聚硅氧烷接枝与嵌段改性聚氨酯水分散体的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机硅改性聚氨酯水分散体既保持了聚氨酯耐磨、抗撕裂的特点,又具有有机硅耐水性及柔韧性好的优点,是目前改性聚氨酯水分散体的研究热点。已有的相关报道多集中于聚硅氧烷(PDMS)嵌段改性聚氨酯的研究,对单端双羟烃基聚硅氧烷接枝改性聚氨酯水分散体的研究报道极少。本文以自制的单端双羟烃基聚硅氧烷和双端双羟烃基聚硅氧烷为改性原料,合成了聚硅氧烷接枝和嵌段改性聚氨酯水分散体,并对比研究了两种改性聚氨酯的性能。
     分别以自制的α-丁基-ω-{3-[2-羟基-3-(N-甲基-N-羟乙胺基)丙氧基]丙基}聚二甲基硅氧烷(PDMSa)和α,ω-双[3-(1-甲氧基-2-羟基-丙氧基)丙基]封端聚硅氧烷(PDMSb)为改性原料、以2,4-甲苯二异氰酸酯为硬段、聚醚210、聚醚220等为软段,二羟甲基丙酸为离子中心、二乙烯三胺为扩链剂,采用丙酮法合成了聚硅氧烷接枝改性聚氨酯水分散体(GPU)和聚硅氧烷嵌段改性聚氨酯水分散体(BPU)。利用红外光谱(FT-IR)对其结构进行了表征,并研究了PDMS含量、分子量及加料顺序对改性聚氨酯水分散体各性能的影响。利用透射电镜(TEM)及环境扫描电镜(SEM)观察了水分散体的颗粒形态、胶膜断面微观形貌,并分析了胶膜各层元素组成。
     FT-IR谱图显示,PDMSa、PDMSb均成功连接到聚氨酯分子链中。PDMS分子量相同时,随着其含量增加,GPU和BPU的粘度和粒径均增加,胶膜的耐水及耐甲苯性能提高,但光泽度、拉伸强度下降。当PDMS含量为9%时,随着其分子量的增加,GPU水分散体粘度下降,胶膜的耐水及耐甲苯性能提高。当PDMSa分子量为2000左右时,接枝改性胶膜的接触角达到最大值(98.7°)、吸水率达到最小值(15.5%)、断裂伸长率达到最大(279.4%)。对BPU而言,随着PDMSb分子量的增加,BPU的粘度及颗粒粒径增大;胶膜的耐水性能提高,耐甲苯性能下降,接触角增加,光泽度、拉伸强度减小,断裂伸长率增大。透射电镜图片显示,两种改性聚氨酯水分散体的颗粒形态均不规则,扫描电镜结果表明,两种胶膜的均存在相分离现象,元素组成分析表明,PDMS有表面富集作用。前后加料方式的对比研究表明,采用前加料方式合成样品的耐水性、耐甲苯性及力学性能较好。
     两种改性聚氨酯的性能对比研究表明,在聚硅氧烷分子量相当、含量相同条件下,PDMSa接枝改性聚氨酯耐水及耐甲苯性能更好。在实际应用时,可选用分子量为2000左右的PDMSa,含量为7%,采用前加料法,可得到综合性能较好的聚硅氧烷改性聚氨酯水分散体。
Recently, much attention has been drawn to polysiloxane modified polyurethanes(PU), which have both the good water resistance and flexibility of polysiloxanes and the good mechanical property and abrasion resistance of polyurethanes. However,most of work focused on the perperties of PU dispersions modified by polysiloxane with block copolymerizeration (BPU) and few on PU dispersions modified by polydimethylsiloxane with graft copolymerization (GPU). We synthesized both GPU and BPU in wich PDMS was self-made. In addition, comparative study on their properties was taken.
     In this work,α-butyl-ω-{3-[2-hydroxy-3-(N-methyl-N-hydroxy-ethylamino)-prop- -oxy]propyl}polydimethylsiloxane(PDMSa) andα,ω-bis(3-(1- methoxy-2-hydroxypr- -opyl) terminated polysiloxanes(PDMSb) were used to synthesize GPU and BPU. In the experiment, toluene 2, 4-diisocyanate was used as hard segment, polypropylene glycol with molecular weight 1000 and 2000 as soft segment, dimethylol propionic acid as the anionic center and diethylenetriamine as the chain extender. The effects of PDMS’s structure, content and molecular weight on properties of copolymer were studied. The structures and morphologies of PU dispersions modified by PDMS were characterized by Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The morphology and element compositions of polyurethane films were examined by scanning electron microscopy-energy dispersive spectroscopy analysis (SEM-EDS).
