饲料赖氨酸和精氨酸对黑鲷幼鱼生长影响及其拮抗作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了饲料中分别添加不同水平的赖氨酸和精氨酸对黑鲷(A canthopagrus schlegelii)幼鱼生长、饲料利用效率、体组成、相关酶的活性及血清生化指标的影响,并由此得出黑鲷幼鱼对饲料中赖氨酸及精氨酸的需要量;并通过研究精氨酸对组织中生长相关主要基因表达来初步探讨饲料必需氨基酸调控黑鲷生长的主要机理。本论文还对饲料添加不平衡的精氨酸/赖氨酸对黑鲷幼鱼的影响,两种氨基酸在黑鲷体内的拮抗作用及其可能的机理进行探索。本论文的主要试验设计及研究结果如下。
     (1)室内流水养殖系统饲养黑鲷幼鱼(初重为9.13±0.09 g)8周来确定其对L-赖氨酸的需求量。设计6种等氮等能试验饲料,饲料必需氨基酸组成(除赖氨酸外)参照黑鲷鱼体38%蛋白的氨基酸模式,赖氨酸以0.40%的添加梯度从2.08%逐步上升到4.05%。试验结果表明:当饲料中的赖氨酸含量从2.08%上升至3.25%,黑鲷的增重率(WG)和特定生长率(SGR)随着饲料赖氨酸水平升高而升高(P<0.05),当饲料中赖氨酸含量为3.25%时,达到最大值(P<0.05)。饲料赖氨酸添加对饲料效率(FER)和蛋白质效率(PER)也有促进作用。赖氨酸对粗蛋白和总能的表观消化率,以及消化器官中的蛋白酶和脂肪酶活性有显著影响(P<0.05)。全鱼和背肌蛋白含量随饲料赖氨酸水平增加而增加,脂肪含量则呈现下降趋势;各处理组之间的灰分和水分含量没有显著性差异(P<0.05)。在体必需氨基酸(EAAs)沉积方面,背肌中的Val和His,肝脏的Val、Phe、Met和Thr的含量不受饲料赖氨酸水平的影响(P>0.05);其余的各种必需氨基酸含量均为先上升后保持稳定的趋势。黑鲷幼鱼血清的甘油三酯、葡萄糖含量以及过氧化氢酶和超氧化物歧化酶活性均没有显著变化(P>0.05)。血清总蛋白(TP)含量随着饲料赖氨酸添加水平的增加而显著增加。总胆固醇(T-CHO)含量则与TP含量的变化趋势相反。血清谷草转氨酶(AST)和谷丙转氨酶(ALT)活性随着饲料赖氨酸含量的增加大致表现出下降的趋势。随着饲料赖氨酸含量增加,血清游离赖氨酸浓度先显著上升,在Diet 4组到达最高值。
     使用二次曲线回归模型,根据试验黑鲷幼鱼的SGR同饲料中赖氨酸水平的相关性得出其赖氨酸需要量为3.32%,占饲料蛋白的8.64%。
     (2)室内流水养殖系统饲养黑鲷幼鱼(初重为10.51±0.15 g)8周来确定其对L-精氨酸的需求量。设计6种等氮等能试验饲料,精氨酸以0.30%的添加梯度从1.85%逐步上升到3.46%。试验结果显示:六组试验鱼的存活率没有显著性差异(P>0.05)。SGR先随着饲料精氨酸的含量增加而显著上升(P<0.05),到2.51%精氨酸饲料组后,继续增加饲料精氨酸含量并不会进一步提高SGR(P>0.05)。Diet 1组的FER显著低于其它各组(P<0.05);FER最高值(91.34%)出现在Diet 5组,与Diet 3,Diet 4和Diet 6组没有显著差异。PER和PPV的变化趋势类似,均随着饲料精氨酸水平先显著上升,随后保持稳定。饲料粗脂肪的表观消化率不受饲料精氨酸添加水平的影响,干物质,粗蛋白和总能的表观消化率均有显著变化。饲料精氨酸水平对黑鲷幼鱼全鱼和背肌的灰分和水分含量没有明显影响(P>0.05)。组织中蛋白含量随着饲料精氨酸的添加水平增加而呈上升趋势,而脂肪含量则呈现下降趋势。除Thr之外,全鱼体中的EAAs含量基本都随着饲料精氨酸的含量增加而显著上升,并在精氨酸添加水平较高的饲料处理组间保持稳定;全鱼精氨酸含量在Diet 1组显著低于其它各组(P<0.05),此后全鱼精氨酸含量显著递增,在Diet 5和Diet 6组时,其含量则显著高于之前四组(P<0.05)。肝脏Arginase活性在前三个饲料处理组呈上升趋势(P<0.05),此后继续增加饲料精氨酸含量,不再显著提高精氨酸酶活性(P>0.05)。Diet 1组的鸟氨酸脱羧酶(ODC)活性显著低于Diet 5和Diet 6组(P<0.05)。黑鲷幼鱼血清中除T-CHO之外,其它指标均受到饲料精氨酸水平的显著影响。
     基于折线回归模型模拟黑鲷幼鱼SGR与饲料精氨酸水平的关系可知,黑鲷幼鱼最适精氨酸需求量为2.79%(占饲料),相当于占饲料蛋白的7.74%。基于一元二次回归模型模拟黑鲷幼鱼PER与饲料精氨酸水平的关系可知:当PER达到最高值时,饲料精氨酸含量为3.09%,相当于占饲料蛋白含量的8.13%。
     (3)配制添加外源精氨酸和赖氨酸的含量分别为0.9%和1.3%(占饲料干重)的基础对照组饲料,使得两种必需氨基酸含量符合之前两个试验所得出的黑鲷最适需求量。在Diet 2和Diet 3组饲料中,赖氨酸水平高于对照组赖氨酸含量的20%,而精氨酸水平则分别高于和低于对照组精氨酸含量的20%;在Diet 4和Diet 5组饲料中,赖氨酸水平低于对照组赖氨酸含量的20%,而精氨酸水平则同样是分别高于和低于对照组精氨酸含量的20%;在Diet 6、Diet 7和Diet 8的饲料中,精氨酸含量与对照组设计成相同水平,并以相比与对照组赖氨酸含量20%的比例,逐渐提高这三组饲料的赖氨酸含量。各组饲料通过调整甘氨酸和天冬氨酸的含量保持等能等氮。8组饲料精氨酸/赖氨酸水平实测值分别为每100克饲料含2.83/3.25、3.46/4.06、2.27/4.08、3.51/2.70、2.31/2.74、2.87/4.03、2.91/4.68和2.85/5.24克。随机投喂初重为10.03±0.13 g的黑鲷幼鱼(每组三个重复),研究饲料不平衡精氨酸/赖氨酸添加对黑鲷的影响及探索是否存在拮抗作用。
     试验结果表明,饲料精氨酸/赖氨酸不平衡会严重影响黑鲷幼鱼的生长性能及饲料利用等,相关指标均在不同程度上低于饲喂对照组的试验鱼。根据生长表现、饲料利用效率、饲料赖氨酸与精氨酸的表观消化率、鱼体赖氨酸与精氨酸沉积量、肝脏精氨酸酶活性等指标综合判断,黑鲷存在精氨酸-赖氨酸的拮抗作用:当赖氨酸过量时,增加饲料中精氨酸含量可以一定程度缓解这种拮抗作用。
     (4)本试验以黑鲷肝脏和背肌组织总RNA为模板,oligo(dT)18为反转录引物,合成cDNA第一条链,以该cDNA为模板进行PCR反应。应用NCBI上已有的鱼类基因设计引物,分别扩增黑鲷IGF-Ⅰ、IGF-IR和Arginase基因片段,其序列片段长度分别为890bp、570bp和430 bp。根据BLAST比对分析结果表明,上述三种基因均与其它鱼类的相对应基因具有较高的同源性和相似度,可以认为是分别属于各自的功能基因家族。
     (5)取试验二(精氨酸需求试验)中的肝脏和背肌样品分析目的基因相对表达量。结果发现:饲喂最低精氨酸水平饲料(Diet 1)的黑鲷肝脏IGF-I相对表达量显著低于其它各组(P<0.05),随着精氨酸含量的增加,肝脏IGF-I的表达水平呈显著上升趋势,当添加的精氨酸含量超过3.25%之后,趋于稳定(P>0.05)。当投喂的饲料精氨酸水平超过2.88%时,背肌IGF-I表达量没有显著差异(P>0.05),但均显著高于对照组(P<0.05)。肝脏GHR mRNA水平随着饲料精氨酸水平的增加呈现先上升后稳定的趋势。背肌IGF-IRmRNA的最低表达量出现在饲喂Diet 1组饲料的试验鱼中(P<0.05);而最高相对表达量则出现在Diet 4组,显著高于精氨酸添加量小于3.25%的试验组(P<0.05),但与精氨酸添加量大于3.25%的试验组之间没有明显区别(P>0.05)。其它四个试验组之间的数据没有显著性差异(P>0.05)。饲料精氨酸水平对黑鲷肝脏精氨酸酶基因表达水平也有显著影响。在Diet 5和Diet 6试验组检测出相对较高的Arginase相对表达量,而表达量相对较低值则在Diet 1和Diet 2试验组出现(P<0.05)
     取试验三(精氨酸/赖氨酸不平衡试验)中的肝脏样品分析目的基因相对表达量。结果发现:当饲料精氨酸和赖氨酸添加量为适宜值时(Diet 1),肝脏的IGF-I mRNA相对表达量显著较高。在过量赖氨酸的饲料中增加精氨酸的水平(Diet 2),肝脏IGF-I的表达水平也显著高于其它各组(P<0.05),但与Diet 1组差异不显著(P<0.05)。饲料精氨酸和赖氨酸都不足量时(Diet 5),肝脏IGF-I表达量明显减少;而当精氨酸含量一定时,饲料中过量添加赖氨酸,也会使得肝脏IGF-I呈现下降的趋势。同样的,相比于对照组(Diet 1),饲料中过量的赖氨酸添加量明显抑制了肝脏Arginase基因的表达(Diet 7和Diet 8);而降低饲料中的精氨酸含量,也会抑制Arginase基因的表达(Diet 3和Diet 5)。该基因的表达水平在饲喂Diet 2、Diet 4和Diet 6组饲料的黑鲷幼鱼之间没有显著差异,相比于对照组,差异也不显著(P>0.05)。以上结果表明,精氨酸对黑鲷的促生长机理与其对生长轴激素的转录水平上的调控有关;饲料中精氨酸添加水平可以一定程度促进精氨酸酶基因的表达,过量赖氨酸则对其起抑制作用。
     根据本研究的试验结果,得出以下结论。
     1、黑鲷幼鱼饲料需要添加适宜的赖氨酸和精氨酸来促进生长。
     2、本研究得到黑鲷幼鱼饲料中最适赖氨酸和精氨酸需求量(以生长表现评判)分别为:3.32%(占饲料比例),相当于8.64%(占饲料蛋白比例);以及2.79%(占饲料)相当于占饲料蛋白的7.74%。
     3、根据生长表现、饲料利用效率和氨基酸代谢等多项指标综合判断,黑鲷存在精氨酸-赖氨酸的拮抗作用。
     4、饲料精氨酸可以影响生长作用轴相关基因表达。
     5、饲料精氨酸影响黑鲷体内精氨酸酶的基因表达,同时,该基因也受到饲料赖氨酸水平的调控作用。
The effects of dietary L-lysine and L-arginine levels on growth performance, feed utilization, body compositions, enzymes activity and serum biochemical parameters of black sea bream Acanthopagrus schlegelii juvenile were studied in the present research. The effects of dietary arginine on growth relating genes in tissues of black sea bream were studied to discuss the mechanism of dietary EAA controlling growth of fish. In this research, the effect of dietary imbalanced arginine/lysine was estimated and the potential mechanism of antagonism between these two EAAs in black sea bream was also discussed. The main contents and results in the current research present as follows.
