基于格理论的GNSS模糊度估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着卫星导航系统的建设和发展,卫星定位技术的应用领域不断扩大,用户对定位结果的精度和可靠性的要求也越来越高。高精度的定位过程中,整周模糊度的正确解算是保证定位精度的关键因素,本文基于数学中的格理论对整周模糊度的估计方法进行了研究,论文的主要成果和创新点概括如下:
     1.为了获得最终的位置结果,需要首先将既包含实数未知参数又包含整数未知参数的混合整数模型转化为整数模型进行解算,讨论了基于最小二乘准则和基于Bayesian准则的两种转换过程,并且证明了两类准则下转换得到的整数模型是一致的。
     2.针对LLL降相关算法利用整数Gram Schmidt变换进行处理,变换过程受取整舍入误差的影响严重,而导致高维情况下出现降相关失败的问题,提出了一种整数分块正交变换法,并且基于这种变换设计了基于整数分块正交变换的LLL降相关算法。通过计算分析,证明了新方法的降相关性能有了很大的提高。
     3.深入研究了格的定义,特点以及格上的两个著名难题,通过对模糊度解算的整数最小二乘模型的分析,对协方差矩阵进行三角分解即可构造出模糊度解算对应的格,而模糊度搜索固定的问题等价于格上的最近向量问题,在此基础上,提出了基于格的模糊度解算方法。
     4.分析研究了LLL规约基及两种实现算法。由于格基具有多样性,格基性能的好坏将会影响到格上CVP解算的效率和成功率,对于基于格的模糊度解算来说,需要通过格基规约的方式选择出最适合问题解算的那组基。通过对LLL规约基的分析,掌握了格基规约的原理、过程与根本目标,同时对基于Gram Schmidt变换和基于Householder变换的两种LLL规约基的实现方法进行研究。
     5.提出了一种扩展的LLL规约基,其长度规约的约束条件要高于LLL规约,可保证在所有的基向量范围内实现长度规约。为了实现E-LLL规约基,首先设计了基于系统旋转的Householder变换,其可在规约开始之前就保证基向量能够按照其正交化向量长度由小到大的顺序排列,从而提高规约的效率,其次基于这种变换方式提出了HE-LLL规约算法,该方法在系统旋转变换的辅助下,对基向量逐一进行大小规约和长度规约处理,最终可保证获得E-LLL规约基。通过利用实测数据进行计算,验证了HE-LLL算法不仅提高规约效果,而且提高了规约的效率。
     6.提出了一种改进的BKZ规约算法,BKZ规约是在LLL规约的基础上对格基进行进行分块处理,保证每个分块中的基向量能够满足KZ规约的条件,其规约的效果和效率取决于分块的大小,分块越大则效果越好同时效率也越低,为了优化规约的效率,基于HE-LLL进行了改进,通过利用实测和模拟数据的分析,验证了改进的BKZ算法的计算效率要明显优于BKZ规约基,同时其规约效果在理论上也优于HE-LLL规约。
     7.研究了基于深度优先搜索模式的VB-SD和SE-SD算法,并且对格基规约过程对其搜索空间的影响进行了分析,证明了格基规约的大小规约过程并不能改善搜索空间,而只有长度规约才会对搜索的效率和成功率产生影响,通过利用实测数据在不同情况下的分析证明了以上结论。
     8.提出了基于HE-LLL规约的K-best搜索算法,基于深度优先的搜索算法由于需要进行复杂的迭代分析,在高维情况下效率较低,以K-best算法为代表的基于广度优先模式的球形搜索算法由于每次只搜索k个候选值,所以具有比较固定的复杂度,但是这导致了它是一种次优的算法。为了满足模糊度解算的精度要求,在格基质量和搜索半径约束两个方面进行了改进,利用实测数据进行了计算分析,结果表明本文提出的方法只需选取较小的k值即可获得模糊度的最优解,并且其效率稳定不会随着维数的增加而产生很大的变化,适用于高维的模糊度解算。
     9. Voronoi cell作为一种具有对偶性质的凸域几何结构,可用来对格上相关问题进行分析研究。通过对格上向量对应的Voronoi cell的分析,将模糊度CVP求解的问题转化为求解目标向量在原点的Voronoi cell中对应向量的问题。利用Voronoi相关向量来构造原点对应的Voronoi cell,并且在此基础上设计了基于Voronoi cell的模糊度CVP解算方法,利用一组模拟的2维数据,对算法的模糊度解算过程进行了分析,基于其构造的Voronoi cell对结果的可靠性进行评价,同时选取几组实测数据进一步验证了算法的正确性。
With the construction and development of satellite navigation system, the application area ofsatellite positioning is enlarging and consumers’ requirements for the precision and reliability ofpositioning results are growing. In the process of high-precision positioning, the correctness ofinteger ambiguity resolution is the key factor in guaranteeing the positioning precision. Thisdissertation studied the integer ambiguity estimation based on the lattice theory in math. Themain achievement and creative points are as follows:
     1. In order to obtain the final positioning results, the mixed integer model which doesn’t onlycontain unknown parameters of real numbers, but also contains unknown parameters ofinteger numbers should be transformed to integer model first. Then two kinds oftransforming process are discussed based on least squares criterion and Bayesian criterion.And it is proved that the integer models obtained with the two criterions are consistent.
