基于动力特性的水工钢结构损伤识别理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,基于动力测量数据的结构损伤识别和健康诊断一直是国内外学者的研究热点,在土木工程领域中的研究和应用较多,但对于水工结构系统(特别是水工钢结构)损伤识别和健康诊断尚缺少研究。本文在水利部科技创新项目(No. SCX2003-18)与国家自然科学基金(No. 50608036)的资助下,对于水工钢结构的损伤识别方法进行了初步地探讨,为解决水工钢结构(如水工弧形闸门)这样一个大型复杂空间结构的运营安全评估及损伤识别问题提供了新的思路。具体的研究内容如下:
     首先回顾和总结了国内外损伤识别领域的研究进展,然后展开了关于损伤识别方法的理论及应用研究。针对基于传统遗传算法的损伤识别方法的不足,改进了传统遗传算法的变异算子,提出了一种基于改进遗传算法的损伤识别方法,一定程度上减少了损伤识别搜索过程中的盲目性并显著提高了识别结果的准确度。某两层门式框架模型损伤识别的仿真算例和一个带栓接接头矩形框架损伤识别的试验研究,证明了该方法的正确性和有效性。针对遗传算法收敛缓慢的固有缺点,提出了一种基于信赖域算法的损伤识别方法,通过求解带边界约束的非线性最小二乘目标函数来实现损伤识别,使得识别过程既具有更强的鲁棒性又在很大程度上节省了计算时间;同时研究了目标函数向量的扩充,使该方法能适用于更加实际的情况。两层框架结构的数值仿真研究与两个实验室框架模型的试验研究结果表明,在较少的迭代次数下,该方法就能成功地进行损伤识别,证明了该方法应用于实际结构的可行性和有效性。接下来,更进一步地将该方法应用于典型水工钢结构——水工弧形闸门模型的损伤识别中。先利用健康状态下的实测模态数据,通过修正初始有限元模型来获得用作损伤识别的基准模型,再运用该方法进行损伤识别的数值仿真和实测数据研究。结果表明该方法能够较为准确地识别出弧形闸门模型的损伤位置及其程度,这说明了将该方法应用于水工闸门结构的损伤识别中是可行而有效的,具有较好地应用前景,也为解决水工钢结构的运营安全评估及损伤识别问题提供了新思路。最后,为研究测量噪声对损伤识别结果的影响,具体针对基于敏感性的损伤识别方法,提出了一种基于统计分析原理的噪声分析方法,能同时对频率噪声和振型噪声进行分析,这就使得随机噪声分析过程更加简洁而又有效;又基于敏感性分析原理提出了一种结构损伤识别的改进算法。某单层门式框架损伤识别的数值仿真研究结果不仅表明了新的噪声分析方法与改进的灵敏度方法的正确性和有效性,同时也证明了改进方法确实比传统方法具有更强的噪声鲁棒性。
During the last two decades, there have been great interests in the structural damage identification and health diagnosis using vibration measurements, and the majority of studies can been found in civil engineering. However, studies about the damage identification and health diagnosis of the hydraulic structures are still few, especially for the hydraulic steel structures. Supported jointly by the Innovative Funding of the Ministry of Water Resources of China (No.SCX2003-18) and the National Natural Science Foundation of China (No. 50608036), in this dissertation, the studies on damage identification of hydraulic steel structures are performed, in order to provide a feasible idea for the healthy state assessment and damage identification of the hydraulic steel structures (such as the hydraulic radial gate), a large and complex spatial structures. The content is as follows:
     Firstly, the methods of structural damage identification developed in the recent two decades are reviewed and summarized. Secondly, theoretical developments and application studies about the damage identification methods are performed in the following parts of this dissertation. As for the shortcomings existing in the traditional genetic algorithm based damage identification methods, a modification has been made to the mutation operator in the traditional genetic algorithm, and an improved genetic algorithm based damage identification method is proposed, which can minimize the blindness of solution to some extent and improve the accuracy of identification results obviously. The applicability of a two-storeyed frame structure and a laboratory frame structure with bolted joints all demonstrates the feasibility of this method in structural damage identification. However, it’s the main disadvantage to hamper its real application that the convergence speed of the genetic algorithm is inherently slow. Thus a new structural damage identification approach is proposed based on the trust-region method, which obtains the identification results by minimizing a bound constrained nonlinear least-squared problem, and can make the identification process more robust and timesaving. A followed expansion process of the original objective function is also investigated, which is very important for the real application of the proposed damage identification method. The results of numerical studies of the two-storeyed frame structure and