基于网络坐标的覆盖网络路由机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆盖网络是随着近年来对等网络的兴起而发展起来的技术。覆盖网络路由可以理解为通过覆盖网络技术提供的路由服务。覆盖网络路由相比于传统IP路由,通过在IP路径上构建逻辑路径,提供了一种灵活的面向业务的路由方式。覆盖网络路由的应用场景可以分为三类:第一类是面向节点的路由;第二类是面向内容的路由;第三类是面向语义的路由。
     针对三类应用场景,覆盖网络路由发挥着不同的作用。在第一类应用中,路由的对象是节点位置。当IP路由不能满足业务QoS需求时,覆盖网络路由能够建立绕行路径,取得比IP直达路径更优的效果;在第二类应用中,路由的对象是内容,覆盖网络将内容分散地存储在各个节点中,在需要查找某个特定内容时,覆盖网络路由能够可靠和高效地定位到内容所存储节点;在第三类应用中,路由的目标是内容中包含的抽象语义信息,覆盖网络路由能够从语义上理解用户的查询请求,判断内容之间的语义关系,根据语义规则搜索与用户请求相关的内容资源。
     在上述三类场景中,覆盖网络路由机制研究的共同目标是如何进一步提高覆盖网络路由的服务质量,主要体现为如何降低覆盖网络路径的逻辑跳数和物理时延。由于覆盖网络主要用于分布式网络和对等计算环境中,覆盖网络路由机制的开销和可扩展性也是设计路由机制的重要参考。
     为了实现上述研究目标,本论文分析了覆盖网络路由的应用场景,总结了提升覆盖网络路由服务质量的关键因素,对覆盖网络路由机制进行深入研究,主要的研究成果如下:
     第一:针对IP网络的“反三角”现象,定义量化模型,设计通过网络坐标发现反三角现象的方法。为了分析IP直达路径时延大于覆盖网络路径时延的现象,引入“反三角”模型,定义“中转效用度”量化了通过覆盖网络路径降低时延的效果,研究了反三角的分布特性。为了能够利用反三角降低时延需要在网络中发现反三角,通过理论和实验仿真分析网络坐标误差与反三角的关系,设计了利用网络坐标预测发现反三角现象的方法,为覆盖网络路由机制中利用“反三角”降低时延的相关方法奠定了基础。
     第二:在面向节点的路由服务场景中,为了利用反三角现象发现时延更短的绕行路径,提出了一种分布式查找选择应用层中转的TIVER算法。节点根据中转效用度搜索邻居节点建立反三角候选集,从中选择降低时延效果最好的应用层中转,建立相比IP直达路径时延更短的绕行路径,满足实时性业务需求。通过仿真比较验证了TIVER算法在时延降低效果、查找效率、测量开销方面的性能。
     第三:在面向内容的路由服务场景中,针对覆盖网络拓扑与物理网络拓扑不匹配的问题,提出了基于网络坐标的内容定位算法PT-CAN。为了感知物理网络的时延距离信息,将网络坐标与分布式哈希表的内容定位机制相结合,设计IP网络距离可感知的内容查询定位方法P-CAN.在此基础上,考虑到反三角降低时延的特性,引入利用网络坐标发现反三角的方法,提出了感知反三角特征和网络距离的内容定位算法PT-CAN,进一步降低内容查询定位的物理时延,通过理论分析和实验仿真验证了算法效果。
     第四:在面向语义的路由服务场景中,为了增强搜索功能和提高查询效率,提出了一种基于坐标空间的语义路由机制SOCS。引入语义建模的方法,在内容查询机制中增加了分析处理语义信息的能力,实现了语义搜索功能。根据查询请求的语义信息决定路由策略,在语义相似的节点间采用群内路由,在语义不相似的节点间采用群间路由,建立了混合式架构的语义路由机制,减少了搜索路径的跳数和时延,提高了查询效率。通过性能分析和仿真验证了SOCS语义路由的效果。另外,针对不同的语义表示模型,设计了基于球面坐标系的拓扑生成机制,扩大了SOCS的适用范围。
     论文最后对全文进行了总结,并对进一步的研究方向提出了一些想法和思路。
Overlay network technology has been developed with the rise of Peer-to-Peer network and applications. Overlay network routing is defined as routing service provided by overlay network technologies. Compared with traditional IP routing, overlay network routing provides a flexible and service-oriented routing model by construction logical paths on the top of IP paths. The scenarios of overlay network routing can be categorized into three classes. The first class is called as'Node-oriented Rouing'. The second is called as'Content-oriented Rouing'. The third is called as'Semantics-oriented Routing'.