     Trial 1. An 8-week feeding experiment was conducted to determine the quantitative L-lysine requirement of juvenile black sea bream (initial mean weight:9.13±0.09 g, mean±SD) in eighteen 300-L indoors flow-through circular fibreglass tanks by feeding diets containing six levels of L-lysine ranging from 2.08% to 4.05% dry diet at about 0.40% increments. The isonitrogenous and isoenergetic diets were formulated to simulate the amino acid profile of 38% whole fish body protein except lysine. Each diet was assigned to triplicate groups of 20 fish in a completely randomized design. The results showed that weight gain (WG) and specific growth rate (SGR) increased with increasing levels of dietary lysine up to 3.25% (P<0.05) and both showed a declining tendency thereafter.
     Dietary increasing lysine level have promoting effect on feed efficiency ratio (FER) and protein efficiency ratio (PER). The apparent digestibility coefficients (ADCs) of crude protein and gross energy, the protease and lipase activies were also influenced by dietary lysine level (P<0.05). The whole body crude protein and crude lipid contents were significantly affected (P<0.05) by dietary lysine level, while moisture and ash showed no significant differences. While for EAAs compositions, except for Val and His contents in dorsal muscle, Val, Phe, Met and Thr contents in liver were independent with dietary treatments (P>0.05),, other EAAs contents were significantly affected by dietary lysine level. The highest free lysine leve in serum was obtained in Diet 4 group. The activity of glutamic-oxalacetic transaminase (AST) and the glutamic-pyruvic transaminase (ALT) in serum decreased significantly when lysine level increasing (P<0.05), however, no significant difference (P>0.05) were found in contents of triacylglycerol and glucose nor the activities of catalyse and superoxide dismutase.
     Analysis of dose (lysine level)-response (SGR) with second order polynomial regression suggested a requirement of juvenile black sea bream to be 3.32% dry diet or 8.64% dietary protein.
     Trial 2. An 8-week feeding trial was conducted to determine the dietary arginine requirement of juvenile black sea bream in eighteen 350-L indoors flow-through circular fibreglass tanks. Six isonitrogenous and isoenergetic diets were formulated to contain graded levels of L-arginine (1.85,2.23,2.51,2.86,3.20 and 3.46% dry diet) from dietary ingredients and crystalline arginine. Each diet was randomly assigned to triplicate groups of 25 juvenile fish (10.51±0.15 g). Results showed that no significant difference in survival in experimental fish (P>0.05). SGR increased with increasing dietary arginine levels up to 2.51% and remained nearly the same thereafter. PER and protein productive value (PPV) showed increase tendency and then level off. FER was the poorest in Diet 1(P<0.05), the highest value of FER (91.32%) was observed in Diet 5, but no statistical difference was found when comparing with the Diet 3, Diet 4 or Diet 6 (P>0.05). ADCs of dry matter, crude protein and gross energy significantly improved up to 2.86% arginine diet and decreased at different extent thereafter, however, ADCs of crude lipid were unaffected. Fish fed 1.85% arginine diet had significant lower protein content in whole body and dorsal muscle than those fed diets supplemented with or more than 2.86% arginine. Lipid content decreased and lower value occurred at 3.46% dietary arginine (P<0.05). There were no significant differences in ash or moisture contents among dietary treatment (P>0.05). The dietary EAAs composition in whole body of black sea bream was significantly influenced by dietary arginine with exception of Thr. Arginine retention increased with dietary arginine level, then declined slightly at 3.46%arginine diet. Dietary increasing arginine level elevate arginase activity in liver up to 2.51% arginine diet (P<0.05), and the enzyme maintained at stable level thereafter (P>0.05). Almost all serum biochemical parameters were significantly affected by dietary arginine level except for cholesterol level.
     Broken-line regression based on SGR and second order polynomial regression based on PER indicated optimum dietary arginine requirement for juvenile black sea bream were 2.79 and 3.09% diet, corresponding to 7.74 and 8.13% of dietary protein, respectively.
     Trial 3. An 8-week feeding trial was conducted to determine the effects of imbalanced arginine/lysine levels in the diets of black sea bream juvenile. Eight isonitrogenous diets were formulated using a combination of intact protein and crystalline amino acids to contain different arginine/lysine levels (2.83/3.25,3.46/4.06,2.27/4.09,3.51/2.70,2.31/2.74,2.87/4.03, 2.91/4.68 or 2.85/5.24,% dry diet). The control diet contained 2.83% and 3.25% of arginine and lysine, respectively, which is known to satisfy the requirements of this fish. Each diet was fed to triplicate groups of 25 fish (10.0±0.1g).
     The results showed that dietary imbalanced levels of arginine and lysine had serious influences on growth performance and feed utilization of black sea bream, these corresponding indicators exhibited decreasing tendency in different extent. Based on growth performance, feed utilization efficiency, ADCs of dietary lysine and arginine, lysine and arginine retention ratio in body as well as liver arginase activity obtained in the present study suggest that arginine/lysine antagonism may exist in black sea bream. Adding arginine level to diets which containing superfluous lysine could alleviate this antagonism in this marine fish species.
     Trial 4. In the present study, total RNA extracted from black sea bream liver and dorsal muscle were reverse transcribed as described for TaqMan assays. Cloning primers were designed based on conserved regions of the fish genes'sequences from NCBI website to amplify IGF-I, IGF-IR and Arginase genes of black sea bream, and the sequence length were 890 bp,570bp and 430 bp, respectively. Blast analysis showed that the high similarity among black sea bream and other fish species, which indicated that these three sequences correspond to their corresponding gene family.
     Trial 5. The liver and dorsal muscle samples obtained from the arginine requirement study were used for genes expression analyzing. The results showed that the lowest level of IGF-I gene expression in liver was found in fish fed diet without arginine supplement (Diet 1) (P<0.05). IGF-I mRNA expression level increased with increasing arginine level to 3.25% (P<0.05), and then level off (P>0.05). The IGF-I mRNA expression in dorsal muscle presented a similar variation tendency with it was in liver. The relative lower and higher IGF-IR mRNA expression in dorsal muscle were observed in fish fed Diet 1 and Diet 4 (P<0.05), respectively. GHR gene mRNA expression tended to be enhanced by dietary arginine level, however, no significant differeces were found among the later four arginine level diets (P>0.05). Higher arginase gene expression levels in liver were detected in experimental fish fed Diet 5 and Diet 6, while lower values were seen in Diet 1 and Diet 2 (P<0.05).
     The liver samples obtained from the arginine/lysine ratios study were also used for genes expression analyzing. The results showed that fish fed diet with appropriate level of arginine and lysine simultaneously could inducing relative higher IGF-I mRNA expression in liver (P<0.05). Also, adding arginine into diet with excessive lysine had comparable gene expression level with control group. Black sea bream fed diet with inadequate lysine and arginine (Diet 5), or fish fed diets with constant arginine level but increasing lysine content, hepatic IGF-I mRNA expression decline significantly (P>0.05). Similarly, when comparing with the control group, dietary superfluous lysine content (Diet 7 and Diet 8) depressed hepatic Arginase gene mRNA expression significantly. In Diet 3 and Diet 5, which containing insufficient arginine level, Arginase mRNA expression levels also showed down regulation. These was no significant difference on regulation effect by dietary treatment on hepatic Arginase gene mRNA level among the control diet, Diet 2, Diet 4 and Diet 6 group (P>0.05).
     Results of this trial indicated that the effect of growth-promoted of dietary arginine was by regulated growth axis genes transcriptional control in black sea bream. Elevations in liver arginase gene mRNA expression have been observed under the dietary arginine level, and lysine level had influence on this gene expression.
     The following conclusions could be drew based on the present research.
     1, Lysine and arginine are necessary for black sea bream juvenile in diet for growth.
     2, Based on the growth performance of black sea bream juvenile, the optimal lysine and arginine levels in diet are 3.32% dry diet, corresponding to 8.64% dietary protein; and 2.79% diet, corresponding to 7.74% of dietary protein, respectively.
     3, Judged by growth performance, feed utilization efficiency and metabolism of amino acid, antagonism between arginine and lysine exists in black sea bream.
     4, The growth of black sea bream could be influenced by dietary arginine level.
     5, Dietary arginine level influencing the arginase gene expression in black sea bream. Meanwhile, lysine level also could affect this gene expression.
引文
Abbott, W.W., Cooper, J., Farr, F., Creger, C.R., Couch, J.R. Arginine and lysine in the nutrition of broilers breeder replacement pullets. Poultry Science,1969,48:1777.
    Abimorad, E.G., Favero, G.C., Squassoni, G.H., Carneiro, D. Dietary digestible lysine requirement and essential amino acid to lysine ratio for pacu Piaractus mesopotamicus. Aquaculture Nutrition,2010,16: 370-377.
    Adamidou, S., Nengas, I., Henry, M., Ioakeimidoy, N., Rigos, G., Bell, G.J., Jauncey, K. Effects of dietary inclusion of peas, chickpeas and faba beans on growth, feed utilization and health of gilthead seabream (Sparus aurata). Aquaculture Nutrition,2011,17:288-296.
    Agrawal, V.P. Digestive enzymes of three teleost fishes. Acta Physiologica Academiae Scientiarum Hungaricae,1975,46:93-98.
    Aheme, F.X., Nielsen, H.E. Lysine requirement of pigs weighing 7 to 19 kg live weight. Canadian Journal of Animal Science,1983,63:221.
    Ahmed, I., Khan, M.A. Dietary arginine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture Nutrition,2004a,10:217-225.
    Ahmed, I., Khan, M.A. Dietary lysine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture,2004b,235:499-511.
    Alam, M.S., Teshima, S., Koshio, S., Ishikawa, M. Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters. Aquaculture,2002,205: 127-140.
    Alam, M.S., Teshima, S., Koshio, S., Hasegawa, D., Ishikawa, M. Dietary arginine requirement of juvenile kuruma shrimp Marsupenaeus japonicus (Bate). Aquaculture Research,2004a,35:842-849.
    Alam, M.S., Teshima, S., Koshio, S., Ishikawa, M. Effects of supplementation of coated crystalline amino acids on growth performance and body composition of juvenile kuruma shrimp Marsupenaeus japonicus. Aquaculture Nutrition,2004b,10:309-316.
    Alarcon, F.J., Moyano, F.J., Diaz, M., Fernandez-Diaz, C., Yufera, M. Optimization of the protein fraction of microcapsules used in feeding marine fish larvae using in vitro digestibility techniques. Aquaculture Nutrition,1999,5:107-113.
    Ali, M.Z., Jauncey, K. Approaches to optimizing dietary protein to energy ratio for African catfish Clarias gariepinus (Burchell,1822). Aquaculture Nutrition,2005,11:95-101.
    Allen, N.K., Baker, D.H. Effect of excess lysine on utilization of and requirement for arginine by the chick. Poulty Science,1972,51:902-906.