     FT-IR spectrum showed that the chain of PDMS had been successfully introduced into PU chain. With the same molecular weights of PDMS, the more PDMS were added, the higher the viscosity and the bigger the particle size of dispersions. Furthermore, the water and toluene resistance of PU films became better but the gloss and mechanical properties became poorer with the increase of PDMS contents. When the concentration of PDMS was 9%, the values of GPU viscosity and toluene resistance of GPU films decreased with the molecular weight of PDMSa increasing. The contact angles and elongation of GPU films reached the maximum (98.7°, 279.4%) but the water absorption value reached minimum(15.5%) when the molecular weight of PDMSa is about 2000. With the molecular weight of PDMSb increasing, the viscosity values and particle size of BPU, the water resistance, contact angles and elongation of BPU films increased but gloss and tensile strength decreased. TEM photographs showed that the shape of particle of both GPU and BPU was irregular. SEM images showed both GPU and BPU films had microphase separation. EDS analysis demonstrated that PDMS had surface enrichment. Comparative study on feed order showed that the sample with PDMS added first showed better comprehensive properties.
     We compared the properties of GPU and BPU and found that GPU had better water and toluene resistance than BPU with the same content of PDMS with similar molecular weight. Polyurethane modified by PDMS with good comprehensive properties can be synthesized in the industrial production by adding 7% PDMSa which molecular weight is about 2000.
引文
[1]李燕国.水性聚氨酯的制备及应用[J].皮革化工,1995,6:27-34
    [2]李绍雄,刘益军.聚氨酯树脂及应用[M].北京:化学工业出版社, 2000: 16
    [3]寿崇琦,娄嵩.水性聚氨酯研究的研究综述[J].中国建筑防水,2007,10:14-18
    [4] Jhon Y. K.,Cheong I. W.,Kim J. H.. Chain extension study of aqueous polyurethane dispersions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 179(1): 71-78
    [5]姚明.烷羟基硅油改性水性聚氨酯的合成和性能研究[D].杭州:浙江大学,2006
    [6]卿宁,张晓镭,俞从正,等.皮革工业用PU材料研究回顾与展望[J].中国皮革,1999,28(7):5-10
    [7]朱晓丽,张庆思,冯圣玉.有机硅改性聚氨酯的研究进展[J].中国皮革,2005,34(3):42-44
    [8]凌芳.单组分自交联水性聚氨酯分散体涂料[J].应用化工,2001,30(2):29–31
    [9] Ricard G. C.. Post–crosslinking of Water–borne Urethane[J]. Progress in Organic Coatings, 1997, 32: 51-56
    [10]晏欣,周立清,王树森.聚氨酯–丙烯酸酯复合乳液的合成及力学性能[J].胶体与聚合物,2005,23(3):7-9
    [11] Gertzmann R.,Irle C., Weikard J.,et al. Polyurethane dispersions based on fatty acid dialkanolamides[p]. US: 6710120, 2004-3-23
    [12] Jasinska L., Balas A., Hapinuk J. T., et al. Thermal and Dynamic Mechanical Analysis of Cross–linked Poly(esterurethanes)[J]. Journal of Thermal Analysis and Calorimetry, 2007, 88(2): 419-423
    [13]王浩,唐黎明,陈久军.硅烷偶联剂改性水性聚氨酯涂层[J].化学建材,2006,22 (4):1-4
    [14] Chen G., Chen K.. Self–curing Behaviors of Single Pack Aqueous–based Polyurethane System[J]. Application Polymer Science , 1997, 63(12):1609
