膜生物反应器—反渗透组合系统中的膜污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对污水深度处理中的MBR-RO组合工艺,以MBR膜污染机理、缓解MBR膜污染、RO膜污染机理、缓解RO膜污染为四个研究方面,系统地分析了MBR-RO组合系统中的膜污染问题。
     平行实验表明,中空纤维膜MBR的膜面附着物是污泥泥饼层,而板式膜MBR的膜面附着物是一层二次动态膜,它可以缓解作为板式膜主要污染因素的膜孔堵塞污染;由于泥饼层的作用,EPS与中空纤维膜的膜污染相关性良好,而在板式膜中,EPS与其膜污染相关性很差,并且二次动态膜显著降低了SMP与膜污染的相关性;在板式膜运行过程中,二次动态膜起到了初期缓解膜污染,后期加剧膜污染的作用。
     运行中试规模板式膜MBR,发现在反应器空间内,污泥EPS的分布并不均匀,而是呈现一定的规律。在水平方向上,EPS呈现出两端高中间低的分布形式,在深度方向上,EPS随深度的增加而降低。这与膜组件的曝气形式和进水方式有关;运行小试规模中空纤维膜MBR,发现加入PAC或者运行好氧颗粒污泥都可显著缓解膜污染。颗粒污泥拥有更好的过滤性能,但在膜面的累积过程中,大粒径的污泥发生了破碎,相比混合液,泥饼层中污泥EPS的含量明显增高。
     以BSA和藻酸钠代表MBR产水中的有机物,运行RO系统,发现藻酸钠对膜污染的影响高于BSA的影响,BSA与藻酸钠共存时会产生交互作用,显著增加了有机物的污染程度。溶液化学成分中,Ca2+以架桥作用络合了有机物的羧基官能团,加速了有机物的聚集,对有机物污染有高度显著的影响;Mg2+的影响次之;离子强度可改变有机物的电性,显著影响有机物污染的程度。上述三者之间不具有交互作用。有机物会在膜面形成厚密的凝胶层,引起严重的膜污染,且其粘性大于膜本身的粘性,加剧了有机物的聚集。
     MBR-RO组合系统处理市政污水时可以得到非常优良的水质。在系统运行中,以RO的膜污染机理为理论基础,研究盐水定期冲洗和加入CER预处理对缓解RO膜污染的效果。结果表明,NaCl溶液定期冲洗可显著缓解膜污染,这是因为高浓度的Na+不但可以置换出架桥于有机物之间的二价阳离子,而且其产生的渗透压可以迫使污染层发生膨胀,减弱了有机物分子间的结合;CER预处理显著消减了RO进水中二价阳离子的浓度,减轻了有机物与其络合的程度,有效缓解了有机物污染的发生,延长了RO的使用周期。
In combined MBR-RO process for advanced wastewater reclamation, the membrane fouling was studied systematically in four aspects: mechanism of membrane fouling in MBR, reduction of membrane fouling in MBR, mechanism of membrane fouling in RO, reduction of membrane fouling in RO.
     The parallel experiments show that the object on hollow fiber membrane is sludge cake, but the one on flat sheet membrane is secondary dynamic membrane. Sludge cake and pore block are thought to be the dominating fouling factors in hollow fiber membrane and flat sheet membrane, respectively, but secondary dynamic membrane can reduce pore block fouling. Further more, EPS only significantly affects the fouling of hollow fiber membrane because of the sludge cake, besides, secondary dynamic membrane largely reduces the correlation between SMP and fouling of flat sheet membrane. In long term operation, it is believed that secondary dynamic membrane can reduce membrane fouling in the beginning but accelerate membrane fouling at the last.
     The results of a pilot-scale flat sheet membrane MBR show that EPS is not uniformly distributed in the reactor. In the horizontal plane, the content of EPS is lowest in the center, and in the vertical plane, the content of EPS reduces with depth increasing. The distribution is effected by the located position of perforated pipe and the influent mode. In a bench-scale hollow fiber membrane MBR, dosing PAC and using granular sludge can both reduce membrane fouling. The filterability of granular sludge is better than that of floc sludge, but in operation, granular sludge is easily broken. It is appeared that the content of EPS in sludge cake is larger than that in the mixed liquor, both in floc sludge and granular sludge.