     2. The LLL decorrelation algorithm uses integer Gram Schmidt transformation to compute.Due to the impact of round-off error, it usually fails to decorrelate in circumstances of highdimensions. To solve this problem, an integer block orthogonal transformation method isproposed and an LLL decorrelation algorithm is designed based on this transformation.With computation and analysis, it proves that the new method can greatly improve thedecorrelation.
     3. The definition, character and two famous problems of lattice are studied thoroughly. Afteranalyzing the integer least squares model of ambiguity resolution, lattice referring toambiguity resolution can be made to conduct triangular decomposition of covariance matrix.The search and fix of ambiguity is equivalent to the nearest vector problem in lattice. Onthis basis, the ambiguity resolution algorithm based on lattice is proposed.
     4. The LLL reduction base and two algorithms are studied. Since there is a diversity of latticebase, the quality of lattice base will affect the efficiency and success rate of CVP resolutionin lattice. For the ambiguity resolution based on lattice, a most suitable group should bechose according to lattice reduction. After analyzing the LLL reduction base, the principle,process and ultimate goal are mastered. At the same time, two methods based on LLLreduction base of Gram Schmidt and Householder transformation are studied.
     5. An extended LLL reduction base is proposed. The restriction of its length reduction isstricter than LLL reduction which can guarantee the realization of length reduction in rangesof all base vectors. For fulfillment of E-LLL reduction, the Householder transformationbased on systematic rotation is designed. It guarantees that the basic vector can be arranged from short to long according to the length of orthogonal vectors which improves thereduction efficiency. Then the HE-LLL reduction algorithm is proposed based on thistransformation. This algorithm conducts size and length reduction of basic vector with theassist of systematic rotation transformation which can guarantee the acquisition of E-LLLreduction base finally. Using observed data for computation, it proves that HE-LLLalgorithm not only improves reduction effect, but also improves the reduction efficiency.
     6. An improved BKZ reduction algorithm is proposed. BKZ reduction disparts the lattice baseon the basis of LLL reduction and guarantees that basic vector in each block satisfies KZreduction. But the reduction effect relies on the size of blocks. The bigger the blocks, thebetter the effect while the worse the efficiency. In order to promote the efficiency of BKZreduction, the HE-LLL is used to optimize. With analysis of observed and simulated data,the computational efficiency of promoted BKZ algorithm is obviously better than BKZreduction, and the base reduction effect is better the HE-LLL reduction algorithm in theory.
     7. The VB-SD and SE-SD algorithms based on depth-first searching mode are studied. Andthe impact of lattice reduction process on searching space is analyzed. It proves that theprocess of lattice size reduction cannot improve the searching space, whereas only lengthreduction can affect the searching efficiency and success rate. Analysis with Observed datain different circumstances proves the conclusion above.
     8. The K-best searching algorithm based on HE-LLL reduction is proposed. Since thedepth-first searching algorithm needs complex iteration process, the efficiency is low inhigh-dimensional circumstance. The sphere searching algorithm based on breadth-firstmode which is represented by K-best algorithm, searches only k candidates, therefore it hasrelatively stable complexity, while leading this to be a suboptimal algorithm. In demand ofambiguity estimation, an improvement has been made on aspects of lattice base quality andsearching radius restriction. Observed data is used for computation analysis. Results haveshown that the method proposed in this paper only requires relatively small value of k toobtain the optimal ambiguity resolution and the efficiency is stable which will not changemuch with the increase of dimensions. It suits for high-dimensional ambiguity resolution.
     9. Voronoi cell, as a convex geometry structure which has dual concept, can be used to studyand analyze related questions in lattice. After analyzing the corresponding Voronoi cell inlattice vectors, the problem of ambiguity CVP resolution is transformed to resolving thecorresponding vector in the Voronoi cell whose target vector is at the origin. Using theVoronoi-related vector to construct the Voronoi cell correspond to the origin, the ambiguityCVP resolution method based on the Voronoi cell is designed on this basis. Using a set ofsimulated two-dimensional data, the ambiguity resolution process of the algorithm is analyzed and the stability of the results based on the Voronoi cell is estimated. Several setsof observed data is chosen to further prove the correctness of the algorithm.