     Overlay network routing plays different roles in three scenarios. In 'Node-oriented Rouing', the object of routing is the address of nodes, Overlay routing constructs detour paths with better performance than IP default paths which can't satisfy the quality of service.
     In'Content-oriented Rouing', the object of routing is the contents. The contents are distributed into nodes in the overlay. Overlay routing helps locating the nodes that store the specific content which is queried by users.
     In'Semantics-aware Rouing', the goal of routing is the abstract semantic information implied by the contents. Overlay network routing is capable of understanding the queries semantically, judging the semantic relationships, and searching the relative content resources.
     In the above scenarios, the common objective of research in overlay network routing mechanisms, is how to improve the quality and performance of overlay network routing, i.e. how to reduce the logical hops and physical latency of overlay network paths. As overlay network is commonly applied in distributed networks or peer-to-peer computing environments, the overhead and scalability are two important factors that need to be considered to design the overlay network routing mechanisms.
     In order to fulfill the above mentioned goals, this dissertation analyzes the scenarios, generalizes the requirement, summarize the key factors than have effects on the ruting performance, and deeply investigates overlay routing mechnanisms. The main contributions include the following aspects:
     Firstly, considering the'triangle inequality violation (TIV for short)' phenomena, a model is defined to quantify the effects of TIV phenomena, and a method to discover TIVs based on network coordinates is designed. In order to describe the phenomna that the latency of IP default paths exceeds the latency of overlay paths, TIV model is introduced and'relay utility'metric is defined to quantify the latency-reducing effects. The distribution characteristics are also analyzed. In order to fully utilize TIV to reduce latency, a method to discover TIVs is needed. By theoretically analysis and experiments which reveal the relationship between the TIV and network coordinates, a method to predict and discover TIVs based on network coordinates is proposed, which makes preparations to bring TIVs to overlay routing mechanisms.
     Secondly, an application relay discovery and selection algorithm called TIVER is proposed to utilize TIVs to reduce latency in the 'Node-oriented Routing'scenario. The node searches neighbors to construct TIV candidate sets according to'relay utility'. When the node needs to construct a shorter detour path, it tries to select the neighbors with highest relay utility from candidate sets. The simulation results verify the performance of TIVER algorithm in the aspects of latency-reducing effects, selection efficiency and measurement overhead.
     Thirdly, considering the mismatching between logical overlay topoplogy and physical underlay topology, a content querying algorithm based on network coordinates called as PT-CAN is proposed. In order to gather the latency proximity information from the physical networks, network coordinates are combined with distributed hash tables and a content querying algorithm called P-CAN is designed. On the basis of P-CAN, considering the TIV's latency reducing effects, a content querying algorithm called PT-CAN is proposed to gather latency information and discovery TIV phenomena, which further reduces the latency needed for content querying. The performance of our algorithm is verified by theoretical analysis and simulations.
