangled Photons, Phys. Rev. Lett. 84, 4729 (2000).
    
    15. Naik D, Peterson C, White A, et al. Entangled State Quantun Cryptography: Eavesdropping on the Ekert Protocol. Phys. Rev. Lett. 84, 4733 (2000).
    
    16. Tittel W. et al. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737 (2000).
    
    17. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter & A. Zeilinger. Experimental Quantum Teleportation, Nature (London) 390, 575 (1997).
    
    18. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 80, 1121 (1998).
    
    19.I. Marcikic et al., Long-distance teleportation of qubits at telecommunication wavelengths, Nature (London) 421, 509 (2003).
    
    20. J.-W. Pan et al., Experimental Entanglement Swapping: Entangling Photons That Never Interacted, Phys. Rev. Lett. 80, 3891 (1998).
    
    21. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolski-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91 -94 (1982).
    
    22. Kwiat, P. G., Waks, E., White, A. G., Appelbaum, 1. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773 -R776(1999).
    
    23. Kuklewicz, C. E., Fiorentino, M., Messin, G., Wong, F. N. C. & Shapiro, J. H. High-flux source of polarization-entangled photons from a periodically poled KTiOPO_4 parametric down-converter. Phys. Rev. A 69, 013807 (2004).
    
    24. Kwiat, P. G. et. al. New high-intensity source of polarization-entangled photon pair. Phys. Rev. Lett. 75, 4337-4341 (1995).
    
    25. Kwiat, P. G, Berglund, A. J., Altepeter, J. B. & White A. G Experimental verification of decoherence-free subspaces. Science 290,498-501 (2000).
    26. Aspect, A. Bell's inequality test: more ideal than ever. Nature 398, 189 190 (1999).
    27.彭金生,李高翔,《近代量子光学导论》,1996
    28. A. Aspect, J. Dalibard and G. Roger, Experimental Test of Bell's Inequalities Using Time- Varying Analyzers, Phys. Rev. Lett. 49, 1804(1982)
    29. P. G. Kwiat, A. M. Steinberg and R. Y. Chiao, High-visibility interference in a Bell-inequality experiment for energy and time, Phys. Rev. A 47, R2472 (1993).
    30. J. Brendel, E. Mohler and W. Martienssen, Experimental test of Bell's inequality for energy and time, Europhys. Lett. 20, 575 (1992).
    31. P. R. Tapster, J. G. Rarity and P. C. M. Owens, Violation of Bell's Inequality over 4 km of Optical Fiber, Phys. Rev. Lett. 73, 1923 (1994).
    32. J. G. Rarity and P. R. Tapster, Experimental violation of Bell's inequality based on phase and momentum, Phys. Rev. Lett. 64, 2495(1990).
    33. J. Freedman and J. F. Clauser, Experimental Test of Local Hidden-Variable Theories, Phys. Rev. Lett. 28, 938(1972).
    34. A. Aspect, P. Grangier, and G. Roger, Experimental Tests of Realistic Local Theories via Bell's Theorem, Phys. Rev. Lett. 47, 460 (1981).
    35. Z. Y. Ou and L. Mandel, Violation of Bell's Inequality and Classical Probability in a Two-Photon Correlation Experiment, Phys. Rev. Lett. 61, 50(1988).
    36. Y. H. Shih and C. O. Alley, New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Optical Parametric Down Conversion, Phys. Rev. Lett. 61, 2921(1988).
    37. Brida, G., Genovese, M., Gramegna, M. & Novero, C. Experimental limit on spontaneous parametric upconversion. J. Mod. Opt. 50, 1757-1762 (2003).
    38. Edmatsu, K., Oohata, G., Shimizu, R.& Itoh, T. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167-170 (2004).
    39. Thompson, J. K., Simon, J., Loh, H. & Vuletic, V. A. High-brightness source of narrowband, identical-photon pairs. Science 313, 74-77 (2006).
    40. Yuan, Z. L. et. al. Electronically driven single-photon source. Science 295, 102-105(2002).
    
