北斗卫星导航系统精密定位理论方法研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北斗卫星导航系统(BeiDou Navigation Satellite System)是我国正在实施的自主发展、独立运行的全球卫星导航系统,遵循―先区域、后全球‖的总体思路,北斗卫星导航系统按照―三步走‖的发展战略稳步推进。2012年12月27日,国务院新闻办举办―北斗卫星导航系统正式提供区域服务‖新闻发布会,正式宣布北斗在亚太地区正式开通服务,同时公布了正式版本ICD文件。作为国家战略性新兴产业,北斗卫星导航系统在保障国家经济社会安全,促进国家信息化建设,转变经济发展方式,推动国防现代化建设等各方面发挥着重要作用。区域系统的建成使我国的卫星导航产业发展进入井喷期,使北斗应用产业化全面到来。在国外卫星导航产业化规模发展尤其是GPS垄断式市场应用下,提升用户使用信心,将系统需求优势转变为自身的市场强势和产业强势,是北斗卫星导航系统应用产业化的当务之急。基于载波相位观测量的静态和动态相对定位技术是未来北斗应用的主要模式,是建立和维持时空基准的前提,也是精密测绘、大气科学与地球科学等基础研究的重要手段,是聚集北斗高精度应用的主要方向。北斗区域系统是国际上首个由异构星座(5GEO+5IGSO+4MEO)组成的导航系统,由于星座分布、信号内容、轨道精度、观测数据质量等均与GPS存在差异,研究利用北斗实现高精度静态和动态相对定位、论证其可行性及精度,对增强系统应用前景、提升系统应用信心具有重要作用。本文着眼于北斗高精度应用,系统研究了北斗精密定位理论和方法,突破了数据质量分析、数据预处理、模糊度解算、参数估计等关键技术,提出了一套可行的北斗高精度静态、动态相对定位的算法模型,并利用丰富的实测数据,开展了北斗静态测量基线网可行性研究与精度验证,实现了北斗动态相对定位、RTK及北斗/GPS组合定位,验证了所涉及理论与方法的正确性、北斗应用于高精度测量领域的可行性及指标。同时,本文积极开展北斗应用实践研究,基于北斗高精度定位技术解决了测控设备动态性能检验和精度鉴定的难题,以促进北斗在高精度测量领域的发展。本文的主要工作和创新点概括如下:
     1.依据北斗观测数据特征,给出了北斗相对定位的观测模型、误差模型和随机模型。鉴于由原始观测量组成的各种线性组合在数据预处理、模糊度解算、电离层延迟改正等方面的优势,详细分析了宽巷组合、无电离层组合、电离层残差组合及MW组合观测量的特点;参考GPS数据处理中误差改正的消除方法,给出了卫星轨道误差、卫星钟误差、电离层延迟、对流层延迟和多路径效应、观测噪声的定义、特性及改正方法。
     2.定量分析了北斗伪距和载波观测量精度。提出了基于伪距/相位组合分析伪距测量噪声和多径影响的方法,综合分析了北斗区域系统中不同类型卫星(GEO/IGSO/MEO)在三个频点的观测噪声特征;通过零基线实验和广播星历精度评估实验,获得了对目前北斗相对定位基础数据质量的全面认识。提出了一种利用无电离层组合探测粗差、综合利用MW组合及电离层残差合组合探测周跳、利用无几何组合修复周跳的北斗数据预处理方案,并利用实测数据验证了该方案的有效性。
     3.通过现有GNSS模糊度固定方法在北斗中应用的综合分析和比较,优选了符合北斗实际数据特点、且性能可靠的准电离层模糊度固定方法,并将其应用于北斗静态相对定位中,有效提高了模糊度固定成功率;研究了LAMBDA方法应用于北斗模糊度固定的适用性,利用模糊度协方差阵降相关处理后的条件方差,分析了LAMBDA方法在较少历元情况下北斗模糊度固定的有效性,为北斗动态相对测量中模糊度的快速固定提供了依据。
     4.提出利用非差数据进行北斗相对定位的理论与方法,详细给出了非差数据的模糊度固定方法,证明了该方法与传统的基于双差数据进行相对定位的一致性。相比于双差数据,非差观测数据相互独立,包含更多信息(如钟差等),数据处理更加灵活便捷。利用两条基线分别进行单基线静态相对定位、动态相对定位和动态对动态相对定位实验。结果表明:利用该方法静态相对定位精度达到mm级,动态相对定位和动态对动态相对定位精度水平方向优于2cm,高程方向精度优于4cm。
     5.立足于北斗高精度用户急切关心的可行性和精度问题,开展了北斗静态测量基线网实践与精度验证研究,利用北斗试验评估系统和北斗试验网双模接收机构建了涵盖长、中、短基线的基线网,系统研究了基线网数据处理方法,设计了多种相位组合观测量相结合的数据质量控制策略和内外符相结合的精度检验方案,实现了mm量级精度的北斗静态相对定位,通过站坐标及基线的重复精度、模糊度固定成功率、定位残差等指标全方位开展了与GPS的综合比较研究,论证了未来北斗应用于大地控制网建立的可行性和可达到的精度指标。
     6.深入研究了北斗动态相对定位的理论与方法。实现了基于前向Kalman滤波和双向Kalman滤波的北斗动态相对定位算法,研究了由于卫星升落模糊度参数增减引起的待估参数向量维数发生变化的解决方法。编制了北斗动态相对定位软件,利用实测数据实现了厘米量级北斗动态相对定位,并研究了动态条件下基线长度、参数估计方法等因素对定位精度的影响,结果表明:北斗动态相对定位精度可达到厘米级;可用性方面,由于北斗接收机信号失锁情况出现频繁,卫星观测几何降低和卫星重新捕获收敛精度较差,此时定位结果出现大量野值点,可用性较低。
     7.为改善北斗在观测几何不理想下情况下动态定位的可用性,针对当前研究热点GNSS组合定位,研究了北斗/GPS组合定位中时空系统统一等关键技术,由于目前北斗还未公布与GPS系统时差,本文提出了系统内独立组差的系统时间差消除方法,简化了运算步骤,并利用实测动态数据进行了组合定位解算,结果表明:在精度上,北斗/GPS组合获得的定位精度比采用单北斗略优,其优势主要体现在可用性得到较大幅度提升。
     8.探讨了北斗RTK的实现方法,在对RTCM2.3电文类型中利用电文18/19(载波相位/伪距原始观测值)和电文20/21(载波相位/伪距改正值)进行差分定位的特点进行了深入的分析的基础上,对支持RTCM格式的北斗RTK差分电文进行了预定义,分别采用静态基线实验和动态基线实验的方式实现了北斗RTK并对定位结果进行了分析。
     9.开展了基于北斗动态相对定位的测控设备精度鉴定理论与方法研究,在北斗定位精度指标验证的基础上,构建了北斗精度鉴定系统,研究了精度鉴定数据处理方法,并基于该系统完成了某雷达的精度鉴定实验,对于及早了解设备的跟踪性能与测量精度,查找、分析设备问题起到了重要的指导作用。
BeiDou Satellite Navigation System is the global satellite navigation system developed byChina independently. It follows the development roadmap of starting with regional services firstand expanding to global services later. A three-step development strategy has been taken. TheBeiDou Navigation Satellite System is officially announced in operation and the Signal inSpace Interface Control Document-Open Service Signal B1I (Version1.0) is released on thenews conference held at the Briefing Hall of the State Council Information Office on December27,2012. As the national strategic emerging industries, the BeiDou satellite navigation systemplays an important role in the protection of national economic and