     Bovine serum albumin (BSA) and sodium alginate were used as models of protein and polysaccharides, which represent the organics in effluent of MBR in MBR-RO system. The experiments show that the impact of alginate on membrane fouling is more significant than that of BSA, and the synergistic influence between them can enhance membrane fouling notably. Fouling is observed to be more severe in the presence of Ca2+ compared to Mg~(2+) due to its ability to bridge organic substances that results in denser fouling layer. Increase in the ionic strength lead to weaker electrostatic repulsion, and hence more rapid fouling. And there are no synergistic influences between the three chemistries mentioned above. Lastly, the images of fouling layer illustrate that the gel of organic matter on membranes is thick and dense, which can induce severe membrane fouling.
     The effluent quality of MBR-RO system treating municipal wastewater is very good. In operation, the effect of periodical washing by salt water and using cation exchange resin (CER) as a pretreatment to reduce RO membrane fouling were studied. The results show that NaCl solution can effectively reduce membrane fouling in two ways. First, Na~+ replaces the Ca~(2+) between organic substances. Second, the high osmotic pressure caused by high salt concentration can expand the fouling layer; CER process can remove divalent cation effectively, which alleviates the aggregation of organic matters, and as the result, the organic fouling of RO is reduced.
引文
[1]杨东平,自然之友.中国环境发展报告(2009)[M]. 2009,北京:社会科学文献出版社。
    [2]闫世辉,钱勇. 2008年环境保护形式[M]. 2008,北京:社会科学文献出版社.
    [3] Alfieri Pollice, Adam Brookes, Bruce Jefferson, et al. Sub-critical flux fouling in membrane bioreactors-a review of recent literature [J]. Desalination, 2005, 174(2): 221-230.
    [4] Wenbo Yang, Nazim Cicek, John Ilg. State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America [J]. Journal of Membrane Science, 2006, 270(1-2): 201-211.
    [5] T Melin, B Jefferson, D Bixio, et al. Membrane bioreactor technology for wastewater treatment and reuse [J]. Desalination, 2006, 187(1-3): 271~282.
    [6]王维军,周红星,刘大江.污水再生利用处理技术-膜生物反应器[J].河北建筑工程学院学报, 2005, 23(3): 8~10.
    [7]李莹. MBR中污泥EPS变化及其对反应器运行的影响[D].天津:天津大学环境科学与工程学院, 2008.
    [8] L Defrance, M Y Jaffrin. Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment [J]. Journal of Membrane Science, 1999, 152(4): 203-210.
    [9] S P Hong, T H Bae, T M Tak, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors [J]. Desalination, 2002, 143(5): 219-228.
    [10]赵英,白晓琴,高飞亚,等.膜生物反应器在污水处理中的研究进展[J].中国给水排水, 2004, 20(12): 33-36.
    [11]陈福泰,黄霞(译).膜生物反应器-水和污水处理的原理与应用[M]. 2009,北京:科学社会出版社.
    [12]王捷.浸没式膜-生物反应器运行工况及系统设计的优化研究[D].天津:天津大学环境科学与工程学院, 2007.
    [13] Xia Huang, Ping Gui, Yi Qian. Effect of sludge retention time on the microbial behavior in a submerged membrane bioreactor [J]. Process Biochemistry, 2001, 36(10): 1001-1006.
    [14] Xia Huang, Rui Liu, Yi Qian. Behavior of soluble microbial products in a membrane bioreactor [J]. Process Biochemistry, 2000, 36(5): 401-406.
    [15]郑祥,刘俊新.重力出流式MBR处理生活污水及毛纺废水[J].中国给水排水, 2004, 20(12): 1-5.
    [16]李红岩,高孟春,杨清香,等.无排泥运行下膜生物反应器的硝化代谢产物及细菌活性[J].环境科学, 2004, 25(6): 89-91.
    [17]顾国维,何义亮.膜生物反应器在污水处理中的研究与应用[M]. 2002,北京:化学工业出版社.