    Aminlari, M., Vaseghi, T. Arginase distribution in tissues of domestic animals. Comparative Biochemistry and Physiology,1992,103B:385-389.
    Andersen, F., Lygren, B., Maage, A., Waagbe, R. Interaction between two dietary levels of iron and two forms of ascorbic acid and the effect on growth, antioxidant status and some non-specific immune parameters in Atlantic salmon(Salmo solar) smolts. Aquaculture,1998,161:437-451.
    Anderson, J.S., Lall, S.P., Anderson, D.M., McNiven, M.A. Quantitative dietary lysine requirement of Atlantic salmon(Salmo salar) fingerlings. Canadian Journal of Fish Aquaculture Science,1993,50: 316-322.
    Anderson, L.C., Lewis, A.J, Peo, E.R.J., Crenshaw, J.D. Effect of various dietary arginine:lysine ratios on performance, carcass composition and plasma amino acid concentrations of growing-finishing swine. Journal of Animal Science,1984,58:362-368.
    Andrews, J.W., Page, J.W., Murray, M.W. Supplementation of a semipurified casein diet for catfish with free amino acids and gelatin. Journal of Nutrition,1977,107:1153-1156.
    Annette, C., Schmid, I.L., Werner, K. Thyroid hormone stimulates hepatic IGF-ImRNA expression in a bony fish, the tilapia Oreochromis mossambicus, in vitro and in vivo. General and Comparative Endocrinology, 2003,130:129-134.
    AOAC.1995. OffcialMethods of Analytical of the Association of Official Analytical Chemists,16th edn. AOAC, Arlington, VA, USA.
    Arias, M., Rojas, M., Zabalata, J., Rodriguez, J.I., Paris, S.C., Barrera, L.F., Garcia, L.F. Inhibition of virulent "Mycobacterium tuberculosis" by "Beg" (r) and "Bcg"(s) macrophages conelates with nitric oxide production. Journal of Infectious Disease,1997,176:1552-1558.
    ARC (Agricultural Research Council). The nutrient requirement of pigs. Common wealth Agriculture Bureau. 1981.
    Arndt, S.K.A., Benfey, T.J., Cunjak, R.A. A comparison of RNA concentrations and ornithine decarboxylase activity in Atlantic salmon{Salmo salar) muscle tissue, with respect to specific growth rates and diet variations. Fish Physiology and Biochemistry,1994,13:463-471.
    Austreng, E., Storebakken, T., Thomassen, M.S., Refstie, S., Thomassen, Y. Evaluation of selected trivalent metal oxides as inert markers used to estimate apparent digestibility in salmonids. Aquaculture,2000, 188:65-78.
    Azaza, M.S., Wassim, K., Mensi, F., Abdelmouleh, A., Brini, B., Kraiem, M.M. Evaluation of faba beans (Vicia faba L. var. minuta) as a replacement for soybean meal in practical diets of juvenile Nile tilapia Oreochromis niloticus. Aquaculture,2009,287:174-179.
    Barziza, D.E., Buentello, J.A., Gatlin, D.M. Dietary arginine requirement of juvenile red drum (Sciaenops ocellatus) based on eeight gain and geed efficiency. Journal of Nutrition,2000,130:1796-1799.
    Banos, N., Planas, J.V., Gutierrez, J., Navarro, I. Regulation of plasma insulin-like growth factor-I levels in brown trout(Salmo trutta). Comparative Biochemistry and Physiology,1999,124C:33-40.
    Barahi, V., Lovell, R.T. Degestive enzyme activities in striped bass from first feeding through larva development. Transactions of the American Fisheries Society,1986,115:478-484.
    Barash, H. The influence of the lysine level in the diet on nitrogen excretion and on the concentration of ammonia and free amino acids in the plasma of rainbow trout(Salmo gairdneri). Nutrition Reports International,1984,29:283-289.
    Barbul, A. Arginine:biochemistry, physiology and therapeutic implications. Journal of Parenteral and Enteral Nutrition,1986,10:227-238.
    Batshaw, M.L., Wachtel, R.C., Thomasa, G.H., Starretta, A., Brusilow, S.W. Arginine-responsive asymptomatic hyperammonemia in the premature infant. The Journal of Pediatrics,1984,105:86-91.
    Beckman, B.R., Shimizu, M., Gadberry, B.A., Cooper, K.A. Response of the somatotropic axis of juvenile coho salmon to alterations in plane of nutrition with an analysis of the relationships among growth rate and circulating IGF-I and 41 kDa IGFBP. General and Comparative Endocrinology,2004,135:334-344.
    Benfey, T.J., Saunders, R.L., Knox, D.E., Harmon, P.R. Muscle ornithine decarboxylase activity as an indication of recent growth in pre-smolt Atlantic salmon, Salmo salar. Aquaculture,1994,121:125-35.
    Beverly, J.L., Gietzen, D.W., Rogers, Q.R. Effect of dietary limiting amino acid in prepyriform cortex on food intake. American Journal of Physiology-Regulatory, Integrative and Comparative,1990,25: 709-715.
    Berge, G.E., Bakke-McKellep, A.M., Lied, E.'In vitro'uptake and interaction between arginine and lysine in the intestine of Atlantic salmon(Salmo Salar). Aquaculture,1999,179:181-193.
    Berge G.E., Lied E., Sveier H. Nutrition of Atlantic salmon(Salmo salar):the requirement and metabolism of arginine. Comparative Biochemistry and Physiology,1997,117A:501-509.
    Berge, G.E., Sveier, H., Lied, E. Nutrition of Atlantic salmon (Salmo salar). The requirement and metabolic effect of lysine. Comparative Physiology and Biochemistry,1998,120A:477-485.
    Berge, G.E., Sveier, H., Lied, E. Effects of feeding Atlantic salmon(Salmo salar L.) imbalanced levels of lysine and arginine. Aquaculture Nutrition,2002,8:239-248.
    Beyer, H.S., Ellefson, M., Stanley, M., Zieve, L. Inhibition of increases in ornithine decarboxylase and putrescine has no effect on rat liver regeneration. American Journal of Physiology,1992,262:677-684.
    Bicudo, A.J.A., Sado, R.Y., Cyrino, J.E.P. Dietary lysine requirement of juvenile pacu Piaractusmesopotamicus (Holmberg,1887). Aquaculture,2009,297:151-156.
    Biswas, A.K., Kaku, H., Ji, S.C., Seoka, M., Takii, K. Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture,2007,267:284-291.
    Bogdan, G. Nitric oxide and the immune response. Nature Immunology,2001,2:907-916.
    Boeuf, G., Gaignon, J.J. Effects of rearing conditions on growth and thyroid hormones during smolting of Atlantic salmon Salmo salar. Aquaculture,1989,82:29-38.
    Boisen, S. Ideal dietary amino acid profiles for pigs. In:D'Mello, J.P.F.D. (Ed.), Amino Acids in Animal Nutrition. CABI Publishing, UK, pp.2003,157-168.
    Boorman, K.N. The renal reabsorption of arginine, lysine and ornithine in the young cockerel (Gallusdomesticus). Comparative Biochemistry and Physiology,1971,39A:29-38.
    Boorman, K.N., Fisher, H. The arginine-lysine interaction in the chick. British Poultry Science,1966,7: 39-44.
    Borlongan, I.G. Arginine and threonine requirements of milkfish (Chanos chanos Forsskal) juveniles. Aquaculture,1991,93:313-321.
    Borlongan, I.G., Benitez, L.V. Quantitative lysine requirement of milkfish(Chanos chanos) juveniles. Aquaculture,1990,87:341-347.
    Borlongan, I.G., Coloso, R.M. Requirements of juvenile milkfish(Chanos chanos Forsskal) for essential amino acids. Journal of Nutrition,1993,123:125-132.
    Brafield, A.E. Laboratory studies of energy budgets. In Fish Energetics:New perspectives,1985,257-282.
    Brameld, J.M., Gilmour, R.S., Buttery, P.J. Glucose and amino acids interact with hormones to control expression of insulin-like growth factor-Ⅰ and growth hormone receptor mRNA in cultured pig hepatocytes. Journal of Nutrition,1999,129:1298-1306.
    Breier, B.H., Bass, J.J.. Butler. J.H., Gluckman. P.D. The somatot rophic axis in young steers:influence of nut ritional status on pulsatile release of growth hormone and circulating concent rations on insulin-like growth factor-I. Journal of Endocrinology,1986,111:209-215.
    Brown, J.G., Bates, P.C., Holliday, M.A., Millward, D.J. Thyroid hormones and muscle protein turnover:the effect of thyroid hormone deficiency and replacement in thyroidectomised and hypophysectomised rats. Biochemistry Journal,1981,194:771-782.
    Brown, P.B., Davie, D.A., Robinson, E.H. An estimate of the dietary lysine requirement of juvenile red drum Sciaenops ocellatus. Journal of the World Aquaculture Society,1998,19:109-112.
    Buentello., J.A., Gatlin, D.M. Nitric oxide production in activated macrophages from channel catfish (Ictalurus punctatus):influence of dietary arginine and culture media. Aquaculture,1999,179:513-521.
    Buentello, J.A., Gatlin, D.M. The dietary arginine requirement of channel catfish(lctalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture,2000,188:311-321.
    Buraczewski, S., Chamberlain, A.G., Horszczaruk, F., Zebrowska, T. Lysine and arginine interactions affecting their absorption from the duodenum of the pig. Proceedings of the Nutrition Society,1970, 29A:51.
    Burel, C., Boujard, T., Kaushik, S.J., Boeuf, G., Geyten, S.V.D., Mol, K.A., Kuhn, E.R., Quinsac, A., Krouti, M., Ribaillier, D. Protein of plant-protein sources as fishmeal substitutes in diets of turbot Psetta maxima: growth, nutrient utilisation and thyroid status. Aquaculture,2000,188:363-382.
    Burel, C., Boujard, T., Kaushik, S.J., Boeuf, G., Mol, K.A., Van der Geyten, S., Darras, V.M., Kuhn, E.R., Pradet-Balade, B., Querat, B., Quinsac, A., Krouti, M., Ribaillier, D. Effects of rapeseed meal glucosinolates on thyroid metabolism and feed utilization in rainbow trout. General and Comparative Endocrinology,2001,124:343-358.
    Bureau, D.P., Cho, C.Y. Phosphorus utilization by rainbow trout (Oncorhynchus mykiss):estimation of dissolved phosphorus waste output. Aquaculture,1999,179:127-140.
    Burtle, J.G., Liu, Q. Dietary carnitine and lysine affect channel catfish lipid and protein composition. Journal of World Aquaculture Society,1994,25:169-174.
    Calduch-Giner, J., Duval, H., Chesnel, F., Boeuf, G., Perez-Sanchez J., Boujard, D., Fish growth hormone receptor:molecular characterization of two membrane-anchored forms. Endocrinology 2001,142: 3269-3273.
    Campos-perez, J.J., Ward, M.P., Grabowski, S., Ellis, A.E., Secombes, C.J. The gills are an important site of iNOS expression in rainbow trout Oncorhynchus mykiss after challenge with the Gram-positive pathogen Renibacterium salmoninarum. Immunology,2000,99:153-161.
    Carew, L.B., Evarts, K.G., Alster, F.A. Growth, feed intake, and plasma thyroid hormone levels in chicks fed dietary excesses of essential amino acids. Poultry Science,1998,77:295-298.