social security, the promotionof the national informatization construction, the transformation of the mode of economicdevelopment and the promotion of the construction of modernization of national defense and soon various aspects. The construction of the regional system of satellite navigation industry of ourcountry is facing a blowout phase. Abroad satellite navigation industry are in scale developmentnow, and the market is mainly monopolized by GPS, so the priority of BeiDou satellitenavigation application is enhancing user confidence and transforming system requirements tomarket and industrial strength. Static and relative dynamic positioning technology based oncarrier phase observation is the main mode of BeiDou application in future, is the preconditionof building and maintaining time and space benchmark, is one of the most important applicationsin basic research, such as precision of surveying and mapping, atmospheric sciences and earthsciences, etc, and is the main way of gathered BeiDou high precision applications. BeiDouRegional Satellite Navigation System is the first heterogeneous constellation(5GEO+5IGSO+4MEO) satellite navigation system in the world. Because of the BeiDouregional system differences with GPS, such as the distribution of the constellation and thecontent of the signal, orbit precision, observation data quality, etc. Research on realizing highprecision static and dynamic relative positioning, and demonstration on its feasibility andprecision plays an important role in enhancing the system application prospect. This papersystematically studied the theory and method of the BeiDou precise relative positioning andmade breakthroughs in the key technologies BeiDou high-precision measurement, such as thedata quality analysis, the data pre-processing, the solution of ambiguity, parameters estimatingand so on. The BeiDou high-precision static and dynamic relative dynamic positioning dataprocessing method was proposed; the validation of the BeiDou geodetic control networkpractice and its precision is researched. The BeiDou dynamic relative dynamic positioning, RTKand BeiDou compatible with GPS positioning have been implemented. The correctness of thetheory and method involved above is verified, and the avalibility and indicator of the application of Beidou in high-precise measurement is validated. At the same time, this paper activelydeveloped BeiDou application practice research and solved the aerospace measurement andcontrol equipment dynamic performance test and accuracy evaluation problem based on BeiDouhigh precision positioning technology. In this dissertation, the main work and innovation pointsare summarized as follows:
     1. The BeiDou relative positioning observation model, error model and stochastic model aregiven based on the characteristics of BeiDou observation data. In consideration of thesignificance of the linear combinations of original observations in the data preprocessing,calculating ambiguity, ionospheric delay correction and so on, the characteristics of thewide-lane linear combination, ionosphere-free linear combination, the ionosphere residualcombination and MW linear combination are analyzed in detail. Referring to the method ofeliminating error correction in GPS data processing, the definition, characteristics and thecommonly used method of correction of the satellite orbit error, satellite clock error, ionosphericdelay, tropospheric delay, multipath effect and observation noise are given.