    [15]王武生,曾俊,阮德礼.水乳型聚氨酯皮革涂饰剂使用的室温交联剂[J].皮革化工,1995,4(11):36-39
    [16]陈震生,徐伟萍,胡剑青.水性聚氨酯室温交联技术研究进展[J].热固性树脂,2007,22(2):51-53
    [17] Subramani S., Choi S. W., Lee J. Y., et al. Aqueous dispersion of novel silylated (polyurethane–acrylic hybrid/clay) nanocomposite[J]. Polymer, 2007, 48(18): 4691-4703
    [18]谢维斌.丙烯酸酯类改性聚氨酯在棉织物涂层上的应用[J].染整技术,2006,28(1):1-4
    [19]李红强,葛会勤,赵建设,等.水性UV固化聚氨酯丙烯酸酯涂料的制备及其合成工艺的研究[J].涂料工业,2007,37(7):1-4
    [20]傅和青,黄洪,张心亚等.聚氨酯–环氧树脂–丙烯酸酯杂合分散体的合成[J].化工学报,2007,58(2):495-501
    [21]夏骏嵘,刘娇,潘肇琦,等.聚氨酯–丙烯酸酯杂化乳液结构与性能的影响[J].功能高分子学报,2005,18(3):399-403
    [22] Hsu S. H., Chou C. W.. Enhanced biostability of polyurethane containing gold nanoparticles [J]. Polymer Degradation and Stability, 2004, 85(1): 675-680
    [23] Hsu C. K., Ma C. C., Chang W. P., et al. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/water–borne polyurethane nanocomposite[J]. Composites Science and Technology, 2005, 9(65): 1703-1710
    [24]胡津昕,刘德山,孙多先.水性聚氨酯–二氧化钛纳米涂料的制备及表征[J].化学建材,2004,20(3):8-12
    [25]施永建,赵石林.水性聚氨酯纳米复合涂料的制备[J].新型建筑材料,2005,10:61-63
    [26]罗振扬,沈吉静,赵石林.水性聚氨酯的纳米改性[J].化学推进剂与高分子材料,2005,3(3):26-28
    [27]唐邓,刘都宝,李莉,等.纳米材料改性水性聚氨酯的研究进展[J].中国胶粘剂,2008,17(2):56-59.
    [28]姜敏,丁小斌,郑朝晖,等.含氟聚氨酯的研究进展[J].高分子通报,2006,10:10-16
    [29] Trombetta T., Iengo P., Turri S.. Fluorinated segmented polyurethane anionomers for water–oil repellent surface treatments of cellulosic substrates[J]. Journal of Applied Polymer Science, 2005, 98(3): 1364-1372
    [30]王小妹,龙宁华.氟改性聚氨酯乳液的合成及其表面性能[J].应用化学,2006,23(10):1104-1107
    [31]包天宇,羟基氟硅油改性聚氨酯的合成、结构及性能的研究[D].上海:上海交通大学,2007
    [32]汪武.水性含氟聚氨酯乳液的合成及性能的研究[J].聚氨酯工业,2007,22(3):21-23
    [33] Yilgor I., Shaaban A. K., Steckle W. P., et al. Segmented organosiloxane copolymers: Synthesis of siloxane–urea copolymers[J]. Polymer, 1984, 25: 1800-1806
    [34] Wang F., Ji Q., McGrarh JE. Synthesis and characterization of poly (dimethyl siloxane) modified polyurethane[J]. Polymer Preprints, 1997, 38 (1): 308-309
    [35] Yilgor I., Yilgor E., Erenturk B., et al. Effect of structural variations on the synthesis and structure–property behaviorof segmented silicone–urethane and copolymers:Ⅰ. Polymer synthesis[J]. Polymer Preprints, 2004,45(1): 561-562
    [36] Sheth J. P., Yilgor I., Yilgor E., et al. Effect of structural variations on the synthesis and structure–property behavior of segmented silicone–urethane and copolymers:Ⅱ. Structure–property behavior[J]. Polymer Preprints, 2004,45(1): 563-564
    [37] Mitsuhiro S., Takayuki K., Ryutoku Y., et al. Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes[J]. European Polymer Journal, 2000, 36: 485-490
    [38]余海斌,张邦华,宋谋道,等.聚硅氧烷/聚氨酯共混体系的增溶作用[J].高分子材料科学与工程,1996,12(1):54-58
    [39]宋海香,罗运军.水性聚氨酯–有机硅共混水分散体系的性能[J].安阳工学院学报,2006,20(2):4-9
    [40]宋海香,罗运军,赵辉,等.聚氨酯有机硅水分散体系的研究进展[J].化工进展,2004,23(11):1199-1203
    [41] Lohmann D., Hopken J., Domschke, et al. Polyurethane Made From Polysiloxane /Polyol Macromer[P].US:6271332B1, 2001-07-07