    Carlson, C.L., Winder, W.W. Liver AMP-activated protein kinase and acetyl-CoA carboxylase during and after exercise. Journal of Applied Physiology,1999,86:669-674.
    Carter, C.G., Lewis, T.E., Nichols, P.D. Comparison of cholestane and yttrium oxide as digestibility markers for lipid components in Atlantic salmon(Salmo salar L.) diets. Aquaculture,2003,225:341-351.
    Czarnecki, G.L., Hirakawa, D.A., Baker, D.H. Antagonism of arginine by excess dietary lysine in the growing dog. Journal of Nutrition,1985,115:743-752.
    Chamruspollert, M., Pesti, G.M., Bakalli, R.I. Dietary interrelationships among arginine, methionine and lysine in young broiler chicks. British Journal of Nutrition,2002,88:655-660.
    Cheng, Z.J., Hardy, R.W., Usry, J.L. Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout(Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture,2003,215:255-265.
    Chien, L.T., Hwang, D.F. Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comparative Biochemistry and Physiology,2001, 128B:91-97.
    Chien, Y.H., Pan, C.H., Hunter, B. The resistance to physical stresses by Penaeus monodon juveniles fed diets supplemented with astaxanthin. Aquaculture,2003,216:177-191.
    Chiu, Y.N., Austic, R.E., Rumsey, G.L. Urea cycle activity and arginine formation in rainbow trout(Salmo Gairdneri). Journal of Nutrition,1986,116:1640-1650.
    Cho, C.Y., Kaushik, S.J. Nutritional energetics in fish:energy and protein utilization in rainbow trout(Salmo gairdneri). World Review of Nutrition and Dietetics,1990,61:132-172.
    Cho, C.Y., Kaushik, S.J., Woodward, B. Dietary arginine requirement of young rainbow trout(Oncorhychus mykiss). Comparative Biochemistry and Physiology,1992,102A:211-216.
    Clemmons, D.R., Moses, A.C., Mckay, M.J., Sommer, A., Rosen, D.M., Ruckle, J. The combination of insulin-like growth factor 1 and insulin like growth factor binding protein-3 reduces insulin requirements in insulin-dependent type I diabetes:evidence for in vivo biological activity. The Journal of Clinical Endocrinology and Metabolism,2000,85:1518-1523.
    Conceicao, L.E.C., Grasdalen, H., Ronnestad, I. Amino acid requirements of fish larvae and post-larvae:new tools and recent findings. Aquaculture,2003.227:221-232.
    Cowey. C.B. Protein and amino acids requirements:a critique of methods. Journal of Applied Ichthyology. 1995,11:199-204.
    Cowey, C.B., Sargent, J.R. Nutrition. In:Fish Physiology, Vol VIII. Bioenergetics and Growth (Hoar, W.S., Randall, D.J.& Brett, J.R. eds),1979, pp.1-69. Academic Press, New York.
    Cowey, C.B., Walton, M.J. Studies on the uptake of (14C) amino acids derived from both dietary (14C) protein and dietary (14C) amino acids by rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology, 1988,33:293-305.
    Cree, T.C., Schalch, D.S. Protein utilization in growth:effect of lysine deficiency on serum growth hormone, somatomedins, insulin, total thyroxine (T4) and triiodothyronine, free T4 index, and total corticosterone. Endocrinology,1985,117:667-673.
    Cuesta, A.J., Ortuno, A., Rodriguez, E.M.A., Meseguer, J. Changes in some innate defence parameters of seabream(Sparus aurata L) induced by retinol acetate. Fish & Shellfish Immunology,2002,13:279-291.
    Cui, Y., Wootton, R.J. Bioenergetics of growth of a cypfinid, Phoxinus phoxinus:the effect of ration, temperature and body size on food consumption, feacal production and nitrogenous excretion. Journal of Fish Biology,1988,33:107-120.
    Cynober, L., Le Boucher, L., Vasson, M.P. Arginine metabolism in mammals. The Journal of Nutritional Biochemistry,1995,6:402-413.
    Czarnecki, G.L., Hirakawa, D.A., Baker, D.H. Antagonism of arginine by excess dietary lysine in the growing dog. Journal of Nutrition,1985,115:743-752.
    Daniel, H. Molecular and integrative physiology of intestinal amino acid transport. Annual Review of Physiology,2004,66:361-384.
    Dauncey, M.J., Burton, K.A., White, P. Nutritional regulation of growth hormone receptor gene express. Journal of FASEB,1994,8:81-88.
    Davies, S.J., Morris, P.C., Baker, R.T.M. Partial substitution of fish meal and full-fat soya bean meal with wheat gluten and influence of lysine supplementation in diets for rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research,1997,28:317-328.
    Debnath, D., Pal, A.K., Sahu, N.P., Yengkokpam, S., Baruah, K., Choudhury, D., Venkateshwarlu, G. Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comparative Biochemistry and Physiology,2007,146B:107-114.
    Deng, J.M., Mai, K.S., Ai, Q.H., Zhang, W.B., Tan, B.P., Xu, W., Liufu, Z.G. Alternative protein sources in diets for Japanese flounder Paralichthys olivaceus (Temminck and Schlegel):Ⅱ. Effects on nutrient digestibility and digestive enzyme activity. Aquaculture Research,2010,41:861-870.
    Deng, L., Zhang, W.M., Lin, H.R., Cheng, C.H.K. Effects of food deprivation on expression of growth hormone receptor and proximate composition in liver of black sea bream Acanthopagrus schlegeli. Comparative Biochemistry and Physiology,2004,137B:421-432.
    De Schrijver, R., Ollevier, B. Protein digestion in juvenile turbot (Scophthalmus maximus) and effects of dietary administration of vibrio proteolyticus. Aquaculture,2000,186:107-116.
    D'Mello, J.P., Lewis, D. Amino acid interactions in chick nutrition.1. The interrelationship between lysine and arginine. British Poultry Science,1970,11:299-311.
    Dosdat, A., Servaia, F., Metailler, R., Huelvan, C. Comparison of nitrogenous losses in five teleost fish species. Aquaculture,1996,141:107-127.
    Duan, C. The insulin-like growth factor system and its biological actions in fish. American Zoologist,1997, 37:491-503.
    Duan, C. Nutritional and developmental regulation of insulin-like growth factors in fish. Journal of Nutrition, 1998,128:306-314.
    Duan, C., Hirano, T. Effects of insulin-like growth factor-Ⅰ and insulin on the in-vitro uptake of sulphate by eel branchial cartilage:evidence for the presence of independent hepatic and pancreatic sulphation factors. Journal of Endocrinology,1992,133:211-219.
    Duan, C., Plisetskaya, E.M., Dickhoff, W.W. Expression of insulin-like growth factor Ⅰ in normally and abnormally developing coho salmon (Oncorhynchus kisutch). Endocrinology,1995,136:446-452.
    Dupree, H.K., Halver, J.E. Amino acids essential for the growth of channel catfish Ictalums punctatus. Transactions of the American Fisheries Society,1970,99:90-92.
    Dyer, A.R., Barlow, C.G., Bransden, M.P., Carter, C.G., Glencross, B.D., Richardson, N., Thomas, P.M., Williams, K.C., Carragher, J.F. Correlation of plasma IGF-Ⅰ concentrations and growth rate in aquacultured finfish:a tool for assessing the potential of new diets. Aquaculture,2004,236:583-592.
    Eales, J.G., MacLatchy, D.L., Sweeting, R.M. Thyroid hormone deiodinase systems in salmonids, and their involvement in the regulation of thyroidal status. Fish Physiology and Biochemistry,1993,11:313-321.
    Elangovan, A., Shim, K.F. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture,2000,189:133-144.
    Elliott, J.M. Energy losses in the waste products of brown trout(salmon trutta L). American Journal of Animal Ecology,1976,45:561-580.
    Eo, J., Lee, K.J. Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer. Takifugu rubripes. Fish and Shellfish Immunology,2008,25:611-616.
    Espe, M., Lemme, A., Petri, A., El-Mowafi, A. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture,2007,263:168-178.
    Espe, M., Lied, E. Do Atlantic salmon (Salmo salar) utilize mixtures of free amino acids to the same extent as intact protein sources for muscle protein synthesis? Comparative Biochemistry and Physiology,1994, 107A:249-254.
    Evoniuk, G., Kuhn, C.M., Schanberg, S.M. Hepatic cyclic AMP generation and ornithine decarboxylase induction by glucagon and beta adrenergic agonists. Life Sciences,1985,36:2075-2083.
    Fagbenro, O.A., Balogun, A.M., Fasakin, E.A., Bello-Olusoji, O.A. Dietary lysine requirement of the African catfish, Clarias gariepinus. Journal of Applied Ichthyology,1998,8:71-77.
    Fagbenro, O.A., Nwanna, L.C., Adebayo, O.T. Dietary arginine requirement of the African catfish, Clarias gariepinus. Journal of Applied Ichthyology,1999,9:59-64.
    Fico, M.E., Hassan, A.S., Milner, J.A. The influence of excess lysine on urea cycle operation and pyrimidine biosynthesis. Journal of Nutrition,1982,112:1854-1861.
    Forster, L., Ogata, H.Y. Lysine requirement of juvenile Japanese flounder paralichthys olivaceus and juvenile red sea bream Pugrus major. Aquaculture,1998,161:131-142
    Fotmtoulaki, E., Alexi, M.N. Effect of diet composition on digestive fluid volume and activity of digestive enzymes of gilthead bream.5th Hellemc Symposium on Oceanography and Fisheries, Kavala Greece April,1997,15-18:165-168.
    Foumier, V., Gouillou-Coustans, M.F., Metailler, R., Vachot, C., Guedes, M.J., Tulli, F., Oliva-Teles, A., Tibaldit, E., Kaushik, S.J. Protein and arginine requirements for maintenance and nitrogen gain in four teleosts. British Journal of Nutrition.2002,87:459-469.
    Fourmier, V., Gouillou-Coustans, M.F., Mtailler, R., Vachot, C., Moriceau. J., Le-Delliou, H., Huelvan, C., Desbruyeres, E., Kaushik, S.J. Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima. Aquaculture,2003,217: 559-576.
    Fountoulaki, E., Alexis, M.N., Nengas, I., Venou, B. Effect of diet composition on nutrient digestibility and digestive enzyme levels of gilthead sea bream(Sparus aurata L.). Aquaculture Research,2005,36: 1243-1251.
    Fox, J.M., Lawrence, A.L., Chan, E.L. Dietary requirement for lysine by juvenile Penaeus vannamei using intact and free amino acid sources. Aquaculture,1995,131:279-290.
    Francis, G., Makkar, H.P.S., Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture,2001,199:197-227.
    Fu, W.J., Haynes, T.E., Kohli, R., Hu, J.B., Shi, W.J., Spencer, T.E., Carroll, R.J., Meininger, C.J., Wu, G.Y. Dietary L-arginine supplementation reduces fat mass in zucker diabetic fatty rats. Journal of Nutrition, 2005,135:714-721.
    Gietzen, D.W., Magmm, L.J. Molecular mechanisms in the brain involved in the anorexia of branched-chain amino acid deficiency. Journal of Nutrition,2001,131:851-855.
    Gomez, J.M., Boujard, T., Boeuf, G., Solari, A., Le Bail P.Y. Individual diurnal plasma profiles of thyroid hormones in rainbow trout (Oncorkynchus mykiss) in relation to cortisol, growth hormone, and growth rate. General and Comparative Endocrinology,1997,107:74-83.