     2. The accuracy of the BeiDou pseudorange and carrier phase observation is analysizedquantificationally. The method to analyze the pseudorange measurement noise and multipatheffect by using the combination of the pseudorange and carrier phase is proposed. The systematicanalysis of the BeiDou satellite (GEO/IGSO/MEO) multipath effect is made; A comprehensiveunderstanding of the current BeiDou relative positioning data quality is obtained by Beidouzero-baseline experiments on the carrier phase noise measurement and BeiDou the precision ofbroadcast ephemeris assessment based on the precise orbit determination. A BeiDou datapreprocessing scheme is proposed. The ionosphere-free combination is used to detect grosserror, The MW combination and the ionosphere residual combination is utilized to detectcycle-slip, and geometric-free combination is used to repair the cycle-slip. The effectiveness ofthe proposed scheme is validated with the measured data.
     3. Through the comparison and comprehensive analysis of the existing ambiguity fixedmethod of GNSS in application of BeiDou, the method of quasi ionosphere ambiguityfixed,whose performance is reliable,is selected, and applied to BeiDou geodetic control networkdata processing. The suitability of the LAMBDA method for resolving the Beidou ambiguity isstudied, and the validity of fixing the ambiguity in fewer epochs by using the LAMBDA methodis researched based on the ambiguity of covariance matrix of decorrelating processing. Thisprovides the basis for fast ambiguity fixing in the BeiDou relative dynamic measurement.
     4. The BeiDou relative positioning theory and method by using the un-differenced data isproposed, and the ambiguity fixed method by using un-difference data is described in detail, andthe consistency of this method with the traditional relative positioning based on the double difference data is proved. Comparing to the double difference data, the un-differenced data areindependent of each other, containing more information (e.g., clock error). Besides, the dataprocessing is more flexible and convenient. Based on two BeiDou baselines, the single baselinestatic relative positioning, relative dynamic positioning and dynamic for dynamic relativepositioning were conducted. The results show that the static relative positioning accuracy canreach the mm level, the dynanic relative positioning and dynamic for dynamic positioningaccuracy is superior to2cm in horizontal direction and4cm in elevation direction.
     5. Based on the accuracy and feasibility problem that the BeiDou high precision user isurgently care for, the BeiDou geodetic control network practice and precision validation study isperformed. The long, medium and short baseline BeiDou geodetic control network using BeiDouexperiment assessment system and BeiDou experiment network dual-model receiver is built.The processing method of the BeiDou control network is systematically studied; and the dataquality control strategy based on the various carrier phase combination observations and theinternal and external accuracy validation scheme is designed, and the millimeter level relativepositioning is realized. Through the indexes of the station coordinates and the repeat precision ofthe baseline, the rate of the ambiguity fixed, positioning residual and so on, A comprehensivecomparative study is compared with that of GPS. The feasibility that implementing thegeodetic control network by BeiDou and the accuracy can be reached is demonstrated.