    [42] Wang H. H., Lin Y. T.. Silicon–Containing Anionic Water–Borne Polyurethane with Covalently Bonded Reactive Dye[J]. Journal of Applied Polymer Science, 2003, 90: 2045-2052
    [43]易运红,张力,吕广镛,等.有机硅改性水性阳离子聚氨酯的合成与性能研究[J].中国涂料,2006,21(8):29-33
    [44]李永清,朱锡,石勇,等.聚二甲基硅氧烷/聚氨酯/环氧树脂共混聚合物的合成和其低表面能研究[J].涂料工业,2006,36 (7):14-16
    [45]李永清,朱锡,魏世勇,等.聚四氟乙烯、有机硅复合改性聚氨酯/环氧树脂共混聚合物的合成及其低表面能特性[J].功能高分子学报,2007,20(1):104-108
    [46]候孟华,刘伟区,陈精华,等.氨基硅烷偶联剂改性水性聚氨酯木器涂料的研制[J].装饰装修材料,2004,9:29-31
    [47] Yen M. S., Tsai P. Y.. Effects on the Structure and Properties of Membranes Formed by Blending Polydimethylsiloxane Polyurethane into Different Soft–Segment Waterborne Polyurethanes[J]. Journal of Applied Science, 2006, 102: 210-221
    [48] Bai C. Y., Zhang X. Y., Dai J. B.. Synthesis and characterization of PDMS modified UV–curable waterborne polyurethane dispersions for soft tact layers[J]. Progress in Organic Coatings, 2007, 60: 63-68
    [49] Dai J. B., Zhang X. Y., Chao J., et al. A new core–shell type fluorinated acrylic and siliconated polyurethane hybrid emulsion[J]. Journal of Coatings Technology and research, 2007, 4(3): 283-288
    [50]冯林林,张兴元,戴家兵,等.有机硅改性聚氨酯的合成和表面性能的研究[J].高分子材料科学与工程,2007,23(3):47-50
    [51]黄勤,张剑秋,封玉凤.高含量有机硅改性水性聚氨酯乳液的制备及性能研究[J].涂料工业,2006,36(9):26-29
    [52]张志国,姜绪宝,朱晓丽.聚氨酯改性用有机硅的种类及其改性机理[J].济南大学学报,2007,21(3):200-204
    [53] Jiang H. M., Zhong Z., Song W. H.. Alkoxysilane Functionalized Polyurethane/Polysiloxane Copolymer: Synthesis and the Effect of End–capping Agent[J]. Polymer Bulletin, 2007, 59: 53-63
    [54]张斌,孙海龙,矫彩山,等.有机硅改性聚氨酯的合成与性能研究[J].弹性体,2007,17(3):31-36
    [55] Speckhard T., Cooper U.. Tensile Properties of Segmented Polyurethane Elastomers: Factor leading to Reduced Properties for Polyurethanes Based on Nonpolar Soft segments[J]. Rubber Chemical Technology, 1986, 59: 405-411
    [56]姜伟峰,赵士贵,张成国,等.聚氨酯改性有机硅的合成与性能[J].上海化工,2006,31(4):21-24
    [57] Jiang H. M., Zheng Z., Song W. H., et al. Moisture–Cured Polyurethane/Polysiloxane Copolymers: Effects of the Structure of Polyester Diol and NCO/OH Ratio[J]. Journal of Applied Polymer Science, 2008, 108: 3644-3651
    [58]马伟,李树材,贾旭敏.有机硅改性水性聚氨酯乳液的制备及性能[J].天津科技大学学报,2008,23(1):6-9
    [59] Liu J., Pan Z. Q., Gao Y.. Study on the Morphology Structure and Properties of Aqueous Polyurethane Modified by Poly(dimethyl siloxane)[J]. Journal of Applied Polymer Science, 2007, 105: 3037-3046
    [60] Y?lg?r E., Y?lg?r I.. Hydrogen bonding: a critical parameter in designing silicone copolymers[J]. Polymer, 2001, 42(19): 7953-7959
    [61] Yilg?r E., Burgaz E., Yurtsever E.. Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers[J]. Polymer, 2000, 41(3): 849-857
    [62] Yilgor E., Yilgor I.. High Molecular Weight, High Strength Silicone–Urethane Copolymers: Preparation and Properties[J]. Polymer Preprints, 1998, 39(1): 465-466