experimental studies of the two laboratory-tested frame structures all demonstrate the feasibility and efficiency of the proposed method. A further application study of this method is on a typical hydraulic steel structure, i.e., a hydraulic radial gate. After model updating to the initial finite element model (FEM) with the experimental vibration data under the healthy state, a refined FEM is obtained and used to identify structural damages using the tested modal data under damaged states. The assessment results show that damages can be identified using both the numerical and experimental modal data, which indicate that application of the method in the damage identification of the hydraulic steel structures is feasible and efficiency, and it also provided a new idea of the healthy state assessment and damage identification to the hydraulic steel structures. Finally, the influence of experimental noise on the identification results is also investigated for the sensitivity-based damage identification methods. A novel statistic-based random noise analysis method is proposed, which does not only make the analysis process more efficient but also can analyze the influence of noise on both frequencies and mode shapes for three commonly used sensitivity-based damage detection methods in a similar way. In addition, an improved sensitivity-based damage identification method is also proposed. A one-story portal frame is adopted to evaluate the validity and efficiency of both the proposed noise analysis technique and the improved damage identification method, and the assessment results also show that the improved method is more robust to experimental noise than its normal one.
引文
[1]杨智春,于哲峰.结构健康监测中的损伤检测技术研究进展.力学进展. 2004, 34(2): 215-223
    [2] Farrar C. R., Jauregui D. A. Comparative study of damage identification algorithm applied to a bridge: I. Experiment. Smart Materials and Structures. 1998, 7(5): 704-719
    [3] Ko J. M., Ni Y. Q., Chan T. H. T. Dynamic monitoring of structural health in cable-supported bridges. In: Proc. SPIE 3671. USA: Int. Soc. Opt. Eng. 1999. 161-172
    [4]吴中如,顾冲时.大坝安全综合评价专家系统.北京:科学技术出版社, 1997
    [5]姚亮,赵守义,金习武.水工金属结构的安全检测.治淮. 2004, (11): 44-46
    [6]谭秀娟.部分水电站水工钢闸门和启闭机安全状况分析.大坝与安全. 2002, (2): 49-51
    [7]杜广朝,丁爱萍.黄河柳园口渠首涵闸闸门振动问题研究.人民黄河. 2004, 26(5): 44-45
    [8]张友明.低水头弧形闸门振动问题探讨.治淮. 2004, (4): 32-34
    [9]郑圣义,杨光明,卜现港.船闸闸门三支承铰连接螺栓断裂研究.水利水电技术. 2004, 35(2): 70-73
    [10]谢省宗,李世琴,林勤华.泄水建筑筑物振动破坏及其防治.泄水工程与高速水流. 1995, (2): 1-56
    [11]李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社, 2002
    [12] Housner G. W., Bergman L. A., Caughey T. K. et al. Structural control: past, present and future. Journal of Engineering Mechanics. 1997, 123(9): 897-971
    [13]陈长征,罗跃纲,白秉三等.结构损伤检测与智能诊断.北京:科学技术出版社, 2001
    [14] Doebling S. W., Farrar C. R., Prime, M. B. et al. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristic: a literature review. Technical Report LA-1307-MS, Los Alamos National Laboratory. 1996
    [15] Zou Y., Tong L., Steven G. P. Vibration-based model-dependent damage (delaihination) identification and health monitoring for composite structures -- a review. Journal of Sound and Vibration. 2000, 230(2): 357-378
    [16]宗周红,任伟新,阮毅.土木工程结构损伤诊断研究进展.土木工程学报. 2003,36 (5): 105-110
    [17]孙鸿敏,李宏男.土木工程结构健康监测研究进展.防灾减灾工程学报. 2003, 23(3): 92-98
    [18] Carden E. P., Fanning F. Vibration based condition monitoring: a review. Structural Health Monitoring. 2004, 3(4): 355-377
    [19] Rytter A. Vibration based inspection of civil engineering structures [PhD thesis]. Aalborg: University of Aalborg, 1993