     6. The relative dynamic positioning based on BeiDou is thoroughly researched. Theparameter estimation method of BeiDou dynamic relative positioning based on the forwardKalman filter and combination Kalman filter is implemented. The solution mathod of theestimated parameter vector dimension change owing to the increase or decrease of ambiguityparameters along with satellite up and down is studied; and the BeiDou relative dynamicpositioning software is developed. The cm-level accuracy BeiDou relative dynamic positioningis realized by using real data. The influence of factors such as the baseline length and parameterestimating method on the positioning accuracy is researched. The results show that the accuracyof the BeiDou relative dynamic positioning can reach the cm-level. But for the availability, as aresult of BeiDou receiver signal failure occurs frequently, satellite observation geometry is toreduce and convergence accuracy of the satellites to capture are poorer, so the point positioningresults have a large number of outliers and the availability is relatively low.
     7. In order to improve the availability of dynamic positioning when the BeiDou observationgeometry is not ideal, the key technology such as the difference coordinate and time benchmarkin Beidou/GPS combined positioning is reaserched. The time difference eliminating method bythe independent conbination difference in system is proposed. It simplified the operation stepsand overcomed current compatible positioning difficulty without the time difference between BeiDou and GPS. The results show that the accuracy of BeiDou compatible with GPSpositioning is superior to BeiDou, and the superiority mainly owes to the availabilityimprovement, which is about20.6%.
     8. The implementation method of BeiDou RTK is discussed. Firstly the RTCM2.3cabletype is introduced in detail, and the characteristics of differential positioning by using cable18/19(pseudorange/carrier phase observation value) and the message20/21(pseudorange/carrierphase correction value) is thoroughly analyzed. On the basis of that, the BeiDou RTK differentialcables supporting the RTCM formats is predefined; Static and dynamic baseline experimentswere used respectively for BeiDou RTK, and the positioning result was analyzed.
     9. The theory and method research of the measurement and control device accuracyidentification based on the BeiDou relative dynamic positioning is performed. Based on theaccuracy index, the BeiDou accuracy identification system is built. The accuracy identificationdata processing method is studied. The radar accuracy identification experiment is performedbased on that system. This played an important role in understanding the equipment, trackingperformance and accuracy of measurement, and finding and analyzing the equipment problem asearly as possible.
引文
[1]谭述森.北斗卫星导航系统的发展与思考[J].宇航学报,200529(2):391-396.
    [2]冉承其.北斗卫星东航系统建设与应用[R].第三届中国卫星导航学术年会主题报告.2012.
    [3]北斗卫星导航系统发展报告1.0版,中国卫星导航系统管理办公室.2011.
    [4] Chong Cao(2008), COMPASS Satellite Navigation System Development. PNT Challenges andOpportunities Symposium. Stanford University.
    [5] Remondi B W(1983),GPS Geodetic Receivers-A Status Update Repor.Technical Papers of the43rdAnnual Meeting of the American Congress on Surveying and Mapping.
    [6] YANG Y, ZHA M, SONG L, et al. Combined Adjustment Project of National Ast ronomical GeodeticNetworks and2000‘National GPS Cont rol Network [J].Progress in National Science,2005,15(4):4352441.
    [7]程鹏飞,杨元喜,李建成,孙汉荣,秘金钟.我国大地测量及卫星导航定位技术的新进展[J].测绘通报,2007(2):P01-04.
    [8]杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报,2010(1).
    [9]谭述森,窦长江.论基于北斗的卫星导航应用服务[J].中国航天,2008(7):11-13.
    [10]周巍,郝金明,朱璇,刘星.COMPASS与GPS兼容定位算法及性能分析[J].测绘科学,2012(4):1-5.
    [11] http://www.beidou.gov.cn
    [12]胡刚.基于北斗的军民共用卫星导航技术研发与产业化平台建设[R].北京北斗星通导航技术股份有限公司,2012.
    [13]焦文海,丁群,李建文等.GNSS开放服务的监测评估[J].中国科学,2012(5):521-527.