    [63] Ekin A., Webster D. C., Daniels W. J., et al. Synthesis, formulation, and characterization of siloxane–polyurethane coatings for underwater marine applications using combinatorial high–throughput experimentation[J]. Journal of Coatings Technology and Research, 2007, 4(4): 435-457
    [64]卿宁.健康型建筑内墙乳胶漆的研制[J].涂料涂装与电镀,2003,2:7-9
    [65] Ni H., Aaron H. J., Soucek M. D., et al. Polyurethane/Polysiloxane Ceramer Coatings: Evaluation of Corrosion Protection[J]. Macromolecular Materials and Engineering, 2002, 287: 470-479
    [66] Kazuyuki H.. Manufacture of hydrophilic polyurethanes for coatings and artificial leather[P] : JP : 200063471. 2000–02–29
    [67]寿崇琦,娄嵩,尚盼.水性聚氨酯的研究综述[J].国外建材科技,2007,28(4):1-6
    [68]叶敏.医用聚氨酯[J].化工新材料,1992,8:4-7
    [69]朱杰,暴峰,黄世强等.有机硅改性聚氨酯的研究进展[J].有机硅氟资讯,2002,7(2):32-34
    [70] Park H. B., Choon K. K., Young M. L.. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes[J]. Journal of Membrane Science, 2002, 204: 257-269
    [71] Gomes D., Peinemann K. V., Nunes S. P., et al. Gas transport properties of segmented poly (ether siloxane urethane urea) Membranes[J]. Journal of Membrane Science, 2006, 28: 747-753
    [72]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000:9
    [73] Kozakiewicz J.. Polysiloxaneurethanes: new polymers for potential coating applications[J]. Progress in Organic Coatings, 1996, 27: 123-131
    [74]朱晓丽.有机硅改性水性聚氨酯的研究[D].济南:山东大学,2005
    [75] Chen R. S., Chang C. J., Chang Y. H.. Study on siloxane–modified polyurethanedispersions from various polydimethylsiloxanes[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43: 3482-2490
    [76] Sun H. F., Zhang Q. S., Zhang M., et al. Synthesis and characterization ofα–butyl–omega–{3–[2–hydroxy–3–(N–Methyl–N–hydroxy–ethylamino)propoxy]propyl}polydimethyl–Siloxanes[J], Journal of Applied Polymer Science, 2010, 112: 882-887
    [77]孙海峰.单端双羟烃基聚二甲基硅氧烷的合成及研究[D].济南:山东轻工业学院,2009
    [78]陈亚东,张慧波,孙向东.交联改性水性聚氨酯胶粘剂合成研究[J].化工生产与技术,2007,14(3):17-20
    [79]丁莉,昊云.水性PU胶粘剂结构与性能的研究[J].功能高分子学报,2001,14(1):95
    [80] Nanda A. K., Wicks D. A..The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process[J]. Polymer, 2006, 47: 1805-1811
    [81]郑树亮,黑恩成.应用胶体化学[M].上海:华东理工大学出版,1994
    [82] Zhu X. L., Zhang M., Zhang Q. S., et al. Synthesis and Characterization of Bis(metho––xylahydroxyl)–functionalize Disiloxane and Polysiloxane Oligomers Derivatives Therefrom[J]. European Polymer Journal, 2005, 41(9): 1993-2001
    [83]于一涛.双羟烃基聚硅氧烷的合成及其对水性聚氨酯改性的研究[D].济南:山东轻工业学院,2008
    [84] Good R. J.. A thermodynamic derivation of Wenzel's modification of Young's equation for contact angles; together with a theory of hysteresis[J]. Journal of the American Chemical Society, 1952, 74: 5041-5042
    [85] Eick J. D., Good R. J., Neumann AW. Thermodynamics of contact angles. II. Rough solid surfaces[J]. Journal of Colloid Interface Science, 1975, 53: 235-238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700