    [20] Cawley P., Adams R. D. The locations of defects in structures from measurements of natural frequencies. Journal of Strain Analysis. 1979, 14(2): 49-57
    [21] Salawu O. S. Detection of structural damage through changes in frequency: a review. Engineering Structures, 1997, 19(9): 718-723
    [22]谢峻,韩大伟.一种改进的基于频率测量的结构损伤识别方法.工程力学. 2004, 21(1): 21-25
    [23] Farrar C. R., Jauregui D. V. Damage detection algorithms applied to experimental and numerical modal data from the I-40 bridge. Los Alamos National Lab report LA-13074-MS. 1996
    [24] Biswas M., Pandey A. K., Samman M. M. Diagnostic experimental spectral/modal analysis of a highway bridge. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis. 1990, 5: 33-42
    [25] West, W. M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. In: Proceedings of the Air Force Conference on Aircraft Structural Integrity. 1984. 1–6
    [26] Lieven A. J., Ewins D. J. Spatial correlation of modal shapes, the coordinate modal assurance criterion (COMAC). In: Proceedings of the 6th International Modal Analysis Conference. New York: Society for Experimental Mechanics, Inc, Kissimmee, Florida, USA, 1988. 1063-1070
    [27] Pandey A. K., Biswas M., Samman M. M. Damage detection from changes in curvature mode shapes. Journal of Sound and Vibration. 1991, 145(2): 321-332
    [28] Wahab M. M. A., De Roeck G. Damage detection in bridges using modal curvatures: applications to a real damage scenario. Journal of Sound and Vibration. 1999, 226(2): 217-235
    [29] Pandey A. K. and Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration. 1994, 169(1): 3-17
    [30] Li G. Q., Hao K. C., Lu Y. et al. A flexibility approach for damage identification of cantilever-type structures with bending and shear deformation. Computers and Structures. 1999, 73: 565-572
    [31] Zhao J., DeWolf J. T. Sensitivity study for vibrational parameters used in damage detection. Journal of Structural Engineering. 1999, 125(4): 410-416
    [32] Yao G. C., Chang K. C., Lee G. C. Damage diagnosis of steel frames using vibrational signature analysis. Journal of Engineering Mechanics. 1992, 118(9): 1949-1961
    [33] Kim J. T., Stubbs N. Model-uncertainty impact and damage-detection accuracy in plate girder. Journal of Structural Engineering. 1995, 121(10): 1409-1417
    [34] Shi Z. Y., Law S. S., Zhang L. M. Improved damage quantification from elemental modal strain energy change. Journal of Engineering Mechanics. 2002, 128(5): 512-529
    [35] Sheinman I. Damage detection and updating of stiffness and mass matrices using mode data. Computers and Structures. 1996, 59(1): 149-156
    [36] Doebling S. W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification. AIAA Journal. 1996, 34(12): 2615-2621
    [37] Chen H. P., Bicanic N. Assessment of damage in continuum structures based on incomplete modal information. Computers and Structures. 2000, 74: 559-570
    [38]王中东,夏熙梅,陈塑寰.基于剩余模态力分析方法的结构损伤识别.吉林工业大学自然科学学报. 1999, 29(3): 61-66
    [39] Samman M. M., Biswas M., Pandey A. K. Employing pattern recognition for detecting cracks in a bridge. The International Journal of Analytical and Experimental Modal Analysis. 1991, 6(1): 35-44
    [40] Biswas M., Pandey A. K., Bluni S. Modified chain-code computer vision techniques for interrogation of vibration signatures for structural fault detection. Journal of Sound and Vibration. 1994, 175(1): 89-104
    [41] Pascual R., Golinval J. C., Razeto M. Testing of FRF based model updating methods using a general finite element program. In: Proceedings of the 21st International Seminar on Modal Analysis, Leuven, Belgium, 1996. 332-340