    [14] Pratap Misra/Per Enge(2001),Global Positioning System: Signals, Measurements&Performance,GangaJamuna Press.宁津生,王正涛.测绘学科发展综述[J].测绘科学,2006(1):9-16.
    [15] Pratap Misra/Per Enge(2001),Global Positioning System: Signals, Measurements&Performance,GangaJamuna Press.
    [16] Department of Defense of United States of America, Global Positioning System Standard PositioningService Performance Standard.4th Edition September2008(S/OL). http://pnt.gov/public/docs/2008/spsps2008.pdf.(2009-11-30)
    [17] Hofmann-Wellenhof, Wellenhof, Klaus Legat, Manfred Wieser(2003), Navigation, Principles ofPositioning and Guidance, Springer Wien New York.
    [18] FengYanming,WangJinling(2008), GPS RTK Performance Characteristics and Analysis, Journal ofGlobal Positioning Systems.
    [19]陈俊勇,文汉江,程鹏飞.中国大地测量科学发展的若干问题[J].地球科学进展,2001(5):86-93.
    [20] Todd Richert(2005). The Impact of Future Global Navigation Satellite Systems on Precise Carrier PhasePositioning.University of CALGARY.
    [21] HanShaowei(1997), Ambiguity recovery for long-range GPS kinematic positioning,NAVIGATION.
    [22] Han S(1997).Comparing GPS Ambiguity Resolution Techniques,GPS Wrold.
    [23] WubbenaG(1985), Software Developments for Geodetic Positioning with GPS using TI4100Code andcarrier measurements. Rockville, Maryland: Proceeding of the First International Symposium on PrecisePositioning with the Global Positioning System.
    [24] Counselman, Gourevitch.(1981). Miniature interferometer terminals for earth surveying: ambiguity andmultipath with Global Positioning System, IEEE Transcations on Geoscience and Remote Sensing,pp.244-252.
    [25] Frei E, Beutler G.(1990). Rapid static positioning based on the fast ambiguity resolution approach"FARA": theory and first results. Manuscripta Geodaetica, Vol.15, No.4, pp.325-356.
    [26] Landau H., EULER H.J.(1992), On-the-fly ambiguity resolution for precision differential positioning,Proceedings of ION GPS-92, The11th International Technical Meeting of the Satellite Division of theInstitute of Navigation, Albuquerque, New Mexico, The Institute of Navigation,1992, pp.607-613.
    [27] Hatch R.(1990). Instantaneous ambiguity Resolution. IAG Symposium NO.107Kinematic Systems inGeodesy, Surveying, and Remote Sensing‘, Banff, Canada, Septempber10-13KIS‘90. Springer Verlag, pp.299~308.
    [28] Chen, Lachapelle (1995), A comparison of the FASF and least-squares search algorithms for on-the-flyambiguity resolution, Navigation.
    [29] Teunissen PJG(1993)."Least-squares estimation of the Integer GPS ambiguities.‖Invited lecture,SectionIV: Theory and Methodology, IAG General Mettting,Beijing, China,August1993.
    [30]李淑慧.整周模糊度搜索方法的比较研究[D].武汉大学硕士学位论文,2002.
    [31] Teunissen PJG(1995)The least-squares ambiguity decorrelation adjustment: a method for fast GPS integerambiguity estimation. Journal of Geodesy,70:65~82.
    [32] Teunissen, PJG(1998). On the integer normal distribution of the GPS ambiguities, Artificial Satellites33-2, pp.49~64.
    [33] Goad C.(1986), Precise positioning with the Global Positioning System, Proceedings of the ThirdInternational Symposium on Intertial Technology for Surveying and Geodesy, Banff, Canada pp.745-756.
    [34] Cannon M E, Schwarz K P, Wong R V C.(1986), Kinematic Positioning with GPS: An Analysis of RoadTests, Proceedings of the Fourth International Geodetic Symposium Satellite Positioning Texas, pp.69-92.
    [35] Blewitt G.(1999), An automated editing algorithm for GPS data, Geophysical Research Letters,17(3):199-202.
    [36]陈小明.高精度GPS动态定位的理论与实践[D].武汉测绘科技大学博士学位论文,1997.
    [37]何海波,杨元喜.GPS动态测量连续周跳检验[J].测绘学报,1999,28(3):199-204.