引文
[1]宁津生,陈俊勇,李德仁,刘经南,张祖勋等。测绘学概论[M]。武汉:武汉大学出版社,2004。
    [2]陈忠贵等.现代卫星导航系统技术特点与发展趋势分析[J].中国科学E辑:技术科学,2009,39(4):686-695.
    [3] Miller J.: Evolution Towards GNSS, In: Proceedings of ION-NTM2004,26-28January,San Diego, CA,182-190(2004)
    [4] Revnivykh S. GLONASS status and progress[C]//Proc. ION GNSS.2010:609-633.
    [5]刘基余. GLONASS现代化的启迪[J].遥测遥控,2010,31(5):1-6.
    [6] European Space Agency. GNSS evolution factsheet[EB/OL].[2013-2-10].http://esamultimedia.esa.int/docs/Navigation/fact-sheet-gnss-evolution.pdf
    [7] European Space Agency. Galileo factsheet[EB/OL].[2013-2-10].http://download.esa.int/docs/Galileo_IOV_Launch/Galileo_factsheet_2012.pdf
    [8] Wolfrum J, Trautenberg H. Galileo—a technical concept for the European satellitenavigation system[J]. International journal of satellite communications,2000,18(4‐5):243-258.
    [9] Provenzano J P, Masson A, Journo S, et al. Implementation of a European infrastructure forsatellite navigation: from system design to advanced technology evaluation[J].International journal of satellite communications,2000,18(4‐5):223-242.
    [10] Hatch R, Euler H J. Comparison of several AROF kinematic techniques[C]//Proceedings ofthe7th International Technical Meeting of the Satellite Division of The Institute ofNavigation (ION GPS1994).1994:363-370.
    [11] Remondi B W. Performing centimeter-level surveys in seconds with GPS carrier phase:initial results[M]. National Oceanic and Atmospheric Administration, National OceanService, Charting and Geodetic Services,1985.
    [12] Hofmann-Wellenhof B, Remondi B. The antenna exchange: One aspect of high-precisionGPS kinematic survey[J]. GPS-Techniques Applied to Geodesy and Surveying,1988:259-277.
    [13] Hwang P Y C. Kinematic GPS for differential positioning: resolving integer ambiguities onthe fly[J]. Navigation,1991,38(1):1-16.
    [14] Counselman C C, Gourevitch S A. Miniature interferometer terminals for earth surveying:ambiguity and multipath with Global Positioning System[J]. Geoscience and RemoteSensing, IEEE Transactions on,1981(4):244-252.
    [15] Remondi B W. Using the global positioning system(GPS) phase observable for relativegeodesy: Modeling, processing, and results[Ph. D. Thesis][J].1984.
    [16] Mader G L. Rapid static and kinematic Global Positioning System solutions using theambiguity function technique[J]. Journal of Geophysical Research,1992,97(B3):3271-3283.
    [17] Hatch R. Instantaneous ambiguity resolution[M]//Kinematic systems in geodesy, surveying,and remote sensing. Springer New York,1991:299-308.
    [18] Collins D. Born to fail? Empowerment, ambiguity and set overlap[J]. Personnel Review,1999,28(3):208-221.
    [19] Han S, Rizos C. The impact of two additional civilian GPS frequencies on ambiguityresolution strategies[C]//55th National Meeting US Institute of Navigation," NavigationalTechnology for the21st Century", Cambridge, Massachusetts.1999:28-30.
    [20] Simsky A, Sleewaegen J M, Nemry P. Early performance results for new Galileo and GPSsignals-in-space[J]. ENC GNSS, Manchester,2006:7-10.
    [21] Forssell B., Martin-Neira M., Harris R.A. Carrier Phase Ambiguity Resolution in GNSS-2.In: Proceedings of ION GPS-97, Sep.16–191997, Kansas City, pp1727–1736.
    [22] Vollath, U., et al. Analysis of Three-Carrier Ambiguity Resolution (TCAR) Technique forPrecise Relative Positioning in GNSS-2. In Proceedings of ION GPS-98The11thInternational Technical Meeting of the Satellite Division of the Institute of Navigation,Nashville, Tennessee, USA,1998, pp.417-426.
    [23] Werner W., Eissfeller B. et al. Performance of the TCAR Method in Multipath andJamming Environments[C]. In: Proc. ION GPS-98, Nashville, Tennessee, September15-18,1998, pp1385-1394.
    [24]范建军,王飞雪.一种短基线GNSS的三频模糊度解算(TCAR)方法[J].测绘学报,2007,36(1):43-49.
    [25] Werner W., Winkel J. TCAR and MCAR Options With Galileo and GPS[C]. In: IONGPS/GNSS2003,9-12September2003, Portland, OR, pp790-800.
    [26] Vollath, U., et al. Three or Four Carriers–How Many are Enough?[C]. In: IONGPS/GNSS2003,9-12September2003, Portland, OR, pp1470-1477.