     Fourthly, in the'Semantic-oriented Routing'scenario, a semantic routing mechanism called SOCS is proposed to improve the query efficiency and enhance the search functionality. Semantically modeling methods are introduced to help analyze and handle the semantic information in the contents. In this way, sematic search functionality is realized in overlay networks. The routing strategy is to cluster nodes into semantic clusters and routes the queries inner or inter clusters according to its semantic information. As a result, a hybrid routing architecture is designed to reduce both the hops and latency for semantic search. The performance analysis and simulation proves its effects. Besides, a topology generation mechanism is designed to fit into other semantic representation models, which expand the application scopes for SOCS.
     Summary is given in the end, where the future research directions related to this dissertation are also putted forward.
引文
[1]Marcel Waldvogel, Robert Rinaldi. Efficient topology-aware overlay network. ACM SIGCOMM computer communication review, vol.33, no.1,2003, pp.101-106.
    [2]S.Rhea, C.Wells, P.Eaton, et al. Maintenance-free global data storage. IEEE Internet Computing. IEEE, vol.5, no.5,2001, pp.40-49
    [3]F.Dabek, M.F.Kaashoek, D.Karger, et al. Wide-area cooperative storage with CFS. In Proceedings of thel8th ACM Symposium on Operating Systems Principles (SOSP'01), New York,2001, pp.202-215.
    [4]刘浩.P2P网络的若干关键问题研究.[学位论文],华南理工大学,2010.
    [5]张春红,裘晓峰,弭伟.P2P技术全面解析.人民邮电出版社,2010年,页11-18.
    [6]Karthik Lakshminarayanan, Ion Stoica, Scott Shenker. Routing as a service. Report No. UCB/CSD-04-1327. Computer Science Division, University of California,2004.
    [7]Jacobson Van, Smetters Diana K, Thornton James D, et al. Networking named content. In Proceedings of the 2009 ACM Conference on Emerging Networking Experiments and Technologies(CONEXT'09), Italy,2009, pp.1-12.
    [8]张春红,裘晓峰,夏海轮,马涛.物联网技术与应用,人民邮电出版社,2011年,页187.
    [9]Detti Andrea, Blefari Melazzi, Salsano Stefano. CONET:A content centric inter-networking architecture. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking(ICN'll), Canada,2011, pp.50-55.
    [10]Ma Tao, Zhang Chunhong. On the disruptive potentials in internet of things. In Proceedings of 17th IEEE International Conference on Parallel and Distributed Systems(ICPADS 2011), Taiwan,2011, pp.857-859.
    [11]Shansi Ren, Lei Guo, Xiaodong Zhang. ASAP:an AS-Aware Peer-Relay Protocol for High Quality VoIP, In Proceedings of International Conference on Distributed Computing Systems(ICDCS'O6), Portugal,2006, pp.70.
    [12]S. Savage, T. Anderson, A. Aggarwal, et al. Detour:a case for informed internet routing and transport. Tech. Rep. TR-98-10-05,1998
    [13]Savage Stefan, Collins Andy, Hoffman Eric, et al. End-to-end effects of Internet path selection. ACM SIGCOMM computer communication review.vol.29, no.4,1999, pp.289-299.
    [14]姜义.网络敏感的对等网络覆盖网的若干关键技术研究.[学位论文],上海交通大学,2007.
    [15]连淑娟,孙波,魏云刚.结构化P2P网络拓扑匹配技术综述.计算机应用研究,第26卷,第8期,2009.
    [16]邱彤庆,陈贵海.一种令P2P覆盖网络拓扑相关的通用方法.软件学报,第18卷,第2期,2007,页381-390.
    [17]朱丹,徐向阳,梁燕等.结构化P2P中覆盖网络拓扑匹配的研究.微计算机应用,第29卷,第6期,2008,页19-22.
    [1]刑长友,陈鸣.网络距离预测技术.软件学报,第20卷,第9期,2009,页2470-2482.
    [2]王意洁,李小勇.网络距离预测技术研究.软件学报,第20卷,第6期,2009,页1574-1590.
    [3]Francis P, Jamin S, Jin C, et al. IDMaps:A global internet host distance estimation service. IEEE/ACM Transactions on Networking.vol.5, no.9,2001, pp.525-540.