    [42] Sampaio R. P. C., Maia N. M. M. et al. On the use of transmissibility for damage detection and location. In: Proceeding of the European COST F3 Conference on System Identification & Structural Health Monitoring, Universidad Politecnica de Madrid, Spain, 2000. 105-117
    [43] Ricles J. M., Kosmatka J. B. Damage detection in elastic structures using vibratory residual forces and weightted sensitivity. AIAA Journal. 1992, 30: 2310-2316
    [44] Sanayei M., Saletnik M. J. Parameter estimation of structures from static strain measurements, part II: error sensitivity analysis. Journal of Structural Engineering.1996, 122(5): 563-572
    [45] Fritzen C. P., Jennewein D. Damage detection based on model updating methods. Mechanical Systems and Signal Processing. 1998, 12(1): 163-186
    [46] Berman A., Nagy E. J. Improvement of large analytical model using test data. AIAA Journal. 1983, 21(8): 1168-1173
    [47] Kam T. Y., Lee T. Y. Detection of cracks in structures using modal test data. Engineering Fracture Mechanics. 1992, 42(2): 381-387
    [48] Smith S. W. Iterative use of direct matrix updates: connectivity and convergence. In: Proceedings of the 33rd AIAA Structures, Structural Dynamics and Materials Conference, 1992. 1797-1806
    [49] Kabe A. M. Stiffness matrix adjustment using mode data. AIAA Journal. 1985, 23 (9): 1431-1436
    [50] Zimmerman D. C., Kaouk M. Structural damage detection using a minimum rank update theory. Journal of Vibration and Acoustics. 1994, 116(2): 222-231
    [51] Doebling S. W. Minimum-rank optimal update of elemental stiffness parameters for structural damage identification. AIAA Journal. 1996, 34(12): 2615-2621
    [52] Hajela P., Soeiro F. J. Structrual damage detection based on static and modal analysis. AIAA Journal. 1990, 28(6): 1110-1115
    [53] Casas J. R., Aparicio A. C. Structrual damage identification from dynamic-test data. Journal of Structrual Engineering. 1994, 120(8): 2437-2450
    [54] Zimmerman D. C., Kaouk M. Eigenstructure assignment approach for structural damage detection. AIAA Journal. 1992, 30(7): 1848-1855
    [55] Lim T. W. Structural damage detection using constrained eigenstructure assignment. Journal of Guidance, Control, and Dynamics. 1995, 18(3): 411-418
    [56] Ruotolo R., Surace C., Mares C. Damage identification using simulated annealing. In: Proceedings of the 15th International Modal Analysis Conference, 1997. 954-960
    [57]万祖勇.基于粒子群算法的结构损伤检测[硕士学位论文].武汉:华中科技大学, 2005
    [58] Venkatasubramanian V., Chan K. A neural network methodology for process fault diagnosis. Journal of AICHE. 1989, 35(12): 1993-2002
    [59] Marwala T. Damage identification using committee of natural networks. Journal of Engineering Mechanics. 2000, 126(1): 43-50
    [60]于德介,雷慧.一种基于神经网络的结构参数识别方法.湖南大学学报(自然科学版). 1998, 26(4): 39-43
    [61]于德介,雷慧.用BP神经网络诊断结构破损.工程力学. 2001, 18(1): 56-61
    [62] Szewczyk Z., Hajela P. Neural network based damage detection in structures. ASCE Journal of Computing and Civil Engineering. 1994, 8(2): 163-178
    [63]朱宏平,张源.基于自适应BP神经网络的结构损伤检测.力学学报. 2003, 35(1): 110-116
    [64]瞿伟廉,陈伟,李秋胜.基于神经网络技术的复杂框架结构节点损伤的两步诊断法.土木工程学报. 2003, 36(5): 37-45
    [65]王柏生,何国波,陈奕伟.结构损伤存在检测的两种神经网络的比较研究.哈尔滨工业大学学报. 2004, 36(4): 539-542
    [66]谢建宏,张为公,梁大开.基于小波神经网络的智能复合材料损伤定位的仿真研究.测控技术. 2004, 23(9): 8-10
    [67] Ruotolo R., Surace C. Damage assessment of multiple cracked beams: numerical results and experimental validation. Journal of Sound and Vibration. 1997, 206(4): 567-588