    [27] Vollath, U., et al. The Factorized Multi-Carrier Ambiguity Resolution (FAMCAR)Approach for Efficient Carrier-Phase Ambiguity Estimation[C]. In: ION GNSS17thInternational Technical Meeting of the Satellite Division,21-24Sept.2004, Long Beach,CA, pp2499-2508.
    [28] Feng, Y. GNSS Three Carrier Ambiguity Resolution Using Ionosphere-reduced VirtualSignals [J], Journal of Geodesy,2008,82(12):847-862.
    [29] Feng Y. Rizos C. Geometry-based TCAR Models and Performance Analysis, In:"Observing Our Changing Earth", M.G. Sideris (Ed.), IAG Symposia Series Vol.133,Springer-Verlag Berlin Heidelberg,2008, ISBN978-3-540-85425-8, p645-654.
    [30] Jung J. High Integrity Carrier Phase Navigation for Future LAAS Using Multiple CivilianGPS Signals[C]. In: Proceedings of ION-GPS1999, Nashville, Tennessee. Alexandria: TheInstitute of Navigation,1999.
    [31] Hatch R., Jung J., Enge P., Pervan B. Civilian GPS: the benefits if three frequencies [J].GPS Solut2000,3(4):1–9.
    [32] Jung J., Enge P., Pervan B. Optimization of Cascade Interger Resolution with Three CivilGPS Frequencies[C]. In: Proceedings of ION-GPS2000, Salt Lake City, pp2191-2200.
    [33] Zhang Wentao, Cannon M. et al. Investigation of Combined GPS/GALILEO CascadingAmbiguity Resolution Schemes[C]. In: ION GPS/GNSS2003,9-12September2003,Portland, OR, pp2599-2610.
    [34] Julien O. et al. Triple Frequency Ambiguity Resolution Using GPS/GALILEO[J].European Journal of Navigation,2004,2(2):51-56.
    [35] Fernandez-Plazaola U. et al. A new method for three-carrier GNSS ambiguity resolution [J].J Geod,2008,82:269-278.
    [36] Li B., Feng Y. and Shen Y. Three carrier ambiguity resolution: distance-independentperformance demonstrated using semi-generated triple frequency GPS signals[J], GPS Solu,2010,14:177-184.
    [37] Hatch R. A new three-frequency, geometry-free technique for ambiguity resolution. In:Proceedings of ION GNSS2006,26–29Sept, Fort Worth, TX, pp309–316.
    [38] Zhang Wentao. Triple Frequency Cascading Ambiguity Resolution for Modernized GPSand GALILEO[D]. UCGE Reports, Number20228, July2005,http://www.geomatics.ucalgary.ca/links/Gr-adTheses.html
    [39] Li B. Generation of the third code and phase GPS signals based on dual-frequency GPSmeasurements[C]. In: Proceedings of ION GNSS2008,16–19Sept., Savannah GA,pp:2820–2830.
    [40] Teunissen P.J.G. Joosten P, Tiberius CCJM. A comparison of TCAR, CIR and LAMBDAGNSS ambiguity resolution[J]. In: Proceedings of ION GPS2002,24–27September,Portland, Oregon, pp2799–2808.
    [41] Xu P. Voronoi cells, probabilistic bounds, and hypothesis testing in mixed integer linearmodels[J]. Information Theory, IEEE Transactions on,2006,52(7):3122-3138.
    [42]郭秋英,胡振琪。 GPS快速定位方程的病态性对整周模糊度及基线解的影响[J]。测绘科学。2007,32(3)。
    [43]王新洲,刘丁酉,黄海兰。病态方程组的分块迭代法及其在GPS整周模糊度估计中的应用[J]。地理空间信息。2005,3(3):1-3。
    [44]刘雁雨。有偏估计理论研究及其在GPS数据处理中的应用[D]。郑州:解放军信息工程大学,2005。
    [45]归庆明,韩松辉,隋立芬,刘雁雨。抗差部分岭估计及其在GPS快速定位中的应用[J]。大地测量与地球动力学。2006,26(2):62-65。
    [46]归庆明,韩松辉,吴炳荣,顾勇为,魏萌。双k型岭估计及其在GPS快速定位中的应用[J]。测绘科学技术学报。2006,23(1):8-10。
    [47]范龙.机载GPS测量数据处理质量控制方法研究[D].郑州:解放军信息工程大学,2010.
    [48]李博峰.混合整数GNSS函数模型及随机模型参数估计理论与方法[J].测绘学报,2010,39(3):330-330.
    [49] Teunissen P J G. The least-squares ambiguity decorrelation adjustment: a method for fastGPS integer ambiguity estimation[J]. Journal of Geodesy,1995,70(1-2):65-82.
    [50] Teunissen P J G. Least-squares estimation of the integer GPS ambiguities[C]//InvitedLecture, Section IV Theory and Methodology, IAG General Meeting, Beijing, China.1993.