    [4]Chen Y, Lim KH, Katz RH, et al. On the stability of network distance estimation. ACM SIGMETRICS Performance Evaluation Review.2002, pp.21-30.
    [5]Theilmann W, Rothermel K. Dynamic distance maps of the Internet. In Proceedings of the IEEE INFOCOM 2000, Israel,2000, pp.275-284
    [6]Gummadi KP, Saroiu S, Gribble SD. King:Estimating latency between arbitrary Internet end hosts. In:Proc. of the 2nd ACM SIGCOMM Workshop on Internet measurement. New York:ACM Press,2002.5-18.
    [7]Leonard D, Loguinov D. Turbo king:Framework for large-scale internet delay measurements. In Proceedings of the IEEE INFOCOM 2008. USA,2008, pp.430-438.
    [8]Srinivasan S, Zegura E. M-Coop:A scalable infrastructure for network measurement. In Proceedings of the 3rd IEEE Workshop on Internet Applications. Washington, 2003, pp.35-39.
    [9]Wong B, Slivkins A, Sirer EG. Meridian:A lightweight network location service without virtual coordinates. In Proceedings of the ACM SIGCOMM.2005. pp.85-96.
    [10]Sharma P, Xu Z, Banerjee S, et al. Estimating network proximity and latency. ACM SIGCOMM Computer Communication Review,2006, pp.39-50.
    [11]Ng TS, Zhang H. Predicting Internet network distance with coordinates-based approaches. In Proceedings of the IEEE INFOCOM. USA,2002, pp.170-179.
    [12]Lim H, Hou JC, Choi CH. Constructing Internet coordinate system based on delay measurement. In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurement.2003, pp.129-142.
    [13]Tang L, Crovella M. Virtual landmarks for the Internet. In Proceedings of the ACM SIGCOMM Conference on Internet measurement (IMC).2003. pp.143-152.
    [14]Ng TS, Zhang H. A network positioning system for the Internet. In Proceedings of the USENIX Annual Technical Conference.2004.
    [15]Waldvogel M, Rinaldi R. Efficient topology-aware overlay network. ACM SIGCOMM Computer Communication Review.2003, pp.101-106.
    [16]Pias M, Crowcroft J, Wilbur S, et al. Lighthouses for scalable distributed location. In Proceedings of the International Workshop on Peer-to-Peer Systems (IPTPS 2003)., 2003.
    [17]Zhang R, Hu YC, Lin X, et al. A hierarchical approach to Internet distance prediction. In Proceedings of the 26th IEEE International Conf. on Distributed Portual,2006.
    [18]Shavitt Y, Tankel T. Big-Bang simulation for embedding network distances in euclidean space. IEEE/ACM Transactions on Networking, vol.6, no.12,2004, pp.993-1006.
    [19]Dabek F, Cox R, Kaashoek F, Morris R. Vivaldi:A decentralized network coordinate system. In Proceedings of the ACM SIGCOMM. USA,2004, pp.15-26.
    [20]Costa M, Castro M, Rowstron R, et al. PIC:Practical Internet coordinates for distance estimation. In Proceedings of the 24th IEEE International Conference on Distributed Computing Systems (ICDCS). Japan,2004, pp.178-187.
    [21]Mao Y, Saul LK, Smith JM. IDES:An Internet distance estimation service for large networks. IEEE Journal on Selected Areas in Communications, vol.24, no.12,2006, pp.2273-2284.
    [22]Lehman L, Lerman S. PCoord:Network position estimation using peer-to-peer measurements. In Proceedings of the 3rd IEEE International Symposium on Network Computing and Applications,2004, pp.15-24.
    [23]Xing C, Chen M. HNDP:A novel network distance prediction mechanism. In Proceedings of the IFIP NPC. China,2007, pp.425-434
    [24]Y. Liu, Y. Gu, H. Zhang, W. Gong, et al. Application Level Relay for High-bandwidth Data Transport, In Proceedings of First Workshop on Networks for Grid Applications (GridNets), San Jose, Oct.2004.