    [38] Euler, H.J. and H. Landau (1992), Fast GPS Ambiguity Resolution On-the-Fly for Real-Time Applications.In Proceedings of the Sixth International Symposium on Satellite Positioning, pages650–659. Columbus,Ohio..218.
    [39]王泽民,孟泱,伍岳,梁树军.GPS、Galileo及其组合系统导航定位的DOP值分析[J].武汉大学学报(信息科学版),2006(1):9-10.
    [40]于兴旺,张小红,聂桂根.GPS/Galileo多频其组合差分定位研究[J].武汉大学学报(信息科学版),2010(7):821-824.
    [41]孙保琪.基于三频数据的Compass卫星精密定轨[D].中国科学院研博士学位论文,2010
    [42]李敏.多模GNSS融合精密定轨理论及其应用研究[D].武汉大学博士学位论文,2011.
    [43]常志巧.Compass卫星导航系统精密相对定位理论及其应用研究[D].解放军信息工程大学博士学位论文,2009.
    [44]李保利.北斗多频高精度定位理论与方法研究[D].解放军信息工程大学博士学位论文,2011.
    [45]北斗卫星导航系统空间信号接口控制文件,中国卫星导航系统那个管理办公室,2011.
    [46]刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2008.
    [47]魏子卿,葛茂荣.GPS相对定位的数学模型[M].北京:测绘出版社,1998.
    [48]许其凤.空间大地测量学[M].北京:解放军出版设,2001.
    [49] Ray, J. and J. Griffiths(2008), Overview of IGS Products&Analysis Center Modeling, InternationalGNSS Service Analysis Center Workshop, Miami Beach, Florida, USA,.
    [50]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报(信息科学版),2002(3):234-240.
    [51]杨力.大气对GPS测量影响的理论与研究[D].解放军信息工程大学测绘学院,2001.
    [52] Odijk D.(2000), Weighting Ionospheric Corrections to Improve Fast GPS Positioning Over MediumDistances, ION GPS2000,19-22September2000, Salt Lake City, UT.
    [53]徐杰,孟黎,任超等.对流层延迟改正中投影函数的研究[J].大地测量与地球动力学,2008,28(5):120-124.
    [54] Beohm, J., A. Neill, P. Tregoning, et al(2006), Global Mapping Function (GMF): A new empiricalmapping function based on numerical weather model data [J], Geophysical Research Letters.
    [55] Weston, N. D. and S. A. Hilla(2008), Impact of the Antenna Model Change on IGS Products, InternationalGNSS Service Analysis Center Workshop, Miami Beach, Florida, USA.
    [56] Hoffmann-Wellenhof, Lichtenegger, Collins(1994). GPS Tehory and Practice(Thrid edition), New York:Springer-Verlag.
    [57] Han S (1997). Carrier phase-based long-range GPS kinematic positioning.UNISURV Report S-49, TheUniversity of New South Wales, Sydney.
    [58]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,1997.
    [59]周巍,郝金明,冯淑萍等.北斗三频数据周跳探测方法[J].测绘科学技术学报,2012(7):87-90.
    [60]袁洪,万卫星,宁百齐,李静年.基于三差解检测与修复GPS载波相位周跳新方法[J].测绘学报,1998,27(3):189-194.
    [61] Han, S.(1997), Ambiguity recovery for long-range GPS kinematic positioning. NAVIGATION: Journal ofthe Institute of Navigation,44(2).
    [62] Collin F, Warrant R(1995), Application of the Wavelet Transform for GPS Cycle Slip Correction andComparision with Kalman Filtering, Manuscripta Geodaetica.
    [63] Mertikas S P, Rizos C(1997), On-line Detection of Abrupt Changes in the Carrier-phasw Measurements ofGPS, Journal of Geodesy.
    [64]周巍.COMPASS-M1数据预处理与精密定轨方法研究[D].解放军信息工程大学硕士学位论文,2009.
    [65]吕志伟.基于连续运行基准站的动态定位理论与方法研究[D].解放军信息工程大学博士学位论文,2010.
    [66]郑作亚,程宗颐,黄珹.对Blewitt周跳与修方法的改进[J].天文学报,2005,46(2):216-224.
    [67]Urs Hugentobler, Rolf Dach,Bernese GPS Software Version5.0DRAFT[M].University of Bern,February2007.
    [68]常志巧.利用非差观测量确定GPS卫星轨道的方法研究[D].郑州:解放军信息工程大学硕士学位论文,2006.