    [51] Teunissen P J G, De Jonge P J, Tiberius C. The least-squares ambiguity decorrelationadjustment: its performance on short GPS baselines and short observation spans[J]. Journalof Geodesy,1997,71(10):589-602.
    [52] Teunissen P J G. A new method for fast carrier phase ambiguity estimation[C]//PositionLocation and Navigation Symposium,1994., IEEE. IEEE,1994:562-573.
    [53] Xu P. Random simulation and GPS decorrelation[J]. Journal of Geodesy,2001,75(7-8):408-423.
    [54] Rizos C, Han S.: A new method for constructing multi-satellite ambiguity combinations forimproved ambiguity resolution. In: Proceedings of ION GPS-95,12-15Sept, Palm Springs,pp:1145-1153
    [55] Li Z, Gao Y.: A method for construction of high dimension transformation matrices inLAMBDA, Geomatica,52:433-439
    [56] Liu LT, Hsu HT, Zhu YZ, Ou JK.: A new approach to GPS ambiguity decorrelation. J Geod,1999,73:478-490
    [57] Lenstra A K, Lenstra H W, Lovász L. Factoring polynomials with rational coefficients[J].Mathematische Annalen,1982,261(4):515-534.
    [58] Hassibi A, Boyd S. Integer parameter estimation in linear models with applications toGPS[J]. Signal Processing, IEEE Transactions on,1998,46(11):2938-2952.
    [59] Grafarend E W. Mixed integer-real valued adjustment (IRA) problems: GPS initial cycleambiguity resolution by means of the LLL algorithm[J]. GPS Solutions,2000,4(2):31-44.
    [60] Chang X W, Yang X, Zhou T. MLAMBDA: A modified LAMBDA method for integerleast-squares estimation[J]. Journal of Geodesy,2005,79(9):552-565.
    [61]刘志平,何秀凤.改进的GPS模糊度降相关LLL算法[J],测绘学报.2007,36(3):286-289.
    [62]杨荣华,花向红,李昭,吴继忠. GPS模糊度降相关LLL算法的一种改进[J].武汉大学学报·信息科学版,35(1):21-24.
    [63] Xu P. Parallel Cholesky-based reduction for the weighted integer least squares problem[J].Journal of Geodesy,2012,86(1):35-52.
    [64] Al Borno M, Chang X W, Xie X. On “Decorrelation” in Solving Integer Least-SquaresProblems for Ambiguity Determination[J].
    [65] Teunissen P. A new class of GNSS ambiguity estimators[J].2002.
    [66] Teunissen P J G. Least-squares estimation of the integer GPS ambiguities[C]//Invitedlecture, section IV theory and methodology, IAG general meeting, Beijing, China.1993.
    [67] Fincke U. Phost M. Improved methods for calculating vectors of short length in a lattice,including a complexity analysis[J], Math Comput.,170(44):463-471,1985.
    [68] Schnorr C. P, Euchner M. Lattice basis reduction: improved practical algorithms andsolving subset sum problems[J]. Mathematics of Programming,66:181–199,1994.
    [69] Teunissen P J G. The distribution of the GPS baseline in case of integer least-squaresambiguity estimation[J]. Artific Sat,1998,33(2):65-75.
    [70] Teunissen P J G. The probability distribution of the GPS baseline for a class of integerambiguity estimators[J]. Journal of Geodesy,1999,73(5):275-284.
    [71] Teunissen P J G. The success rate and precision of GPS ambiguities[J]. Journal of Geodesy,2000,74(3-4):321-326.
    [72] Teunissen P J G. The parameter distributions of the integer GPS model[J]. Journal ofGeodesy,2002,76(1):41-48.
    [73] Verhagen S. Integer ambiguity validation: an open problem?[J]. GPS solutions,2004,8(1):36-43.
    [74] Teunissen P J G. Integer aperture GNSS ambiguity resolution[J]. Artificial Satellites,2003,38(3):79-88.
    [75] Micciancio D, Goldwasser S. Shortest vector problem[M]//Complexity of Lattice Problems.Springer US,2002:69-90.
    [76]周世祥,刘梁华.格基规约算法研究进展[J].山东理工大学学报:自然科学版,2012,26(1):11-18.
    [77] Windpassinger C. Detection and precoding for multiple input multiple output channels[M].Shaker,2004.
    [78] Yao H, Wornell G W. Lattice-reduction-aided detectors for MIMO communicationsystems[C]//Global Telecommunications Conference,2002. GLOBECOM'02. IEEE. IEEE,2002,1:424-428.
    [79] Reuven I, Ben-Yishai A. Multiple-input multiple-output (MIMO) detector incorporatingefficient signal point search and soft information refinement: U.S. Patent7,720,169[P].2010-5-18.