    [18]张树国,顾国维,吴志超.膜生物反应器中污泥特性对膜污染的影响研究[J].工业水处理, 2003, 23(12): 8-12.
    [19]陈卫文,顾平,刘锦霞. MBR对不同分子质量有机物的去除规律[J].中国给水排水, 2003, 19(2): 43-45.
    [20]王景峰.好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究[D].天津:天津大学环境科学与工程学院, 2006.
    [21]田爱军,李健生,孙秀云,等.一体式膜生物反应器工艺中膜过滤特性研究[J].环境科学与技术, 2004, 27(3): 59~60.
    [22] Pierre Le-Clech, Vicki Chen, Tony A G Fane. Fouling in membrane bioreactors used in wastewater treatment [J]. Journal of Membrane Science, 2006, 284(1-2): 17~53.
    [23] Hugh Thomas, Simon Judd, John Murrer. Fouling characteristics of membrane filtration in membrane bioreactors [J]. Membrane Technology, 2000, 2000(122): 10~13.
    [24]张颖,任南琪,吴忆宁,等.一体式膜生物反应器膜污染现象及清洗试验研究[J].化学工程, 2004, 32(2): 57~60.
    [25] In-Soung Chang, Soon-Ouk Bag, Chung-Hak Lee. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge [J]. Process Biochemistry, 2001, 36(8-9): 855~860.
    [26]李军,张刚,江定国,等.延缓膜生物反应器中膜污染的措施探讨[J].中国给水排水, 2007, 23(10): 9~13.
    [27] Seong-Hoon Yoon, Hyung-Soo Kim, Ik-Tae Yeom. Optimization model of submerged hollow fiber membrane modules [J]. Journal of Membrane Science, 2004, 234(1-2): 147-156.
    [28] S Chang, A G Fane, S Vigneswaran. Experimental assessment of filtration of biomass with transverse and axial fibres [J]. Chemical Engineering Journal, 2002, 87(1): 121-127.
    [29] S Chang, A G Fane. Filtration of biomass with lab-scale submerged hollow fibre membrane module: effect of operational conditions and module configuration [J]. Journal of Chemical Technology and Biotechnology, 2002, 77(1-3): 1030-1038.
    [30] F Wicaksana,A G Fane,V Chen. The relationship between critical flux and fiber movement induced by bubbling in a submerged hollow fiber system [J]. Water Science and Technology, 2005, 51(6-7): 115-122.
    [31] S Chang, A G Fane, S Vigneswaran. Modeling and optimizing submerged hollowfibre membrane module [J]. AIChE Journal, 2004, 48(10): 2203-2212.
    [32] S Chang, A G Fane. The effect of fibre diameter on filtration and flux distribution relevance to submerged hollow fibre modules [J]. Journal of Membrane Science, 2001, 184(2): 221-231.
    [33] S Chang, A G Fane, T D Waite. Analysis of constant permeate flow filtration using dead-end hollow fiber membranes [J]. Journal of Membrane Science, 2006, 268(2): 132-141.
    [34] H Nagaoka, S Ueda, A Miya. Influence of bacterial extracellular polymers on the membrane separation activated sludge process [J]. Water Science and Technology, 1996, 34(9): 165-172.
    [35] Y Magara, H Itoh. The effect of operational factors on solid/liquid weparation by ultra-membrane filtration in a biological denitrification system for collected human excreta treatment plants [J]. Water Science and Technology, 1991, 23: 1583-1590.
    [36]迪莉拜尔·苏力坦,莫罹,黄霞. PAC-MBR组合工艺中膜污染及清洗方法的研究[J].给水排水, 2003, 29( 5): 1-5.
    [37] A I Sch?fer, U Schwicker, M M Fischer, et al. Microfiltration of colloids and natural organic matter [J]. Journal of Membrane Science, 2000, 171(2): 151-172.
    [38] S Judd. A review of fouling of membrane bioreactors in sewage treatment [J]. Membrane Science and Technology, 2004, 49(2): 229-235.
    [39]曾一鸣.膜生物反应器技术[M]. 2006,北京:国防工业出版社.