    41. Strekalov, D. V. & Dowling, J. P. Two-photon interferometry for high-resolution imaging. J. Mod. Opt. 49, 519-527 (2002).
    
    42. Van der Wal, C. H., Eisaman, M. D., Andre, A., Walsworth, R. L., Phillips, D. F., Zibrov, A. S. & Lukin, M. D. Atomic memory for correlated photon states. Science 301, 196-200 (2003).
    
    43. Mitchell, M. W., Lunden, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entanglement state. Nature 429, 161-164 (2004).
    
    44. Walther, P. et. al. De Broglie wavelength of a non-local four-photon state. Nature 429,158-161 (2004).
    
    45. Elliott, C. Building the quantum network. New J. Phys. 4, 46 (2002).
    
    46. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116-120 (2005).
    
    47. Casado, A., Fernandez-Rueda, A., Marshall, T. W., Risco-Delgado, R. & Santos, E. Fourth-order interference in the Wigner representation for parametric down-conversion experiments. Phys. Rev. A 55, 3879-3890 (1997).
    
    48. Dechoum, K., Marshall, T. W. & Santos, E. Parametric down and up conversion in the Wigner representation of quantum optics. J. Mod. Opt. 47, 1273-1287 (2000).
    
    49. Casado, A., Marshall, T. W. & Santos, E. Type II parametric down-conversion in the Wigner-function formalism: entanglement and Bell's inequalities. J. Opt. Soc. Am. B 15, 1572-1577(1998).
    
    50. Sturman, B. I., Odoulov, S. G. & Goulkov, M. Yu. Parametric four-wave processes in photorefractive crystals. Phys. Rep. 275,197-254 (1996).
    
    
    51. Ramirez, M. O., Jaque, D., Bausa, L.E., Garcia Sole, J. & Kaminskii, A. A. Coherent light generation from a Nd:SBN nonlinear laser crystal through its ferroelectric phase transition. Phys. Rev. Lett. 95, 267401.1-4 (2005).
    
    52. Goulkov, M., Shinkarenko, O., Ivleva, L., Lykov, P., Granzow, T., Woike Th., Imlau, M. & Wohlecke, M. New parametric scattering in photorefractive Sr_(0.61)Ba_(0.39)Nb_2O_6:Cr. Phys. Rev. Lett. 91, 243903.1-4 (2003).
    53. Goulkov, M., et. al. Degenerate parametric light scattering in periodically poled LiNbO_3:Y:Fe. Phys. Rev. Lett. 86, 4021-4024 (2001).
    
    54. S. Trillo, C. Conti, P. Di Trapani, O. Jedrkiewicz, J. Trull, G Valiulis, and G Bellanca, "Colored conical emission by means of second-harmonic generation", Opt. Lett. 27, 1451 (2002).
    
    55. S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, Laser Handbook, North-Holland, Amsterdam, (1972).
    
    56. K. Tai, A. Hasegawa, and A. Tonita, Observation of modulational instability in optical fibers, Phys. Rev. Lett. 56, 135 (1986).
    
    57. R. A. Fuerst, D. -M. Baboiu, B. Lawrence, W. E. Torruellas, G I. Stegeman, S. Trillo, and S. Wabnitz, Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear optical medium, Phys. Rev. Lett. 78, 2756 (2004).
    
    58. L. W. Liou, X. D. Cao, C. J. McKinstrie, and G P. Agrawal, Spatiotemporal instabilities in dispersive nonlinear media, Phys. Rev. A 46, 4202 (1992).
    
    59. S. Minardi, J. Yu, G. Blasi, A. Varanavicius, G Valiulis, A. Berzanskis, A. Piskarskas, and P. Di Trapani, Red solitons: Evidence of spatiotemporal instability in x~(2(?)) spatial soliton dynamics, Phys. Rev. Lett. 91, 123901 (2003).
    