    [80] Damen M O, El Gamal H, Caire G. On maximum-likelihood detection and the search forthe closest lattice point[J]. Information Theory, IEEE Transactions on,2003,49(10):2389-2402.
    [81]周小平.格基规约在MIMO中的应用研究[D].北京邮电大学,2011.
    [82] C. Hermite. Extraits de lettres de M. Hermite`a M. Jacobisur differents objets de la th′eoriedes nombres, deuxi`eme lettre. J. Reine Angew. Math.,40:279–290,1850. Also available inthe first volume of Hermite’s complete works, published by Gauthier-Villars.
    [83]余位驰.格基规约理论及其在密码设计中的应用[D].成都:西南交通大学,2005
    [84] Minkowski H. Geometrie der zahlen[M]. BG Teubner,1910.
    [85] Lenstra A K, Lenstra H W, Lovász L. Factoring polynomials with rational coefficients[J].Mathematische Annalen,1982,261(4):515-534.
    [86] Schnorr C P. Progress on LLL and lattice reduction[M]//The LLL Algorithm. SpringerBerlin Heidelberg,2010:145-178.
    [87] Schnorr C. P. A hierarchy of polynomial time basis reduction algorithm[J]. TheoreticalComputer Science,1987,53:201-224.
    [88] Koy H, Schnorr C P. Segment and strong Segment LLL-reduction of lattice bases[J].Preprint University Frankfurt,2002.
    [89] Mehrotra S, Li Z. Segment LLL Reduction of Lattice Bases Using Modular Arithmetic[J].Algorithms,2010,3(3):224-243.
    [90] Schnorr C P. Fast LLL-type lattice reduction[J]. Information and Computation,2006,204(1):1-25.
    [91] Ling C, Howgrave-Graham N. Effective LLL reduction for latticedecoding[C]//Information Theory,2007. ISIT2007. IEEE International Symposium on.IEEE,2007:196-200.
    [92] Xie X, Chang X W, Borno M A. Partial lll reduction[J]. arXiv preprint arXiv:1204.1398,2012.
    [93] Nguên P Q, Stehlé D. Floating-point LLL revisited[M]//Advances in cryptology–Eurocrypt2005. Springer Berlin Heidelberg,2005:215-233.
    [94] Seysen M. Simultaneous reduction of a lattice basis and its reciprocal basis[J].Combinatorica,1993,13(3):363-376.
    [95] Schnorr C. P, H rner H. H. Attacking the Chor-Rivest cryptosystem by improved latticereduction. In Proc. of Eurocrypt, Springer.921:1–12.,1995.
    [96] Hanrot G, Stehlé D. Improved analysis of Kannan’s shortest lattice vectoralgorithm[M]//Advances in Cryptology-CRYPTO2007. Springer Berlin Heidelberg,2007:170-186.
    [97] Babai L. On Lovász’lattice reduction and the nearest lattice point problem[J].Combinatorica,1986,6(1):1-13.
    [98] Kannan, R. Improved algorithms for integer programming and related latticeproblems[C]//The15th Annual ACM Symposium on Theory of Computing, Boston, MA,USA, may1983,pp:193-206.
    [99] Bl mer J. Closest Vectors, Successive Minima, and Dual HKZ-Baeses ofLattices[C]//Montanari U, Rolim D. P, Welzl E. Int. Colloq. Automata, Languages andProgramming. Geneva Swizerland,2000.248-259.
    [100]Hassibi B, Vikalo H. On the sphere-decoding algorithm I. Expected complexity[J]. SignalProcessing, IEEE Transactions on,2005,53(8):2806-2818.
    [101]Viterbo E., Boutros J. A universal decoding algorithm for lattice codes[J]. Quatorziemecolloque GRETSI, Juan-Les-Pins, France:611-614.
    [102]Guo Z, Nilsson P. Algorithm and implementation of the K-best sphere decoding for MIMOdetection[J]. Selected Areas in Communications, IEEE Journal on,2006,24(3):491-503.
    [103]Li Q, Wang Z. Improved K-best sphere decoding algorithms for MIMOsystems[C]//Circuits and Systems,2006. ISCAS2006. Proceedings.2006IEEEInternational Symposium on. IEEE,2006:4pp.-1162.
    [104]Wu Y H, Liu Y T, Chang H C, et al. Early-pruned K-best sphere decoding algorithm basedon radius constraints[C]//Communications,2008. ICC'08. IEEE International Conferenceon. IEEE,2008:4496-4500.
    [105]Sommer N, Feder M, Shalvi O. Finding the closest lattice point by iterative slicing[J].SIAM Journal on Discrete Mathematics,2009,23(2):715-731.
    [106]Micciancio D, Voulgaris P. A deterministic single exponential time algorithm for mostlattice problems based on voronoi cell computations[C]//Proceedings of the42nd ACMsymposium on Theory of computing. ACM,2010:351-358.