    [40] Yonghun Lee, Jinwoo Cho, Youngwoo Seo, et al. Modeling of submerged membrane bioreactor process for wastewater treatment [J]. Desalination, 2002, 146(1-3): 451-457.
    [41] H Nagaoka, H Akoh. Decomposition of EPS on the membrane surface and its influence on the fouling mechanism in MBRs [J]. Desalination, 2008, 231(1-3): 150-155.
    [42] In S Kim, Namjung Jang. The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR) [J]. Water Research, 2006, 40(14): 2756-2764.
    [43] J Houghton, J Quarmby, T Stephenson. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer [J]. Water Science and Technology, 2001, 44(2-3): 373-379.
    [44]吴金铃,黄霞.膜生物反应器混合液性质对膜污染影响的研究进展[J].环境污染治理技术与设备, 2006, 7(2): 16-24.
    [45]窦照英,张烽,徐平.反渗透水处理技术应用问答[M]. 2004,北京:化学工业出版社.
    [46]邓耀杰,李平,朱凡,等.以回用为目标的污水深度处理组合工艺极其发展[J].环境工程, 2005, 23(3): 10-14.
    [47]张艳萍.污水深度处理与回用[M]. 2009,北京:化学工业出版社.
    [48]靖大为.反渗透系统优化设计[M]. 2006,北京:化学工业出版社.
    [49]王晓琳,丁宁.反渗透和纳滤技术与应用[M]. 2005,北京:化学工业出版社.
    [50]徐竟成,许健,李光明,等.微絮凝-微滤用于印染废水回用反渗透预处理的试验研究[J].环境工程学报, 2007, 1(11): 64-68.
    [51]张颖,顾平,王启山.预膜法用于控制膜生物反应器膜污染[J].天津大学学报, 2006, 39(B06): 316-319.
    [52]范正红,陈福泰,陈晓婷,等.微滤/反渗透净化污水厂二级处理出水[J].中国给水排水, 2005, 21(6): 44-46.
    [53]李健,李富元,关代宇,等.天津开发区“双膜法”污水再生回用工程[J].中国给水排水, 2003, 19(11): 96-97.
    [54] G K Pearce. UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs [J]. Desalination, 2008, 222(1-3): 66-73.
    [55] Jian Jun Qin, Maung Nyunt Wai, Maung Htun Oo, et al. Feasibility study for reclamation of a secondary treated sewage effluent mainly from industrial sources using a dual membrane process [J]. Separation and Purification Technology, 2006, 50(3): 380-387.
    [56] Jeonghwan Kim, Francis A DiGiano, Roderick D Reardon. Autopsy of high-pressure membranes to compare effectiveness of MF and UF pretreatment in water reclamation [J]. Water Research, 2008, 42(3): 697-706.
    [57] Robert Y Ning, Thomas L Troyer. Colloidal fouling of RO membranes following MF/UF in the reclamation of municipal wastewater [J]. Desalination, 2007, 208(1-3): 232-237.
    [58]曹斌,黄霞, ATSUSHI Kitanaka,等. MBR-RO组合工艺污水回收中试研究[J].环境科学, 2008, 29(4): 915-919.
    [59] Emmanuel Dialynas, Evan Diamadopoulos. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater [J]. Desalination, 2009, 238(1-3): 302-311.
    [60] L S Tam, T W Tang, G N Lau, et al. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems [J]. Desalination, 2007, 202(1-3): 106-113.
    [61] Eun mi Gwon, Myong jin Yu, Hee kyong Oh, et al. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater [J]. Water Research, 2003, 37(12): 2989-2997.
    [62] Wui Seng Ang, Menachem Elimelech. Fatty acid fouling of reverse osmosis membranes: Implications for wastewater reclamation [J]. Water Research, 2008, 42(16): 4393-4403.
    [63] Fulin Wang, Volodymyr V Tarabara. Pore blocking mechanisms during early stages of membrane fouling by colloids [J]. Journal of Colloid and Interface Science, 2008, 328(2): 464-469.
    [64] Thuy Tran, Brian Bolto, Stephen Gray, et al. An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant [J]. Water Research, 2007, 41(17): 3915-3923.