    [68] Friswell M. I., Penny, J. E. T., Garvey S. D. A combined genetic and eigensensitivity algorithm for the location of damage in structures. Computers and Structures. 1998, 69: 547-556
    [69] Hao H., Xia Y. Vibration-based damage detection of structures by genetic algorithm. Journal of Computing in Civil Engineering. 2002, 16(3): 222-229
    [70]段雪平,朱宏平.基于遗传算法的结构破损参数检测.工程力学. 2001, (A03): 422-426
    [71] Chou J. H., Ghaboussi J. Genetic algorithm in structural damage detection. Computers and Structures. 2001, 79: 1335-1353
    [72]尹涛,朱宏平,余岭.运用改进的遗传算法进行框架结构损伤检测.振动工程学报. 2006, 19(4): 525-531
    [73] Liew K. M., Wang Q. Application of wavelet theory for crack identification in structures. Journal of Engineering Mechanics. 1998, 124(2): 152-157
    [74] Hou Z., Noori M. Wavelet-based approach for ASCE structural health monitoring benchmark studies. In: Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, 2001
    [75] Chang C. C., Chen L.W. Vibration damage detection of a Timoshenko beam by spatial wavelet based approach. Applied Acoustics. 2003, 64(12): 1217-1240
    [76]廖锦翔,袁明武,张劲泉.小波变换在桥梁结构损伤识别中的应用.公路交通科技. 2004, 21(11): 30-34
    [77] Farrar C. R., Doebling S. W. Damage detection II: field applications to largestructures. In: Silva J. M. M. and Maia N. M. M. (eds.), Modal Analysis and Testing, Nato Science Series. Dordrecht, Netherlands: Kluwer Academic Publishers, 1999
    [78] Xia Y., Hao H. Statistical damage identification of structures with frequency changes. Journal of Sound and Vibration. 2003, 263(4): 853-870
    [79] Lam H. F., Katafygiotis L. S., Mickleborough N. C. Application of a statistical model updating approach on phase I of the IASC-ASCE structural health monitoring benchmark study. Jounal of Engineering Mechanics. 2004, 130(1): 34-48
    [80] Ching J., Beck J. L. Bayesian analysis of the phase II IASC–ASCE structural health monitoring experimental benchmark data. Jounal of Engineering Mechanics. 2004, 130(10): 1233-1244
    [81]谢峻,韩大建,周毅姝.整合统计的结构损伤动力诊断三步法.振动与冲击. 2004, 23(4): 119-122
    [82] Tasker F., Bosse A., Fisher S. Real-time modal parameter estimation using subspace methods: theory. Mechanical Systems and Signal Processing. 1998a, 12(6): 797-808
    [83] Bosse A., Tasker F., Fisher S. Real-time modal parameter estimation using subspace methods: applications. Mechanical Systems and Signal Processing. 1998b, 12(6): 809-823
    [84] Tasker F., Dunn B., Fisher S. Online structural damage detection using subspace estimation. In: Aerospace Conference, Proceedings. IEEE, 1999. 173-179
    [85] Basseville M., Abdelghani M., Benveniste A. Subspace-based fault detection algorithms for vibration monitoring. Automatica. 2000, 36(1): 101-109
    [86] Basseville M., Mevel L., Goursat M. Statistical model-based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios. Journal of Sound and Vibration. 2004, 275(3-5): 769-794
    [87] Yang J. N., Lin S. Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique. Journal of Engineering Mechanics. 2005, 131(3): 290-298
    [88]朱宏平,徐斌,黄玉盈.结构动力模型修正方法的比较及评估.力学进展. 2002, 32(4): 513-524
    [89] Link M. Updating analytical models by using local and global parameters and relaxed optimization requirements. Mechanical Systems and Signal Processing. 1998, 12(1): 7-22
    [90] Allemany R. J., Brown D. L. A correlation coefficient for modal vector analysis. In: Proceedings of the 1st International Modal Analysis Conference. New York: TheUnion College, Orlando, Florida, USA, 1982. 110-116