    [107]Jazaeri S, Amiri-Simkooei A R, Sharifi M A. Fast integer least-squares estimation forGNSS high-dimensional ambiguity resolution using lattice theory[J]. Journal of Geodesy,2012,86(2):123-136.
    [108]刘经南,于兴旺,张小红.基于格论的GNSS模糊度解算[J],测绘学报.2012,41(5):636-645.
    [109]刘基余。GPS卫星导航定位原理与方法[M]。北京:科学出版社,2007。
    [110]周忠谟,易杰军,周琪。 GPS卫星测量原理与应用[M]。北京:测绘出版社,2004。
    [111]党亚民,秘金钟,成英燕。全球卫星导航系统原理与应用[M]。北京:测绘出版社,
    [112]何海波。高精度GPS动态测量及质量控制[D]。郑州:解放军信息工程大学,2002。
    [113]刘晓刚,徐康,张波,闫志闯。卫星共视法中Sagnac效应的计算[J]。河南测绘,2007,84(4):6-7
    [114]Thayer G D. An improved equation for the radio refractive index of air[J]. Radio Science,1974,9(10):803-807.
    [115]Hopfield H S. Two-quartic tropospheric refractivity profile for correcting satellite data[J].Journal of Geophysical research,1969,74(18):4487-4499.
    [116]Goad C C, Goodman L. A modified Hopfield tropospheric refraction correctionmodel[C]//Fall Annual Meeting of the American Geophysical Union, San Francisco, CA.1974.
    [117]Saastamoinen J. Contributions to the theory of atmospheric refraction[J]. BulletinGéodésique (1946-1975),1973,107(1):13-34.
    [118]Hay C, Wong J. Improved Tropospheric Delay Estimation at the Master Control Station[J].GPS World,2000:56-62.
    [119]Janes H W, Langley R B, Newby S P. Analysis of tropospheric delay prediction models:comparisons with ray-tracing and implications for GPS relative positioning[J]. Bulletingéodésique,1991,65(3):151-161.
    [120]Mendes V B, Langley R B. Tropospheric zenith delay prediction accuracy for airborne GPShigh-precision positioning[C]//Proceedings of The Institute of Navigation54th AnnualMeeting.1998:337-347.
    [121]Betti B, Crespi M, Sanso F. A geometric illustration of ambiguity resolution in GPS theoryand a Bayesian approach[J]. Manuscripta geodaetica,1993,18:317-317.
    [122]Zhu J, Ding X, Chen Y. Maximum-likelihood ambiguity resolution based on Bayesianprinciple[J]. Journal of Geodesy,2001,75(4):175-187.
    [123]De Jonge, Tiberius C:(1996)The LAMBDA method for integer ambiguity estimation:implementation aspects. LGR Series, no.12, Delft Geodetic Computing Centre, DelftUniversity of Technology
    [124]周扬眉,刘经南,刘基余.回代解算的LAMBDA方法及其搜索空间[J].测绘学报,2005,34(4):300-304.
    [125]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [126]赵韬,姜金荣.分块Gram-Schmidt正交化算法及其应用[J],中国科学院研究生院学报,2009,26(2):224-228.
    [127]刘志平,何秀凤,郭广礼,査剑锋. GNSS降相关算法及其评价性指标研究[J].武汉大学学报·信息科学版,36(3):257-261,2011.
    [128]Frei E, Beutler G. Rapid static positioning based on the fast ambiguity resolution approachFARA: theory and first results[J]. Manuscripta geodaetica,1990,15(6):325-356.
    [129]Euler, H.J., B. Schaffrin, On a measure for the discernibility between different ambiguitysolutions in the static-kinematic mode, Kinematic Systems in Geodesy, Surveying, andRemote Sensing,Springer-Verlag, IAG Symposia107,1990.
    [130]Han, S., Quality-control issues relating to instantaneous ambiguity resolution for real-timeGPS kinematic positioning. Journal of Geodesy,1997,71(7):351-361.
    [131]Davenport H. Minkowski's inequality for the minima associated with a convex body[J].The Quarterly Journal of Mathematics,1939(1):119-121.
    [132]Helfrich B. Algorithms to construct Minkowski reduced and Hermite reduced latticebases[J]. Theoretical Computer Science,1985,41:125-139.
    [133]Nguyen P Q. Hermite’s constant and lattice algorithms[M]//The LLL Algorithm. SpringerBerlin Heidelberg,2010:19-69.
    [134]Birkhoff G. Lattice theory[M]. Amer Mathematical Society,1967.
    [135]Nguyen P Q. Public-key cryptanalysis[J]. Recent Trends in Cryptography. ContemporaryMathematics,2008,477.