    [65] Hui Ling Yang, Chihpin Huang, Jill R Pan. Characteristics of RO foulants in a brackish water desalination plant [J]. Desalination, 2008, 220(1-3): 353-358.
    [66]张颖,牛志广.使用铁盐混凝方法延缓膜污染[J].天津大学学报, 2007, 40(9):1066-1070.
    [67] Fangang Meng, Hanmin Zhang, Yansong Li, et al. Application of fractal permeation model to investigate membrane fouling in membrane bioreactor [J]. Journal of Membrane Science, 2005, 262(1-2): 107-116.
    [68] Zubair Ahmed, Jinwoo Cho, Byung-Ran Lim, et al. Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor [J]. Journal of Membrane Science, 2007, 287(2): 211-218.
    [69] R Shane Trussell, Rion P Merlo, Slawomir W Hermanowicz, et al. Influence of mixed liquor properties and aeration intensity on membrane fouling in a submerged membrane bioreactor at high mixed liquor suspended solids concentrations [J]. Water Research, 2007, 41(5): 947-958.
    [70]朱彤,王云德,谢元华,等.浸没板式MBR处理生活污水造成膜堵塞的关键因素[J].环境科学研究, 2007, 20(2): 41-45.
    [71] Faisal Ibney Hai, Kazuo Yamamoto, Kensuke Fukushi. Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling [J]. Desalination, 2005, 180(1-3): 83-97.
    [72] S Judd. Submerged membrane bioreactors: flat plate or hollow fiber? [J]. Filtration & Separation, 2002, 39(5): 30-31.
    [73] Jia-yu Tian, Heng Liang, Yan-ling Yang. Membrane adsorption bioreactor (MABR) for treating slightly polluted surface water supplies: As compared to membrane bioreactor (MBR) [J]. Journal of Membrane Science, 2008, 325(1): 262-270.
    [74]贾辉,王捷,张宏伟.浸没式膜生物反应器中曝气系统的优化[J].天津大学学报, 2007, 40(8): 931-935.
    [75] S Ognier, C Wisniewski, A Grasmick. Characterization and modeling of fouling in membrane bioreactor [J]. Desalination, 2002, 146(1-3): 141-147.
    [76]曹效鑫,魏春海,黄霞.投加粉末活性炭对一体式膜-生物反应器膜污染的影响研究[J].环境科学学报, 2005, 25(11): 1443-1447.
    [77] Sophie Comte, Gilles Guibaud, Michel Baudu. Effect of extraction method onEPS from activated sludge: An HPSEC investigation [J]. Journal of Hazardous Materials, 2007, 140(1-2): 129-137.
    [78] E Reid, Xingrong Liu, S J Judd. Sludge characteristics and membrane fouling in full-scale submerged membrane bioreactors [J]. Desalination, 2008, 219(1-3): 240-249.
    [79] Kerry J Howe, Ashish Marwah, Kuang Ping Chiu, et al. Effect of membrane configuration on bench-scale MF and UF fouling experiments [J]. Water Research, 2007, 41(17): 3842-3849.
    [80] Vinod T Kuberkar, Robert H Davis. Modeling of fouling reduction by secondary membranes [J]. Journal of Membrane Science, 2000, 168(1-2): 243-258.
    [81] Namjung Jang, Hokyong Shon, Xianghao Ren, et al. Characteristics of bio-foulants in the membrane bioreactor [J]. Desalination, 2006, 200(1-3): 201-202.
    [82] Siom Judd. The MBR Book: Principles and Applications of Membrane Bioreactor for Water and Wastewater Treatment [M]. 2006, London: Elsevier Science.
    [83]孟凡刚,张捍民,于连生,等.活性污泥性质对短期膜污染影响的解析研究[J].环境科学, 2006, 27(7): 1348-1352.
    [84]朱彤,谢元华,韩进,等.膜生物反应器中微生物特征与膜污染的相关性[J].化学工程, 2008, 36(11): 43-47.
    [85] Jaeshin Kim, Wei Shi, Yeping Yuan, et al. A serial filtration investigation of membrane fouling by natural organic matter [J]. Journal of Membrane Science, 2007, 294(1-2): 115-126.