    60. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, Observation of two-dimensional spatial solitary waves in a quadratic medium, Phys. Rev. Lett. 74, 5036 (1995).
    
    61. H. Fang, R. Malendevich, R. Schiek, and G I. Stegeman, Spatial modulational instability in one-dimensional lithium niobate slab waveguides, Opt. Lett. 25, 1786(2000).
    
    62. J. F. Corney and O. Bang, Modulational instability in periodic quadratic nonlinear materials, Phys. Rev. Lett. 87, 133901 (2001).
    
    63. H. Zeng, J. Wu, H. Xu, K. Wu, and E Wu, Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium, Phys. Rev. Lett. 87, 143903(2004).
    
    64. H. Zeng, K. Wu, H. Xu, and J. Wu, Seeded amplification of colored conical emission via spatiotemporal modulational instability,Appl. Phys. Lett. 87, 061102 (2005).
    
    65. Shixiang Xu, Hui Zhai, Zhixiong Xu, Yan Peng, and Heping Zeng, Generation of 1064 nm pulses accurately synchronized with broadband 794 nm pulses by CW-seeded intracavity non-collinear OPA, Opt. Express, 14, 7456 (2006)
    
    66. Simon, C. & Poizat, J. Creating single time-bin-entangled photon pairs. Phys. Rev. Lett. 94, 030502 (2005).
    
    67. Dawes, A., Illing, L., Clark, S. & Gauthier D. All-optical switching in Rubidium vapor. Science 308, 672-674 (2005).
    
    68. A. Einstein, B. Podolski, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935).
    
    69. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge (1987).
    
    70. H. J. Briegel, W. Dur, et al, Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication, Phys. Rev. Lett. 81, 5932 (1998).
    
    71. C. H. Bennett, G. Brassard, et al, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).
    
    72. D. Bouwmeester, J. W. Pan, et al, Experimental quantum teleportation, Nature 390,575(1997).
    
    73. Y. H. Kim, S. P. Kulik, and Y. Shih, Quantum teleportation of a polarization state with a complete Bell state measurement, Phys. Rev. Lett. 86, 1370 (2001).
    
    74. J. S. Bell, On the Problem of Hidden Variables in Quantum Mechanics, Rev. Mod. Phys. 38,447-52(1966)
    
    75. J. S. Bell, Science 177,880 (1972)
    
    76. T. E. Kiess, Y. H. Shih, et al., Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion, Phys. Rev. Lett. 71,3893(1993).
    
    77. Y. H. Kim, S. P. Kulik, and Y. Shih, High-intensity pulsed source of space-time and polarization double-entangled photon pairs, Phys. Rev. A 62, 011802 (2000).
    78. Y. Nambu, K. Usami, et al., Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses, Phys. Rev. A 66, 033816(2002).
    
    79. D. Fattal, K. Inoue, et al., Entanglement Formation and Violation of Bell's Inequality with a Semiconductor Single Photon Source, Phys. Rev. Lett. 92, 037903 (2004).
    
    80. X. Y. Li, P. L. Voss, et al., Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band, Phys. Rev. Lett. 94, 053601 (2005).
    
    81. H. Takesue and K. Inoue, Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop, Phys. Rev. A 70, 031802 (2004).
    
    82. D. V. Strekalov, T. B. Pittman, et al., Postselection-free energy-time entanglement, Phys. Rev. A 54,R(?) (1996).
    
    83. J. Brendel, N. Gisin, et al., Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication, Phys. Rev. Lett. 82, 2594 (1999).
    
    84. R. T. Thew, S. Tanzilli, et al, Experimental investigation of the robustness of partially entangled qubits over 11 km", Phys. Rev. A 66, 062304 (2002).
    
    85. van Houwelingen, J. A.W. et al. Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96, 130502 (2006).
    
    86. Kuklewicz, C. E. Wong, F. N. C. & Shapiro, J. H. Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 97, 223601 (2006).
    
    87. Saba, M. et. al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavity. Nature 414, 731-735 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700