    Gouillou-Coustans, M.F., Fournier, V., Metailler, R., Vachot, C., Desbruyeres, E., Huelvan, C., Moriceau, J., Le Delliou, H., Kaushik, S.J. Dietary arginine degradation is a major pathway in ureagenesis in juvenile turbot (Psetta maxima). Comparative Biochemistry and Physiology,2002,132A:305-319.
    Gray, E.S., Kelley, K.M., Law, S., Tsai, R., Young, G., Bern, H.A. Regulation of hepatic growth hormone receptors in coho salmon (Oncorhynchus kisutch). General and Comparative Endocrinology,1992,88: 243-252.
    Gurbuz, A.T., Kunzelman, J., Ratzer, E.E. Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats. Journal of Surgical Research,1998,74:149-154.
    Hardy, R.W. Aquaculture's rapid growth requirements for alternate protein sources. Feed Manage,1999,50: 25-28.
    Hardy, R.W. Utilization of plant proteins in fish diets:effects of global demand and supplies of fish meal. Aquaculture Research,2010,41:770-776.
    Harikrishnan, R., Rani, M.N., Balasundaram, C. Hematological and biochemical parameters in common carp, Cyprinus carpio, following herbal treatment for Aeromonas hydrophila infection. Aquaculture,2003. 221:41-50.
    Harper, A.E., Benevenga, N.J., Wohlhueter. R.M. Effects of ingestion of disproportionate amounts of amino acids. Physiological Reviews,1970,50:428-458.
    Hauner, H. The new Cconcept of adipose tissue function. Physiology & Behavior,2004,83:653-658.
    Hayashi, S., Murakami, Y., Matsufuji, S. Ornithine decarboxylase antizyme:a novel type of regulatory protein. Trends in Biochemical Sciences,1996,21:27-30.
    Hibbs, J.B., Taintor, R.R., Vavrin, Z. Macrophage cytotoxicity:role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science,1987,235:473-476.
    Hidalgo, M.C., Urea, E., Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture,1999,170:267-283.
    Higuera, M., Garzon, A., Hidalgo, M.C., Peragon, J., Cardenete, G., Lupianez, J.A. Influence of temperature and dietary protein supplementation either with free or coated lysine on the fractional protein-turnover rates in the white muscle of carp. Fish Physiology and Biochemistry,1998,18:85-95.
    Hisao, O. Fish digestive physiology (Ⅱ). Shanghai:Shanghai Scientific and Technical Publishers.1985, 442-452.
    Hong, W.S., Zhang, Q.Y. Review of captive bred species and fry production of marine fish in China. Aquaculture,2003,227:305-318.
    Iaccarino, D., Uliano, E., Agnisola, C. Effects of arginine and/or lysine diet supplementation on nitrogen excretion in zebrafish. Comparative Biochemistry and Physiology,2009,154A:36-37.
    Imsland, A.K., Foss, A., Gunnarson, S., Berntssen, M.H.G., FitzGerald, R., Bonga, S.W., Ham, E.V., Naevdal, G., Stefansson, S.O. The interaction of temperature and salinity on growth and food conversion in juvenile turbot(Soopht halmus maximum). Aquaculture,2001,198:353-367.
    Imsland, A.K., Foss, A., Roth, B., Stefansson, S.O., Vikingstad, E., Pedersen, S., Sandvik, T., Norberg, B. Plasma insulin-like growth factor-Ⅰ concentrations and growth in juvenile halibut(Hippoglossus hippoglossus):Effects of photoperiods and feeding regimes. Comparative Biochemistry and Physiology, 2008,151 A:66-70.
    Jepson, M.M., Bates, P.C., Millward, D.J. The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein. British Journal of Nutrition,1988,59: 397-415.
    Ji, H., Bradley, T.M., Tremblay, G.C. Atlantic salmon(Salmo salar) fed L-carnitine exhibit altered intermediary metabolism and reduced tissue lipid, but no change in growth rate. Journal of Nutrition,1996, 126:1937-1950.
    Jobgen, W.S., Fried, S.K., Fu, W.J., Meininger, C.J., Wu, G.Y. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. The Journal of Nutritional Biochemistry,2006,17:571-588.
    Jones, J.D. Lysine-arginine antagonism in the chick. Journal of Nutrition,1964,84:313-321.
    Jones, J.D., Petersburg, S.J., Burnett, P.C. The mechanism of the lysine-arginine antagonism in the chick: effect of lysine on digestion, kidney arginase and liver transamidinase. Journal of Nutrition,1967,93: 103-116.
    Jones, J.D., Wolters, R., Burnett, P.C. Lysine-arginine-electrolyte relationships in the rat. Journal of Nutrition, 1966,89:171-188.
    Jing, W.Q., Li, F.C. Effects of dietary lysine on growth performance, serum concentrations of insulin-like growth factor-I (IGF-I) and IGF-I mRNA expression in growing rabbits. Agricultural Sciences in China, 2010,9:887-895.
    Katsumata, M., Kawakami, S., Kaji, Y., Takada, R., Dauncey, M.J. Differential regulation of porcine hepatic IGF-I mRNA expression and plasma IGF-I concentration by a low lysine diet. Journal of Nutrition,2002, 132:688-692.
    Kaushik, S.J., Cravedi, J.P., Lalles, J.P., Sumpter, J., Fauconneau., Laroche, M. Partial or total replacement of fish meal by soya protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout. Aquaculture,1995,133:257-274.
    Kaushik, S.J., Fauconneau, B. Effect of lysine administration on plasma arginine and on some nitrogenous catabolitesin rainbowt rout, Comparative Biochemistry and Physiology,1984,79A:459-462.
    Kaushik, S.J., Fauconneau, B., Terrier, L., Gras, J. Arginine requirement and status assessed by different biochemical indices in rainbow trout (Salmo gairdneri R.). Aquaculture,1988,70:75-95.
    Kaushik, S.J., Luquet, P. Influence of dietary amino acid patterns on the free amino acid contents of blood and muscle of rainbow trout(Salmo gairdnerii R). Comparative Physiology and Biochemistry,1980,64B: 187-190.
    Keshavanth, P., Renuka, P. Effect of dietary L-carnitine supplements on growth and body composition of fingerling rohu, Labeo rohita (Hamilton). Aquaculture Nutrition,1998,4:83-87.
    Ketola, H.G. Requirement for dietary lysine and arginine by fry of rainbow trout. Journal of Animal Science, 1983.56:101-107.
    Khan. M.A., Abidi, S.F. Effect of dietary 1-lysine levels on growth, feed conversion, lysine retention efficiency and haematological indices of Heteropneustes fossilis (Bloch) fry. Aquaculture Nutrition,2011. in press.
    Kim, J.D., Lall, S.P. Amino acid composition of whole body tissue of Atlantic halibut(Hippoglossus hippoglossus), yellowtail flounder(Pleuronectes ferruginea) and Japanese flounder(Paralichthys olivaceus). Aquaculture,2000,187:367-373.
    Kim, K.I. Re-evaluation of protein and amino acid requirements of rainbow trout(Oncorhynchus mykiss). Aquaculture,1997,151:3-7.
    Kim, K.L., Kayes, T.B., Amundson, C.H. Requirements for sulfur amino acids and utilization of D-methionine by rainbow trout(Oncorhynchus mykiss). Aquaculture,1992a,101:95-103.
    Kim, K.I., Kayes, T.B., Amundson, C.H. Requirements for lysine and arginine by rainbow trout (Oncorhynchus mykiss). Aquaculture,1992b,106:333-344.
    Kim, M.J.C., Berdaniera, CD. Nutrient-gene interactions determine mitochondrial function:effect of dietary fat. The FASEB Journal,1998,12:243-248.
    Kimball, S.R., Jefferson, L.S. Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochemical and Biophysical Research Communications,2004,313: 423-427.
    Klein, R.G., Halver, J.E. Nutrition of salmonid fishes:arginine and histidine requirements of chinook and coho salmon. Journal of Nutrition,1970,100:1105-1110.
    Kwak, H., Austic, R.E., Dietert. R.R. Influence of dietary arginine concentration on lymphoid organ growth in chickens. Poultry Science,1999,78:1536-1541.
    Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., Sjoback, R., Sjogreen, B., Strombom, L., Stahlberg, A., Zoric, N. The real-time polymerase chain reaction. Molecular Aspects of Medicine,2006,27:95-125.
    Lall, S.P., Kaushik, S.J., Le Bail P.Y., Keith, R., Anderson, J.S., Plisetskaya, E. Quantitative arginine requirement of Atlantic salmon(Salmo salar) reared in sea water. Aquaculture,1994,124:13-25.
    Langar, H., Guilhume, J., Metailer, R., Fauconnecu, B. Augmentation of protein synthesis and degradation by poor dietary amino acid balance in European sea bass Dicentrarchus labrax. Journal of Nutrition,1993, 123:1754-1761.
    Le Roith D. The insulin-like growth factor system. Experimental Diabesity Research,2003,4:205-212.
    Lee, J.K. Dietary protein requirement for young turbot (Scophthalmus maximas L.). Aquaculture Nutrition, 2003,9:283-286.
    Lee, L.T.O., Nong, G., Chan, Y.H., Tse, D.L.Y., Cheng, C.H.K. Molecular cloning of a teleost growth hormone receptor and its functional interaction with human growth hormone. Gene,2001,270:121-129
    Lee, S.M. Evaluation of the nutrient digestibilities by different fecal collection methods in juvenile and adult Korean rockfish (Sebastes schlegeli). Journal of Korean Fisheries Society,1997,30:62-71.
    Lee, S.M. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli). Aquaculture,2002,207:79-95.
    Li, M.H., Peterson, B.C., Janes, C.L., Robinson, E.H. Comparison of diets containing various fish meal levels on growth performance, body composition, and insulin-like growth factor-I of juvenile channel catfish Ictalurus punctatus of different strains. Aquaculture,2006,253:628-635.
    Lim, S.J., Lee, K.J. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus. Aquaculture,2009,290:283-289.
    Lin, H.R. The physiology of fishes [M]. Guangzhou:Guangdong High Education Press.1998.
    Liu, L., Li, F., Cardelli, J.A., Martin, K.A., Blenis, J., Huang, S. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene,2006,25:7029-7040.
    Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods,2001,25:402-408.
    Lundstedt, L.M., Melo, J.F.B., Moraes, G. Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei:Siluriformes) in response to diet composition. Comparative Biochemistry and Physiology,2004,137B:331-339.
    Luo, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Tan, X.Y., Yang, H.J. Effects of dietary arginine levels on growth performance and body composition of juvenile grouper Epinephelus coioides. Journal of Applied Ichthyology,2007,23:252-257.
    Luo, Z., Liu, Y.J., Mai, K.S., Tian, L.X., Tan, X.Y., Yang, H.J., Liang, G.Y., Liu, D.H. Quantitative L-lysine requirement of juvenile grouper Epinephelus coioides. Aquaculture Nutrition,2006,12:165-172.
    Lupatsch, I., Kissil, G.W., Sklan, D., Pfeffer, E. Apparent digestibility coefficients of feed ingredients and their predictability in compound diets for gilthead seabream Sparus aurata L. Aquaculture Nutrition, 1997,3:81-89.