    [86] X F Li, F S Gao, Z Z Hua, et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling [J]. Separation and Purification Technology, 2005, 46(1-2): 19-25.
    [87] Xiufen li, Yanjun Li, He Liu, et al. Characteristics of aerobic biogranules from membrane bioreactor system [J]. Journal of Membrane Science, 2007, 287(2): 294-299.
    [88] Katsuki Kimura, Rie Nishisako, Taro Miyoshi. Baffled membrane bioreactor (BMBR) for efficient nutrient removal from municipal wastewater [J]. Water Research, 2008, 42(3): 625-632.
    [89] Fukushi K, Kato S, Antsuki T, et al. Isolation of copper binding proteins from activated sludge culture [J]. Water Science and Technology, 2001, 44(2-3): 453-459.
    [90]张颖,牛志广,张宏伟.地统计学用于近海有机物浓度估值的研究[J].天津大学学报, 2007, 40(4): 484-489.
    [91] Zuohong Geng, Eric R Hall. A comparative study of fouling-related properties ofsludge from conventional and membrane enhanced biological phosphorus removal processes [J]. Water Research, 2007, 41(19): 4329-4338.
    [92] Fengshen Fan, Hongde Zhou, Hadi Husain. Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes [J]. Water Research, 2006, 40(2): 205-212.
    [93] N Schwarzenbeck, J M Borges, P A Wilderer. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Appl Microbiol Biotechnol, 2005, 66: 711-718.
    [94] Sunil S Adav, Duu Jong Lee, Kuan Yeow, et al. Aerobic granular sludge: Recent advances [J]. Biotechnology Advances, 2008, 26(5): 411-423.
    [95] Lyko S, Djamila Al Halbouni, Thomas Wintgens, et al. Polymeric compounds in activated sludge supernatant- Characterisation and retention mechanisms at a full-scale municipal membrane bioreactor [J]. Water Research, 2007, 41(17): 3894-3902.
    [96] Xiu Fen Li, Yan Jun Li, He Liu, et al. Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor [J]. Separation and Purification Technology, 2008, 59(1): 26-33.
    [97] Zhang bin, Sun baosheng, Ji min, et al. Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR [J]. Desalination, 2008, 227(1-30): 286-294.
    [98] Maxime Remy, Perry van der Marel, Arie Zwijnenburg, et al. Low dose powdered activated carbon addition at high sludge retention times to reduce fouling in membrane bioreactors [J]. Water Research, 2009, 43(2): 345-350.
    [99] Zhao Ying, Gu Ping. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR [J]. Separation and Purification Technology, 2006, 52(1): 154-160.
    [100]赵英,于丹丹,秦东平,等. PAC投加量对MBR混合液性质及膜污染的影响[J].水处理技术, 2005, 31(11): 52-55.
    [101]张凤君,王顺义,刘田,等.投加粉末活性炭对MBR运行性能的影响[J].吉林大学学报, 2007, 37(2): 350-354.
    [102] Yamini Satyawali, Malini Balakrishnan. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater [J]. Water Research, 2009, 43(6): 1577-1588.
    [103]林红军,陆晓峰,王文浪,等. PAC-MBR组合工艺处理城市污水厂出水的研究[J].上海理工大学学报, 2007, 29(2): 154-159.
    [104]罗虹,顾平.应用投加粉末活性炭的膜生物反应器处理生活污水的研究[J].重庆环境科学, 2002, 24(3): 28-31.
    [105] How Yong Ng, Kwee Guan Tay, Seng Chye Chua, et al. Novel 16-inchspiral-wound RO systems for water reclamation - a quantum leap in water reclamation technology [J]. Desalination, 2008, 225(1-3): 274-287.
    [106] Qilin Li, Menachem Elimelech. Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter [J]. Journal of Membrane Science, 2006, 278(1-2): 72-82.
    [107] Sangyoup Lee, Menachem Elimelech. Salt cleaning of organic-fouled reverse osmosis membrane [J]. Water Research, 2007, 41(5): 1134-1142.