    [69]韩绍伟.GPS组合观测值理论及应用[J].测绘学报,1995,24(2):8-13.
    [70]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉大学博士学位论文,2005.
    [71]陆维维.GPS动态载波相位测量技术研究及应用[D].河海大学硕士学位论文,2006.
    [72]刘伟平,郝金明,汪平,周巍.Kalman滤波在周跳探测与修复中的应用[J].大地测量与地球动力学,2009,29(6):101-103.
    [73] Bastos L, Landau H(1988), Fixing Cycle Slips in Dual-frequency GPS-application Using KalmanFiltering, Manuscripta Geodaetica.
    [74]彭秀英.GPS周跳探测与修复的算法研究与实现[D].中国石油大学硕士学位论文,2007.
    [75]阳仁贵.GPS高精度快速静态定位模糊度解算理论与方法研究[D].中科院测地所博士学论文,2005.
    [76] Lichten, S. M., Y. Bar-Sever, W. Bertiger, et al(1995), GIPSY-OASISII: A High Precision GPS DataProcessing System and General Satellite Orbit Aanaysis Tool[R]. Pasadena,CA: Jet Propulsion Laboratory.
    [77]刘响林,刘经南,王新洲.单历元GPS非差相对定位模型的研究[J].测绘通报,2003(3):5-9.
    [78]何海波.高精度GPS动态测量及质量控制[D].解放军信息工程大学博士学位论文,2002.
    [79]冯来平.GPS多频观测数据处理方法及应用研究[D].解放军信息工程大学硕士学位论文,2009.
    [80] Mohiuddin S,Psiaki M L(2005).Satellite relative navigation using carrier phase differential GPS withinteger ambiguities, AIAA Guidance,Navigation,and Control Conference and Exhibit AIAA一2005-6054,San Fran cisco, California.
    [81]胡国荣,欧吉坤,崔伟宏.星载GPS载波相位相对定轨方法研究[J].遥感学报(信息科学版),2000(4):311-315.
    [82] Teunissen, P.J.G.(1994). A New Method for Fast Carrier Phase Ambiguity Estimation. Proceedings IEEEPosition Location and Navigation Symposium PLANS94, Las Vegas,11-15April1994, pp.562~573.
    [83] Feng Y(2008).GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals. Journalof Geodesy.
    [84] Melbourne W.G(1985). The Case for Ranging in GPS-base Geodetic Systems. Rockville,Maryland:Proceeding of the First International Symposium on Precise Positioning with the Global Positioning System.
    [85] Teunissen PJG (1997). A canonical theory for short GPS baselines.Part I: The baseline precision J Geod71:320~336
    [86] Teunissen PJG (1997).A canonical theory for short GPS baselines.Part II: the ambiguity precision andcorrelation J Geod71:389~401.
    [87] Teunissen PJG (1997).A canonical theory for short GPS baselines.Part III: the geometry of the ambiguitysearch space J Geod71:486~501.
    [88] Teunissen PJG (1997). A canonical theory for short GPS baselines.Part IV: precision versus reliability JGeod71:513-525.
    [89] Teunissen, PJG(1998), Success-probability of integer GPS ambiguity rounding and bootstrapping, Journalof Geodesy72, pp.606~612.
    [90]周扬眉.GPS精密定位的数学模型、数值算法及可靠性理论[D].武汉大学博士学位论文,2003.
    [91]陈树新.GPS整周模糊度动态确定的算法及性能研究[D].西北工业大学博士学位论文,2002.
    [92] PEILANG XU. Random Simulation and GPS Decorrelation(2011), Journal of Geodesy, Vol2l, No.5:243~260.
    [93] Teunissen PJG(1995).The invertible GPS ambiguity transformations. Manuscripta geodaetica,Vol.20,No.6,1995,pp489~497.
    [94] Teunissen, PJG(1999), A theorem on miximizing the probability of correct integer estimation, ArtificialSatellites34-1, pp.3~9.
    [95]喻国荣.基于移动参考站的GPS动态相对定位算法研究[D].武汉大学博士学位论文,2003.
    [96] Teunissen PJG (2000). ADOP based upperbounds for the bootstrapped and the least-squares ambiguitysuccess rates. Artif Satellites35(4):171~179.