    [136]Laarhoven T, van de Pol J, de Weger B. Solving hard lattice problems and the security oflattice-based cryptosystems[R]. Cryptology ePrint Archive, Report2012/533,2012.http://eprint. iacr. org/2012/533,2012.
    [137]Hartung R J. Cryptography based on quadratic forms: Complexityconsiderations[M]//Research in Cryptology. Springer Berlin Heidelberg,2008:52-64.
    [138]Schneider M. Computing Shortest Lattice Vectors on Special Hardware[J].2011.
    [139]Joux A. Algorithmic cryptanalysis[M]. Chapman&Hall/CRC,2009.
    [140]Wang X, Liu M, Tian C, et al. Improved Nguyen-Vidick heuristic sieve algorithm forshortest vector problem[C]//Proceedings of the6th ACM Symposium on Information,Computer and Communications Security. ACM,2011:1-9.
    [141]Eisenbrand F. Integer programming and algorithmic geometry of numbers[M]//50Years ofInteger Programming1958-2008. Springer Berlin Heidelberg,2010:505-559.
    [142]van Emde-Boas P. Another NP-complete partition problem and the complexity ofcomputing short vectors in a lattice[M]. Department, Univ.,1981.
    [143]Ajtai M. The shortest vector problem in L2is NP-hard for randomizedreductions[C]//Proceedings of the thirtieth annual ACM symposium on Theory ofcomputing. ACM,1998:10-19.
    [144]Micciancio D. The shortest vector in a lattice is hard to approximate to within someconstant[J]. SIAM journal on Computing,2001,30(6):2008-2035.
    [145]Dinur I. Approximating SVP∞to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science,2002,285(1):55-71.
    [146]Plantard T, Susilo W, Win K T. A digital signature scheme based on CVP∞[M]//Public KeyCryptography–PKC2008. Springer Berlin Heidelberg,2008:288-307.
    [147]Goldreich O, Micciancio D, Safra S, et al. Approximating shortest lattice vectors is notharder than approximating closest lattice vectors[J]. Information Processing Letters,1999,71(2):55-61.
    [148] Alekhnovich M, Khot S A, Kindler G, et al. Hardness of approximating the closest vectorproblem with pre-processing[C]//Foundations of Computer Science,2005. FOCS2005.46th Annual IEEE Symposium on. IEEE,2005:216-225.
    [149]Alekhnovich M, Khot S A, Kindler G, et al. Hardness of approximating the closest vectorproblem with pre-processing[J]. computational complexity,2011,20(4):741-753.
    [150]Micciancio D. The Hardness of the Closest Vector Problem with Preprocessing[J]. IEEETransactions on Information Theory,2001,47(3):1212-1215.
    [151]Bl mer J. Closest Vector, Successive Minima, and Dual HKZ-Bases of Lattices[M]. USA:Department of Mathematics and Computer Science, University of Paderborn,2007
    [152]Dadush D N. Integer programming, lattice algorithms, and deterministic volumeestimation[D]. Georgia Institute of Technology,2012.
    [153]van de Pol J, de Weger B M M, Poels I K, et al. Lattice-based cryptography[D]. MasterThesis, Eindhoven University of Technology,2011.
    [154] Zhao WL, Giannakis G. B. Reduced Complexity Closest Point Decoding Algorithm forRandom Lattices[J]. IEEE Transaction on Wireless Communications,5,1, January2006:101~111.
    [155]Damen M. O, Gamal H. E, Caire G. On Maximun-Likelihood Detection and the Search forthe Closest Lattice Point[J]. IEEE Transaction on Information Theory,49,10, October2003:2389~2402.
    [156] Plantard T, Susilo W, Win K T. A digital signature scheme based on CVP∞[M]//PublicKey Cryptography–PKC2008. Springer Berlin Heidelberg,2008:288-307.
    [157]于兴旺.多频GNSS精密定位理论与方法研究[D].武汉大学,2011.
    [158] Anderson J, Mohan S. Sequential coding algorithms: A survey and cost analysis[J].Communications, IEEE Transactions on,1984,32(2):169-176.
    [159] Foschini G J, Golden G D, Valenzuela R A, et al. Simplified processing for high spectralefficiency wireless communication employing multi-element arrays[J]. Selected Areas inCommunications, IEEE Journal on,1999,17(11):1841-1852.
    [160] Damen M O, El Gamal H, Caire G. On maximum-likelihood detection and the search forthe closest lattice point[J]. Information Theory, IEEE Transactions on,2003,49(10):2389-2402.
    [161] Xu P, Shi C, Liu J. Integer estimation methods for GPS ambiguity resolution: anapplications oriented review and improvement[J]. Survey Review,2012,44(324):59-71.
    [162] Agrell E, Eriksson T, Vardy A, Zeger K. Closest Point Search in Lattices[J]. IEEETransaction on Information Theory,48,8, August2002:2201~2214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700