    [108] Qilin Li, Zhihua Xu, Ingo Pinnau. Fouling of reverse osmosis membrane by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux [J]. Journal of Membrane Science, 2007, 290(1-2): 173-181.
    [109] Huajuan Mo, Kwee Guan Tay, How Yong Ng. Fouling of reverse osmosis membrane by protein (BSA): Effects of pH, calcium, magnesium, ionic strength and temperature [J]. Journal of Membrane Science, 2008, 315(1-2): 28-35.
    [110] Sangyoup Lee, Wui Seng Ang, Menachem Elimelech. Fouling of reverse osmosis membranes by hydrophilic organic matter: implications for water reuse [J]. Desalination, 2006, 187(1-3): 313-321.
    [111] Jian Jun Qin, Kiran Arun Kekre, Guihe Tao, et al. New option of MBR-RO process for production of NEWater from domestic sewage [J]. Journal of Membrane Science, 2006, 272(1-2): 70-77.
    [112] k Glucina, A Alvarez, J M Laine. Assessment of an integrated membrane system for surface water treatment [J]. Desalination, 2000, 132(1-2): 73-82.
    [113]上海市科学技术交流站.正交试验设计法[M]. 1975,上海:上海人民出版社.
    [114] A Zach maor, R Semiat, A Rahardianto, et al. Diagnostic analysis of RO desalting treated wastewater [J]. Desalination, 2008, 230(1-3): 239-247.
    [115] Wui Seng Ang, Sangyoup Lee, Menachem Elimelech. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes [J]. Journal of Membrane Science, 2006, 272(1-2): 198-120.
    [116] Wui Seng Ang, Menachem Elimelech. Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation [J]. Journal of Membrane Science, 2007, 296(1-2): 83-92.
    [117] QiLin Li, Menachem Elimelech. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms [J]. Environmental Science & Technology, 2004, 38(17): 4683-4693.
    [118] Nidal Hilal, A Wahab Mohammad, Brian Atkin, et al. Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: a review [J]. Desalination, 2003, 157(1-3): 137-144.
    [119] Emond W F de Roever, Ingmar H Huisman. Microscopy as a tool for analysis of membrane failure and fouling [J]. Desalination, 2007, 207(1-3): 35-44.
    [120] Alison E Contreras, Albert Kim, Qilin Li. Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter [J]. Journal of Membrane Science, 2009, 327(1-2): 87-95.
    [121] T H Chong, F S Wong, A G Fane. Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis Experimental observations [J]. Journal of Membrane Science, 2008, 314(1-2): 101-111.
    [122] J S Vrouwenvelder, J A M van Paassen, J M C van Agtmaal, et al. A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: Fact or fiction? [J]. Journal of Membrane Science, 2009, 326(1): 36-44.
    [123]张葆宗.反渗透水处理应用技术[M]. 2004,北京:中国电力出版社.
    [124] Long D Nghiem, Simon Hawkes. Effects of membrane fouling on the nanofiltration of trace organic contaminants [J]. Desalination, 2009, 236(1-3): 273-281.
    [125] J M Gozálvez Zafrilla, D Sanz Escribano, J Lora García, et al. Nanofiltration of secondary effluent for wastewater reuse in the textile industry [J]. Desalination, 2008, 222(1-3): 272-279.
    [126] Berrin Tansel, John Sager, Jay Garland, et al. Deposition of extracellular polymeric substances (EPS) and microtopographical changes on membrane surfaces during intermittent filtration conditions [J]. Journal of Membrane Science, 2006, 285(1-2): 225-231.
    [127]王琳,王宝贞.饮用水深度处理技术[M]. 2005,北京:化学工业出版社.
    [128] Shirra Gur Reznik, Ilan Katz, Carlos G Dosoretz. Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents [J]. Water Research, 2008, 42(6-7): 1595-1605.
    [129] S Murad. The role of magnetic fields on the membrane-based separation of aqueous electrolyte solutions [J]. Chemical Physics Letters, 2006, 417(4-6): 465-470.
    [130]刘红,何韵华,王江辉.超声波与磁场共同防治膜污染的装置[P].中国专利, CN1416942, 2003-05-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700