    [91] Lam H. F., Ko J. M., Wong C. W. Localization of damaged structural connections based on experimental modal and sensitivity analysis. Journal of Sound and Vibration. 1998, 210(1): 91-115
    [92] Yu L., Link M., Law S. S. et al. A structural damage identification procedure with application to a frame structure with bolted joints. In: Proceedings of the 17th International Modal Analysis Conference. Florida: The Print House, 1999. 1387-1394
    [93] Conn, N. R., Gould, N. I. M., Toint, Ph. L. Trust-region methods. MPS/SIAM Series on Optimization, SIAM and MPS, 2000
    [94] Branch M. A., Coleman T. F., Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM Journal on Scientific Computing. 1999, 21(1): 1-23
    [95] Sorensen, D. C. Minimization of a large scale quadratic function subject to an ellipsoidal constraint. Department of Computational and Applied Mathematics, Rice University, Technical Report TR94-27, 1994
    [96] MATLAB, Version 6.5 (Release 13), Matlab Optimization Toolbox User’s Guide, http://www.mathworks.com/products/optimization/, the Mathworks, 2002
    [97] Coleman T. F., Li Y. A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization. 1996, 6(4): 1040-1058
    [98] Zhu H. P., Xu Y. L. Damage detection of mono-coupled periodic structures based on sensitivity analysis of modal parameters. Journal of Sound and Vibration. 2005, 285(1): 365-390
    [99] Mottershead J. E., Friswell M. I. Model updating in structural dynamics: A survey. Journal of Sound and Vibration. 1993, 167(2): 347-375
    [100]郑圣义,郭建斌.水工钢闸门腐蚀状况评估方法及安全诊断技术.水利水电技术. 2005, 36(3): 51-54
    [101]牛海峰,宋一乐,何文娟.水工弧形闸门试验模态分析.长江科学院院报. 2002, 19(6): 33-35
    [102]张晓平,张林让,吴杰芳.三峡导流底孔弧形闸门泄洪振动与控制研究.长江科学院院报. 2003, 20(1): 33-3
    [103] Wu J. F., Wu B., Zhang L. R. et al. Study on flow-induced vibration of submerged radial gate by real hydroelastic model. In: Proceedings of the Asia-Pacific Vibration Conference, Hangzhou, China, 2001. 1120-1123
    [104]涂玥,徐建光,李长和等.用变时基技术进行弧形钢闸门的模态试验分析.西北电力技术. 2005, 33(4): 9-12
    [105] Ewins D. J.模态试验理论与实践.赵淳生,周传荣译.南京:南京大学出版社, 1991
    [106]沈松,应怀樵,雷速华等.用锤击法和变时基技术进行黄河铁路桥的模态试验分析.振动工程学报. 2000, 13(3): 492-495
    [107]应怀樵.脉冲力与结构振动响应传递函数的变时基、便窗长采样分析新方法研究.中国国家发明专利, 1990
    [108]李方泽,刘馥清,王正.工程振动测试与分析.北京:高等教育出版社, 1992
    [109] Fei G. Q., Zhang L. M., Guo Q. T. Dynamic finite element model updating based on global information of structures. Chinese Journal of Mechnical Engineering. 2005, 18(2): 294-296
    [110] Levenberg K. A method for the solution of certain problems in least squares. Quart. Appl. Math. 1944, 2: 164-168
    [111] Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11: 431-441
    [112] MoréJ. J. The Levenberg-marquardt algorithm: implementation and theory. In: Waston G. A. Lecture Notes in Mathematics 630: numerical analysical. Berlin: Springer-Verlag, 1978. 105-116
    [113] Hjelmstad K. D., Banan M.R. et al. On building finite element models of structures from modal response. Earthquake Engrg. & Struct. Dyn. 1995, 24(1): 53-67
    [114] Stubbs N., Kim J. T. Damage localization in structures without baseline modal parameters. AIAA Journal. 1996, 34(8): 1649-1654
    [115] Papadopoulos L., Garcia E. Structural damage identification: a probabilistic approach. American Institute of Aeronautics and Astronautics Journal. 1998, 36(11): 2137-2145
    [116] Fox R. L., Kapoor M. P. Rates of change of eigenvalues and eigenvectors. AIAA Journal. 1968, 6(12): 2426-2429
    [117]鞠彦忠,张增军,陈景彦等.基于柔度法的结构损伤识别.东北电力学院学报. 2004, 24(1): 47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700