    [97]隋立芬,宋立杰.误差理论与测量平差基础[M].北京:解放军出版社,2005.
    [98]施闯.大规模高精度GPS网平差与分析理论及其应用[M].北京:测绘出版社,2002.
    [99]刘经南,陈俊勇,张燕平等.广域差分GPS原理和方法[M].北京:测绘出版社,1999.
    [100] Hu G., Abbey D. A. etc.(2005). An approach for instantaneous ambiguity resolution for medium to longrange multiple reference station networks. GPS Solut.
    [101]高成发.GPS事后相位差分坐标解算模型及其相关问题的研究[D].武汉大学博士学位论文,2004.
    [102] Wang, J., M. P. Stewart and M. Tsakiri (1998), A discrimination test procedure for ambiguity resolutionon-the-fly. Journal of Geodesy, Vol.72, No.11, pp.644~653.
    [103]付梦印.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
    [104]宋立杰.测量平差程序设计[M].北京:国防工业出版社,2009.
    [105]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006:324.
    [106]李洪涛,许国昌,薛鸿印等.GPS应用程序设计[M].北京:科学出版社,1999.
    [107]王仁谦.GPS动态定位的理论研究[D].中南大学博士学位论文,2004.
    [108]何海波,杨元喜.GPS观测量先验方差-协方差矩阵实时估计[J].测绘学报,2001,30(1):42-47.
    [109]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2005.
    [110]阮仁桂.GPS非差相位精密单点定位研究[D].解放军信息工程大学硕士学位论文,2008.
    [111]祁芳.卡尔曼滤波算法在GPS非差相位精密单点定位中的应用研究[D].武汉大学博士学位论文,2003.
    [112] Yanming Feng, Jinling Wang, GPS RTK Performance Characteristics and Analysis(2008), Journal ofGlobal Positioning Systems,Vol7, No4, pp:1~8.
    [113] RTCM Special Committee NO.104. RTCM Recommended Standards For Differential GNSS[S].RadioTechnical Commission For Maritime Services,1998.
    [114] Kalafus, Rudoiph M., Van Dierendonck, K.(2003). The New RTCM SC-104Standard for Differentialand RTK GNSS Broadcast. Proceeding of the16thInternational Technical Meeting of the Satellite Division ofthe Institute of Navigation.
    [115] Janet Brown Neumann, Keith J.,―Real-time carrier phase positioning using the RTCM standard massagetype20/21and18/19.‖http://www.novatel.com/Documents/Papers/File47.pdf
    [116] Version2Proposed Messages for GALILEO(6th Draft). RTCM Paper018-2008-SC104-488,2008
    [117]黄运乾.RTCM电文编码和COMPASS电文类型预定义研究[D].中国科学院研硕士学位论文,2009.
    [118]张九宴.GPS差分协议及基准站算法研究[D].武汉大学硕士学位论文,2003.
    [119]焦文海,地心大地坐标系与高程基准研究[D].解放军信息工程大学测绘学院博士论文,2000年.
    [120]魏子卿.2000中国大地坐标系及其与WGS84的比较[J].大地测量与地球动力学,2008,25(5):P01-05.
    [121] Todd Richert.The Impact of Future Global Navigation Satellite Systems on Precise Carrier PhasePositioning[D].University of CALGARY,2005.5
    [122]张艳.摄动影响下的“星校”自鉴定方法研究[J].飞行器测控学报,2007,26(6):63-69.
    [123]刘利生.外弹道测量数据处理[M].北京:国防工业出版社,2001.
    [124] W. Zhou, J.M. Hao(2013). The Precision Assemment System of TT&C Equipment based on UnmannedAerial Vehicle,China Satellite Navigation Conference2013Proceedings.
    [125]晋志普,陆文娟,朱纪洪等.用无人机GPS系统对雷达进行精度评定的方法[J].清华大学学报,2001,41(9):40-43.
    [126]罗霄.面向雷达外场测量的动态DGPS标校系统设计与实现[D].国防科学技术大学硕士学位论文,2008.
    [127]何友.雷达数据处理及应用[M].北京:电子工业出版社,2006.
    [128]解海中,张守信,董绪荣.航天测控设备GPS精度鉴定方法研究[J].指挥技术学院学报,1999,10(3):30-34.
    [129]武红霞.雷达动态性能检验和精度鉴定方法[D].南京理工大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700