    Luzzana, U., Hardy, R.W., Halver, J.E. Dietary arginine requirement of fingerling coho salmon Oncorhynchus kisutch. Aquaculture,1998.163:137-150.
    Lyndon, A.R., Houlihan, D.F., Hall, S.J. The effect of short-term fasting and a single meal on the protein syntheses and oxygen consumption in cod, Gadus morhua. Journal of Comparative Physiology,1992, 162B:209-215.
    Ma, J.J., Xu, Z.R., Shao, Q.J., Xu, J.Z., Hung, S.S.O., Hu, W.L., Zhuo, L.Y. Effect of dietary supplemental L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea bream, Sparus macrocephalus. Aquaculture Nutrition,2008,14:464-471.
    Mai, K., Mercer, J.P., Donlon, J. Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. Ⅳ. Optimum dietary protein level for growth. Aquaculture, 1995,136:165-180.
    Mai, K.S., Xiao, L.D., Ai, Q.H., Wang, X.J., Xu, W., Zhang, W.B., Liufu, Z.G., Ren, M.C. Dietary choline requirement for juvenile cobia, Rachycentron canadum. Aquaculture,2009,289:124-128.
    Mai, K.S., Zhang, L., Ai, Q.H., Duan, Q.Y., Zhang, C.X., Li, H.T., Wan, J.L., Liufu., Z.G. Dietary lysine requirement of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture,2006,258:535-542.
    Marcouli, P.A., Alexis, M.N., Andriopoulou, A., Iliopulu-Georgudak, J. Dietary lysine requirement of juvenile gilthead seabream, Sparus aurata L. Aquaculture Nutrition,2006,12:25-33.
    Matthews, S.J., Kinhult, A.K., Hoeben, P., Sara, V.R., Anderson, T.A. Nutritional regulation of insulin-like growth factor-Ⅰ mRNA expression in barramundi, Lates calcarifer. Journal of Molecular Endocrinology, 1997,18:273-276.
    Meade, J.W. Allowable ammonia for fish culture. Progressive Fish Culturist,1985,47:134-135.
    Melo, J.F.B., Lundstedt, L.M., Meton, I., Baanante, I.V., Moraes, G. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei:Pimelodidae). Comparative Biochemistry and Physiology,2006,145A:181-187.
    Mertz, E.T. The protein and amino acid needs. Halver J.E. Fish nutrition [C]. New York:Academic press. 1972.
    Mohanty, S., Kaushik, S.J. Whole body amino acid composition of Indian major carps and its significance. Aquatic Living Resources,1991,4:61-64.
    Moncada, S., Palmer, R., Higgs, E. Nitric oxide:physiology, pathophysiology and pharmacology. Pharmacological Reviews,1991,43:109-142.
    Moraes, G., Bidinotto, P.M. Induced changes in the amylohydrolytic profile of the gut of Piaractus mesopotamicus (Holmberg,1885) fed different levels of soluble carbohydrate:its correlation with metabolic aspects. Revista de Ictiologia,2000,8:47-51.
    Moriyama, S., Ayson, F.G., Kawauchi, H. Growth regulation by insulin-like growth factor-Ⅰ in fish. Bioscience Biotechnology and Biochemistry,2000,64:1553-1562.
    Moriyama, S., Shimma, H., Tagawa, T., Kagawa, H. Changes in plasma insulin-like growth factor-I levels in precociously maturing amago salmon, Oncorhynchus masou ishikawai. Fish Physiology and Biochemistry,1997,17:253-259.
    Mourente, G., Diaz-Salvago, E., Bell, J.G., Tocher, D.R. Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream(Sparus aurata L.) fed dietary oxidised oil:attenuation by dietary vitamin E. Aquaculture,2002,214:343-361.
    Muoio, D.M., Seefeld, K., Witters, L.A., Coleman, R.A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle:evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochemical Journal,1999,338:783-791.
    Murillo-Gurrea, D.P., Coloso, R.M., Borlongan, I.G, Serrano, Jr. Lysine and arginine requirements of juvenile Asian sea bass, Lates calcarifer. Journal of Applied Ichthyology,2001,17:49-53
    Murray, H.M., Lall, S.P., Rajaselvam, R., Boutilier, L.A., Blanchard, B., Flight, R.M., Colombo, S., Mohindra, V., Douglas, S.E. A nutrigenomic analysis of intestinal response to partial soybean meal replacement in diets for juvenile Atlantic halibut, Hippoglossus hippoglossus, L. Aquaculture,2010,298: 282-293.
    Narita, T., Ishibashi, T. Effect of supplementing a low casein diet with excess cystine and arginine on arginase activity in rats. Animal Science and Technology,1991,62:1136-1141.
    Ng, W.K., Hung, S.S.O. Estimating the ideal dietary essential amino acid pattern for growth of white sturgeon, Acipenser transmontanus (Richardson). Aquaculture Nutrition,1995,1:85-94.
    Ng, W.K., Hung, S.S.O., Herold, M.A. Poor utilization of dietary free amino acids by white sturgeon. Fish Physiology and Biochemistry,1996,15:131-142.
    Ngamsnae, P., De Silva, S.S., Gunasekera, R.M. Arginine and phenylalanine requirement of juvenile silver perch Bidyanus bidyanus and validation of the use of body amino acid composition for estimating individual amino acid requirements. Aquaculture Nutrition,1999,5:173-180.
    Ngandzali, B.O., Zhou, F., Xiong, W., Shao, Q.J., Xu, J.Z. Effect of dietary replacement of fish meal by soybean protein concentrate on growth performance and phosphorus discharging of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture Nutrition,2011, in press. doi: 10.1111/J.1365-2095.2010.00835.x
    Newsholme, P., Brennan, L., Rubi, B., Maechler, P. New insights into amino acid metabolism, b-cell function and diabetes. Clinical Science,2005,108:185-194.
    Nip, T.H.M., Ho, W.Y., Wong, C.K. Feeding ecology of larval and juvenile black sea bream (Acanthopagrus schlegeli) and Japanese sea perch (Lateolabrax japonicus) in Tolo Harbour, Hong Kong. Environmental Biology of Fishes,2003,66:197-209.
    Norbeck, L.A., Kittilson, J.D., Sheridan, M.A. Resolving the growth-promoting and metabolic effects of growth hormone:Differential regulation of GH-IGF-I system components. General and Comparative Endocrinology,2007,151:332-341.
    NRC (National Research Council).1993. Nutrient Requirement of Fish. National Academy Press, Washington, DC, USA.
    O'Dell, B.L., Amos, W.H., Savage, J.E. Relation of chick kidney arginase to growth rate and distary arginine. Proceedings of the Society for Experimental Biology and Medicine,1965,118:102-105.
    Ohta, Y., Nishida, K. Protective effect of L-arginine against stress-induced gastric mucosal lesions in rats and its relation to nitric oxide-mediated inhibition of neutrophil infiltration. Pharmacological Research,2001, 43:535-541.
    Oliveros, L., Vega, V., Anzulovich, A.C., Ramirez, D., Gimenez, M.S. Vitamin A deficiency modifies antioxidant defense and essential element contents in rat heart. Nutrition Research,2000,8:1139-1150.
    Ooi, G.T., Tawadros, N., Escalona, R.M. Pituitary cell lines and their endocrine applications. Molecular and Cellular Endocrinology,2004,228:1-21.
    Palmer, R.M., Ferrige, A.G., Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature,1987,327:524-526.
    Park, H., Kaushik, V.K., Constant, S., Prentki, M., Przybytkowski, E., Ruderman, N.B., Saha, A.K. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. Journal of Biological Chemistry,2002,277:32571-32577.
    Pascual, P.. Pedrajas, J.R., Toribio, F., Lopez-Bareac, J., Peinado, J. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chemico-Biological Interactions,2003,145:191-199.
    Peng, S.M., Chen, L.Q., Qin. J.G., Hou. J.L., Yu, N., Long, Z.Q., Ye, J.Y., Sun, X.J. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black seabream, Acanthopagrus schlegeli. Aquaculture,2008,276:154-161.
    Peres, H., Oliva-Teles, A. Lysine requirement and efficiency of lysine utilization in turbot (Scophthalmus maximus) juveniles. Aquaculture,2008,275:283-290.
    Perez-Sanchez, J., Le-Bail, P. Y. Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture,1999,177:117-128.
    Perez-Sanchez, J., Marti-Palanca, H., Kaushik, S.J. Ration size and protein intake affect circulating growth hormone concentration, hepatic growth hormone binding and plasma insulin-like growth factor-I immunoreactivity in a marine teleost, the gilthead sea bream Sparns aurata. Journal of Nutrition,1995, 125:546-552.
    Perez-Sanchez, J., Marti-Palanca, H., Le Bail, P.Y. Homologous growth hormone (GH) binding in gilthead sea bream (Sparus aurata). Effect of fasting and refeeding on hepatic GH-binding and plasma somatomedin-like immunoreactivity, Journal of Fish Biology,1994,44:287-301.
    Perez-Sanchez, J., Weil, C., Le Bail, P.Y. Effects of human insulin-like growth factor-I on release of growth hormone by rainbow trout(Oncorhynchus mykiss) pituitary cells. Journal of Experimental Zoology,1992, 262:287-290.
    Periage, M.J., Ayala, M.D., Lopez-Albors, O., Abdel, I., Martinez, C., Garcia-Alcazar, A., Ros, G., Gil, F. Muscle cellularity and flesh quality of wild and farmed sea bass Dicentrarchus Labrax L. Aquaculture, 2005,249:175-188.
    Peter, R.E., Marchant, T.A. The endocrinology of growth in carp and related species. Aquaculture,1995,129: 299-321.
    Picha M.E., Silverstein J.T., Borski R.J. Discordant regulation of hepatic IGF-I mRNA and circulating IGF-I during compensatory growth in a teleost, the hybrid striped bass(Morone chrysops × Morone saxatilis). General and Comparative Endocrinology,2006,147:196-205.
    Pickering, A.D. Growth and stress in fish production. Aquaculture,1993,111:51-63.
    Plakas, S.M., Katayama, T., Tanaka, T., Deshimaru, O. Changes in the levels of circulating plasma free amino acids of carp (Cyprinus carpio) after feeding a protein and an amino acid diet of similar composition. Aquaculture,1980,21:307-322.
    Plisetskaya, E.M., Buchelli-Narvaez, LI, Hardy, R.W., Dickhof, W.W. Effects of injected and dietary arginine on plasma insulin levels and growth of pacific salmon and rainbowt rout. Comparative Biochemistry and Physiology,1991,98A:165-170.
    Pozios, K.C., Ding, J., Degger, B., Upton. Z., Duan, C. Insulin-like growth factors stimulate zebrafish embryonic cell proliferation through activating the mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. American Journal of Physiology,2001,230-239.
    Refstie, S., Storebakken, T., Baeverfjord, G., Roem, A.J. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture,2001,193:91-106.
    Regost, C., Arzel, J., Kaushik, S.J. Partial or replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima). Aquaculture,1999,180:99-177.
    Ribeiro, L., Zambonino-Infante, J.L., Cahu, C.L., Dinis, M.T. Development of digestive enzymes in larvae of solea senegalensis, Kaup 1858. Aquaculture,1999,179:465-473.
    Riley, W.W., Higgs, D.A., Dosanjh, B.S., Eales, J.G. Influence of dietary amino acid composition on thyroid function of juvenile rainbow trout, Oncorhynchus mykiss. Aquaculture,1993,112:253-269.
    Robaina, L., Izquierdo, M.S., Moyano, T.F.J., Socorro, J., Vergara, J.M., Montero, D., Fernandez-Palacios, H. Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture,1995,130:219-233.
    Robb, D.H.F. Muscle lipid content determines the eating quality of smoked and cooked Atlantic salmon (Salmo solar). Aquaculture,2002,205:345-358.
    Robinson, E.H., Wilson, R.P., Poe, W.E. Re-evaluation of the lysine requirement and lysine utilization by fingerling channel catfish. Journal of Nutrition,1980,110:2313-2316.
    Robinson, E.H., Wilson, R.P., Poe, W.E. Arginine requirement and apparent absence of a lysine-arginine antagonism in fingerling channel catfish. Journal of Nutrition,1981,111:46-52.
    Robinson, E.H., Wilson, H.P., Poe, W.E. Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish. Journal of Nutrition,1981,114:46-52.
    Rodehutscord, M., Becker, A., Pack, M., Pfeffer, E. Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. Journal of Nutrition,1997,127:1166-1175.
    Rodehutscord, M., Jacobs, S, Pack, M., Pfefer, E. Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 150g to supplements of either L-arginine or L-threonine in a semipurified diet. Journal of Nutrition,1995,125:970-975.
    Romarheim, O.H., Zhang, C., Penn, H.M., Liu, Y.J., Tian, L.X., Skrede A., Krogdahl, A., Storebakken, T. Growth and intestinal morphology in cobia(Rachycentron canadum) fed extruded diets with two types of soybean meal partly replacing fish meal. Aquaculture Nutrition,2008,14:174-180.
    Rosebrough, R.W., Steele, N.C., McMurtry, J.P. Effect of protein level and supplemental lysine on growth and urea cycle enzyme activity in the pig. Growth,1983,47:348-360.
    Rosell, V.L., Zimmermann, D.R. Effects of graded levels of lysine and excess arginine and threonine on young pigs fed practical diets. Journal of Animal Science,1984,59:135-140.
    Ruchimat, T., Masumoto, T., Hosokawa, H., Itoh, Y., Shimeno, S. Quantitative lysine requirement of yellowtail (Seriola quinqueradiata). Aquaculture,1997,158:331-339.
    Ruchimat, T., Toshiro, M., Yoshiaki, I., Sadao, S. Quantitative arginine requirement of juvenile yellowtail Seriola quinqueradiata. Fisheries Science,1998,64:348-349.
    Ruiz-Capillas, C., Moral, A. Free amino acids in muscle of Norway lobster (Nephrops novergicus (L.) in controlled and modified atmospheres during chilled storage. Food Chemistry,2004,86:85-91.
    Sa, R., Pousao-Ferreira, P., Oliva-Teles, A. Dietary protein requirement of white sea bream (Diplodus sargus) juveniles. Aquaculture Nutrition,2008,14:309-317.
    Salze, G., McLean, E., Battle, P.R., Schwarz, M.H., Craig, S.R. Use of soy protein concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for juvenile cobia, Rachycentron canadum. Aquaculture,2010,298:294-299.
    Sampaio-Oliveira, A.M.B.M., Cyrino, J.E.P. Digestibility of plant protein-based diets by largemouth bass Micropterus salmoides. Aquaculture Nutrition,2008,14:318-323.
    Sampson, D.A., Harrison, S.C., Clarke, S.D., Yan, X. Dietary protein quality alters ornithine decarboxylase activity but not vitamin B-6 nutritional status in rats. Journal of Nutrition,1995,125:2199-2207.
    Santiago, C.B., Lovell, R.T. Amino acid requirements for growth of Nile tilapia. Journal of Nutrition,1988, 118:154-1546.
    Santinha, P.J.M., Gomes, E.F.S., Coimbra, J.O. Effects of protein level of the diet on digestibility and growth of gilthead sea bream, Sparus auratus L. Aquaculture Nutrition,1996,2:81-87.
    Sato, K., Sugawara, A., Kudo, M., Uruno, A., Ito, S., Takeuchi, K. Expression of peroxisome proliferator-activated receptor isoform proteins in the rat kidney. Hypertension Research,2004,27: 417-425.
    Schuhmacher, A., Wax, C., Gropp, J.M. Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. Aquaculture.1997,151:15-28.
    Schwarz, F., Kirchgessner, M., Deuringer, U. Studies on the methionine requirement of carp(Cyprinus carpio L.). Aquaculture,1998,161:121-129.
    Scott, A.P., Sheldrick, E.L., Flint, A.P.,1982. Measurement of 17alpha,20 beta-dihydroxy-4-pregnen-3-one in plasma of trout (Salmo gairdneri Richardson):seasonal changes and response to salmon pituitary extract. General and Comparative Endocrinology,1982,46:444-451.
    Segovia-Quintero, M.A., Reigh, R.C. Coating crystalline methionine with tripalmitin-polyvinyl alcohol slows its absorption in the intestine of Nile Tilapia, Oreochromis Niloticus. Aquaculture,2004,238:355-367.
    Shao, Q.J., Ma, J.J., Xu, Z.R., Hu, W.L., Xu, J.Z., Xie, S.Q. Dietary phosphorus requirement of juvenile black sea bream, Sparus macrocephalus. Aquaculture,2008,277:92-100.
    Shiau, S.Y. Utilization of carbohydrates in warmwater fish-with particular reference to tilapia, Oreochromis niloticus x O. aureus. Aquaculture,1997,151:79-96.
    Simmons, L., Moccia, R.D., Bureau, D.P. Dietary methionine requirement of juveaile Arctic charr Salvetinus atpinus (L). Aquaculture Nutrition,1999,5:93-110.
    Singh, S., Khan, M.A. Dietary arginine requirement of fingerling hybrid Clarias(Clarias gariepinus x Clarias macrocephalus). Aquaculture Research,2007,38:17-25.
    Small, B.C., Soares, J.H.Jr. Quantitative dietary lysine requirement of juvenile striped bass Morone saxatilis. Aquaculture Nutrition,2000,6:207-212.
    Southern, L.L., Baker, D.H. Performance and concentration of amino acids in plasma and urine of young pigs fed diets with excesses of either arginine or lysine. Journal of Animal Science,1982,55:857-866.
    Storebakken, T., Refstie, S., Ruyter, B. Soy products as fat and protein sources in fish feeds for intensive aquaculture. In:Soy in Animal Nutrition (ed. by J.K. Drackley),2000, pp.127-170. Federation of Animal Science Societies, Savoy, IL, USA.
    Straus, D.S. Nutritional regulation of hormones and growth factors that control mammalian growth. The FASEB Journal,1994,8:6-12.
    Sveier, H., Nordas, H., Berge, G.E., Lied, E. Dietary inclusion of crystalline D-and L-methionine:effects on growth, feed and protein utilization, and digestibility in small and large Atlantic salmon(Salmon salar L.). Aquaculture Nutrition,2001,7:169-181.
    Tacon, A.G.J., Cowey, C.B. Protein and amino acid requirement. In:Tytler, P., Calow, P. (Eds.), Fish Energetics, New Perspectives. Croom Helm., London,1985,155-184.
    Tacon, A.G.J. Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds:Trends and future prospects. Aquaculture,2008,285:146-158.
    Tamir, H., Ratner, S. Enzymes of arginine metabolism in chicks. Archives of Biochemistry and Biophysics, 1963,102:249-258.
    Tang, L., Wang, G.X., Jiang, J., Feng, L., Yang, L., Li, S.H., Kuang, S.Y., Zhou, X.Q. Effect of methionine on intestinal enzymes activities, microflora and humoral immune of juvenile Jian carp (cyprinus carpio var. Jian). Aquaculture Nutrition,2009,15:477-483.
    Tantikitti, C., Chimsung, N. Dietary lysine requirement of freshwater catfish (Mystus nemurus Cuv.& Val.). Aquaculture Research,2001,32:135-141.
    Thissen, J.P., Ketelslegers, J.M., Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocrine Reviews,1994,15:80-101.
    Tibaldi, E., Tulli, F., Lanari, D. Arginine requirement and effect of different dietary arginine and lysine levels for fingerling sea bass(Dicentrarchus labrax L.). Aquaculture,1994,127:207-218.
    Twibell, R.G., Brown, P.B. Dietary arginine requirement of juvenile yellow perch. Journal of Nutrition,1997, 127:1838-1841.
    Tsai, P.I., Madsen, S.S., McCormick, S.D., Bern, H.A. Endocrine control of cartilage in Coho salmon:GH influence in vivo on the response to IGF-I in vitro. Zoological Science,1994,11:299-303.
    Tse, D.L.Y., Tse, M.C.L., Chan, C.B., Deng, L., Zhang, W.M., Lin, H.R., Cheng, C.H.K. Seabream growth hormone receptor:molecular cloning and functional studies of the full-length cDNA, and tissue expression of two alternatively spliced forms. Gene Structure and Expression,2003,1625:64-76.
    Urschel, K.L., Shoveller, A.K., Pencharz, P.B., Ball, R.O. Arginine synthesis does not occur during first-pass hepatic metabolism in the neonatal piglet. American Journal of Physiology, Endoerinology and Metabolism,2005,288:1244-1250.
    Vilella, S., Ahearn, C.G.A., Maffia, G.M., Storelli, C. Lysine transport by brush-border membrane vesicles of eel intestine:interaction with neutral amino acids. American Journal of Physiology,1990,259: 1181-1188.
    Viola, S., Lahav, E. Effects of lysine supplementation in practical carp feeds on total protein sparing and reduction of pollution. The Israeli Journal of Aquaculture-Bamidgeh,1991,43:112-118.
    Walton, M.J., Cowey, C.B. Aspects of ammoniogenesis in rainbow trout, Salmo gairdneri. Comparative Biochemistry and Physiology,1977,57:143-149.
    Walton. M.J., Cowey, C.B., Coloso. R.M., Adron. J.W. Dietary requirements of rainbow trout for tryptophan, lysine and arginine determined by growth and biochemical measurements. Fish Physiology and Biochemistry,1986,2:161-169.
    Walton, M.J. Aspects of amino acid metabolism in teleost fish. In:Nutrition and Feeding in Fish (ed. by C.B. Cowey, A.M. Mackie & J.G. Bell),1985, pp.47-67. Academic press, London, UK.
    Wang, S., Liu, Y.J., Tian, L.X., Xie, M.Q., Yang, H.J., Wang, Y., Liang, G.Y. Quantitative dietary lysine requirement of juvenile grass carp Ctenopharyngodon idella. Aquaculture,2006,249:419-429.
    Wang, S.H., Crosby, L.O., Nesheim, M.C. Effect of dietary excesses of lysine and arginine on the degradation of lysine by chicks. Journal of Nutrition,1973,103:384-391.
    Weller, P.A., Dickson, M.C., Huskisson, N.S., Dauncey, M.J., Buttery, P.J., Gilmour, R.S. The porcine insulin-like growth factor-Ⅰ gene:characterization and expression of alternate transcription sites. Journal of Molecular Endocrinology,1993,11:201-211.
    Wheeler, T.T., Callaghan, M.R., Davis, S.R., Prosser, C.G., Wilkins, R.J. Milk protein synthesis, gene expression, and hormonal responsiveness in primary culture of mammary cells from lactating sheep. Experimental Cell Research,1995,217:364-354.
    Wildhirt, S.M., Dudek, R.R., Suzuki, H., Bing, R.J. Involement of inducible nitric oxide synthase in the inflamatory process of myocardial infarction. International Journal of Cardiology,1995,50:253-261.
    Wilson, R.P. Amino acids and proteins. In:Halver J E, Fish Nutrition (Third Edition). Academic Press, New York,2002,145-175.
    Wilson, R.P., Harding, D.E., Garling, Jr. D.L. Effect of dietary pH on amino acid utilization and the lysine requirement of fingerling channel catfish. Journal of Nutrition,1977,107:166-170.
    Wilson, R.P., Poe, W.E. Relationship of whole body and egg essential amino acid patterns to amino acid requirement patterns in channel catfish, Ictalurus punctatus. General and Comparative Endocrinology, 1985,80B:385-388.
    Wray-Cahen C.D., Kerry, D.E., Evock-Clove C.M., Steele, N.C. Redefining body composition:nutrients, hormones and genes in meat production. Annual Review of Nutrition,1988,18:63-92.
    Wu, G., Flynn, N.E., Flynn, S.P., Jolly, C.A., Davis, P.K. Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. Journal of Nutrition,1999,129: 1347-1354.
    Wu, G., Morris, S.M. Arginine metabolism:nitric oxide and beyond. Biochemical Journal,1998,336:1-17.
    Wu, G.Y., Bazer, F.W., Davis, T.A., Jaeger, L.A., Johnson, G.A., Kim, S.W., Knabe, D.A., Meininger, C.J., Spencer, T.E., Yin, Y.L. Important roles for the arginine family of amino acids in swine nutrition and production. Livestock Science,2007,112:8-22.
    Yamada, H., Kimura, K., Chen, D. Effects of daily fat or ethanol ingestion on the cholecystokin in pancreas and the gastrin-enterochrom affin-like cell axes in rats. Digestion,1998,59:331-334.
    Yamada, S., Simpson, K.L., Tanaka, Y., Katayama, T. Plasma amino acid changes in rainbow trout (Salmo gairdneri) force fed casein and a corresponding amino acid mixture. Bulletin of the Japanese Society of Scientific Fisheries,1981,47:1035-1040.
    Yamamoto, T., Unuma, T., Akiyama, T. The influence of dietary protein and fat levels on tissue free amino acid levels of fingerling rainbow trout(Oncorhynchus mykiss). Aquaculture,2000,182:353-372.
    Yan, L., Zhou, X.Q. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp(Cyprinus carpio var. Jian). Aquaculture,2006,389-394.
    Yang, S.D., Liu, F.G., Liou, C.H. Assessment of dietary lysine requirement for silver perch(Bidyanus bidyanus) juveniles. Aquaculture,2011,312:102-108.
    Yufera, M., Kolkovski, S., Fernandez-Diaz C., Dabrowski, K. Free amino acid leaching from a protein-walled microencapsulated diet for fish larvae. Aquaculture,2002,214:273-287.
    Zarate, D.D., Lovell, R.T. Free lysine (L-lysine-HCl) is utilized for growth less efficiently than protein-bound lysine (soybean meal) in practical diets by young channel catfish (Ictalurus punctatus). Aquaculture, 1997,159:87-100.
    Zeitoun, I.H., Ullrey, D.E., Magee, W.T. Quantifying nutrient requirements of fish. Journal of the Fisheries Research Board of Canada,1976,33:167-172.
    Zhang, C.X., Ai, Q.H., Mai, K.S., Tan, B.P., Li, H.T., Zhang, L. Dietary lysine requirement of large yellow croaker, Pseudosciaena crocea R. Aquaculture,2008,283:123-127.
    Zhou, F., Song, W.X., Shao, Q.J., Peng, X., Hua Y, Xiao J.X., Ngandzali, O.B., Zhang, T.Z., Ng, W.K. Partial replacement of fish meal by fermented soybean meal in diets for black sea bream (Acanthopagrus schlegelii) Juveniles. Journal of the World Aquaculture Society,2011,42:184-197.
    Zhou, F., Xiao, J.X., Hua, Y., Ngandzali, B.O., Shao, Q.J. Dietary L-methionine requirement of juvenile black sea bream (Sparus macrocephalus) at a constant dietary cystine level. Aquaculture Nutrition,2011, in press. doi:10.1111/j.1365-2095.2010.00823.x
    Zhang. J.Z., Zhou, F., Wang, L.L., Shao, Q.J., Xu, Z.R., Xu, J.Z. Dietary protein requirement of juvenile black sea bream, Sparus macrocephalus. Journal of World Aquaculture Society,2010,41:151-164.
    Zhou, Q.C., Wu, Z.H., Chi, S.Y., Yang, Q.H. Dietary lysine requirement of juvenile cobia(Rachycentron canadum). Aquaculture,2007,273:634-640.
    Zhou, X.Q., Zhao, C.R., Jiang, J., Feng, L., Liu, Y. Dietary lysine requirement of juvenile Jian carp(cyprinus carpio var. Jian). Aquaculture,2008,14:381-386.
    白茹.美国红鱼nNOS cDNA的克隆与组织表达及营养素对该基因表达水平的影响[D].华南师范大学,硕士学位论文.2008.
    陈乃松,周洁,靳利娜,周恒永,马建忠,仇小洁.禁食对大口黑鲈生长和肝脏IGF-I mRNA表达丰度的影响.中国水产科学,2010,17:713-720.
    陈四清,季文娟.黑鲷幼鱼对Zn,Cu的营养需要.中国水产科学,1998,5:52-56.
    陈四清,季文娟.肌醇对黑鲷幼鱼营养作用的研究.海洋科学,1999,5:13-15.
    程胜利,李建升,冯瑞林,裴杰,岳耀敬,郭宪,刘建斌,杨博辉,郭天芬.不同水平赖氨酸对绵羊胰岛素样生长因子-I基因表达的影响.动物营养学报,2010,22.487-491.
    陈志敏,蔡辉益,刘国华,常文环,张姝,于会民.日粮赖氨酸的不同添加水平对肉仔鸡肝脏和肌肉中IGF-I mRNA丰度影响的研究.中国畜牧兽医学会动物营养学分会-第九届学术研讨会论文集.2004.
    郭长义,蒋宗勇,李职,林映才,蒋守群,马现永,郑春田.泌乳母猪饲粮精氨酸水平对哺乳仔猪小肠黏膜发育的影响.动物营养学报,2010,22:870-878.
    黄琳.精氨酸对人工饲养新生仔猪营养调控的研究[D].华南农业大学,硕士学位论文.2008.
    姜巨峰,张殿昌,林黑着,苏天凤,黄建华,江世贵.不同蛋白水平对鲮消化酶活性的影响.安徽农业科学,2008,36-6784-6786.
    李会涛,麦康森,艾庆辉,张璐,张春晓,张文兵,刘付志国.大黄鱼对几种饲料蛋白原料消化率的研究.水生生物学报,2007,31:370-376.
    刘永坚,田丽霞,刘栋辉,梁桂英,赵小奎,朱选,阳会军,关国强.实用饲料补充结晶或包膜赖氨酸对草鱼生长、血清游离氨基酸和肌肉蛋白质合成率的影响.水产学报,2002,26:252-258.
    马晶晶.n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响[D].浙江大学,博士学位论文,2008.
    马晶晶,邵庆均,许梓荣,周凡,钟观运,宋文新,Ngandzali B.O. n-3高不饱和脂肪酸对黑鲷幼鱼生长及脂肪代谢的影响.水产学报,2009,33:639-649.
    马秀玲.精氨酸对肝脏IGF-1分泌的调控及其促进免疫作用机制的研究[D].中国人民解放军军事医学科学院,博士学位论文.2003.
    梅景良,马燕梅.温度和pH对黑鲷主要消化酶活性的影响.集美大学学报(自然科学版),2004,9:226-230.
    梅景良,马燕梅,王宏,张奇秀.pH值对黑鲷胃肠道及肝胰脏主要消化酶活力的影响.云南农业大学学报,2004,19:592-595.
    单红,张其中,刘强平,赵海涛,周晓扬,冉江波.灭活菌苗免疫的南方鲇外周血液细胞免疫指标的变化.中国水产科学,2005,12:275-280.
    林光华,张丰旺,翁世聪.草鱼血液的研究.动物学报,1985,4:336-344.
    罗智.石斑鱼对蛋白和三种必需氨基酸需要量及理想氨基酸模式[D].中山大学博士论文,2005.
    邵庆均,苏小凤,许梓荣.饲料蛋白水平对宝石鲈增重和胃肠消化酶活性影响.浙江大学学报,2004,30:553-556.
    谭碧娥,李新国,孔祥峰,姚康,印遇龙.精氨酸对早期断奶仔猪肠道生长,组织形态及IL-2基因表达水平的影响.中国农业科学,2008,41:2783-2788.
    万军利,麦康森,艾庆辉.鱼类精氨酸营养生理研究进展.中国水产科学,2006,13:680-685.
    王广军,谢骏,余德光,胡朝莹,杜旭彤,唐丽花.注射L-精氨酸和环磷酰胺对杂色鲍血清NO水平、NOS活性及免疫指标的影响.中国水产科学,2008,15:902-909.
    王胜.草鱼幼鱼蛋白质和主要必需氨基酸需求的研究[D].中山大学,博士毕业论文.2006.
    王纪亭,孙存孝,杨在宾,高振川,姜云侠,张琪.肉鸡日粮中赖氨酸与精氨酸适宜比例的研究.畜牧兽医学报,1999,30:217-224.
    王秀英.饵料维生素C对黑鲷仔鱼生长和体组织生化指标的影响[D].浙江大学,硕士学位论文.2004.
    吴莉芳,秦贵信,刘春力,孙泽威,孙玲,王洪鹤.饲料大豆蛋白对鲤鱼消化酶活力和血液主要生化指标的影响.西北农林科技大学学报(自然科学版),2009,37:63-69.
    严全根,解绶启,雷武,朱晓鸣,杨云霞.许氏平鲉幼鱼的赖氨酸需求量.水生生物学报,2006,30:459-465.
    杨凤.动物营养学[M].北京:中国农业出版社,1999.
    赵春蓉.赖氨酸对幼建鲤消化能力和免疫功能的影响[D].四川农业大学硕士论文,2005.
    郑迎迎.人Ⅰ型精氨酸酶基因的克隆及表达[D].南京理工大学,硕士学位论文.2006.
    周顺伍,邹思湘,姜涌明,等.动物生物化学(第三版).中国农业出版社,2003,156-175.
    周贤君,解绶启,谢从新,雷武,朱晓鸣.异育银鲫幼鱼对饲料中赖氨酸的利用及需要量研究.水生生物学报,2006,30:247-255.
    周小秋,杨凤,周安国,蔡景义.鳖赖氨酸和精氨酸拮抗研究.四川农业大学学报,2003,21:157-160.
    朱春华,李广丽,吴天力,师尚丽,吴灶和.L-精氨酸对凡纳滨对虾体液免疫因子的影响.海洋科学,2009,33:55-59.
    朱选,曹俊明,赵红霞,张海涛.饲料中添加谷胱甘肽对草鱼组织中谷胱甘肽沉积和抗氧化能力的影响.中国水产科学,2008,15:160-166.
    卓立应.饲料蛋白能量比对黑鲷幼鱼生长和体组成的影响[D].浙江大学,硕士学位论文.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700