    [25]S. Savage, T. Anderson, A. Aggarwal, et al. Detour:a case for informed internet routing and transport. Tech. Rep. TR-98-10-05,1998.
    [26]Savage Stefan, Collins Andy, Hoffman Eric, et al. End-to-end effects of Internet path selection. ACM SIGCOMM computer communication review.vol.29, no.4,1999, pp.289-299.
    [27]Buford J., Wang A., Xiaojun Hei, et al. Discovery of In-Band Streaming Services in Peer-to-Peer Overlays. In Proceedings of GLOBECOM'07, USA,2007, pp.242-247
    [28]David Andersen, Hari Balakrishnan, M. Frans Kaashoek, et al. Resilient overlay networks. In Proceedings of 18th ACM Symposium on Operating Systems Principles,, Canada,2001.
    [29]Baset S., Schulzrinne H. An analysis of the skype peer-to-peer Internet telephony protocol. In Proceedings of ICC,2006, pp.1-11.
    [30]Shansi Ren, Lei Guo, Xiaodong Zhang. ASAP:an AS-Aware Peer-Relay Protocol for High Quality VoIP, In Proceedings of International Conference on Distributed Computing Systems(ICDCS'06), Portugal,2006, pp.70.
    [31]K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, and D. Wetherall. Improving the reliability of internet paths with one-hop source routing. In Proceedings of USENIX OSDI'04,2004.
    [32]Jacobson Van, Smetters Diana K, Thornton James D, et al. Networking named content. In Proceedings of the 2009 ACM Conference on Emerging Networking Experiments and Technologies (CONEXT'09), Italy,2009, pp.1-12.
    [33]张春红,裘晓峰,弭伟,纪阳.P2P技术全面解析.大民邮电出版社,2010,页35-40.
    [34]Ripeanu M. Peer-to-Peer architecture case study:Gnutella network.In proeeedings. In Proceedings of First International Conference on Peer-to-Peer Computing,2001, pp.99-100.
    [35]Ripeanu M, Foster I. Mapping the Gnutella network. IEEE Internet Computing, vol.6, 2002, pp.50-57.
    [36]Stoica I, Morris R, Karger D, et al. Chord:A scalable peer-to-peer lookup service for Internet applications. In Proceedings of ACM SIGCOMM, New York,2001, pp.149-160.
    [37]S. Ratsanamy, P. Francis, M. Handley, et al. A Scalable Content-Addressable Network. In Proceedings of ACM SIGCOMM, USA,2001, pp.161-172.
    [38]A. Rowstron, P. Druschel. Pastry:Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms, Germany,2001, pp.329-350.
    [39]Maymounkov P., Mazieres, D. Kademlia:A peer to peer information systems based on the XOR metric. In Proceedings of the First International Workshop on Peer to Peer Systems (IPTPS).2002, pp.53-65.
    [40]张增杰,刘鑫,李晓城等.基于语义的p2p路由算法研究综述.微型电脑应用,第27卷,第7期,2011,页38-40.
    [41]Tang C, Xu Z, Mahalingam M. Peer-to-Peer information retrieval using self-organizing semantic overlay networks. In Proceedings of the ACM SIGCOMM 2003,2003, pp.175-186.
    [42]许立波,于坤,吴国新.SemreX一种基于语义相似度的P2P覆盖网络.软件学报,第17卷,第5期,2006,页2106-2117.
    [43]于婧,汪斌强SSON:一种基于结构化P2P网络路由的语义覆盖网络结构.计算机科学,第34卷,第6期,2007,页4-18.
    [44]于婧,张建辉,顾小卓.基于主题和物理位置相近原则的层次化对等语义覆盖网络结构,电子信息学报,第30卷,第8期,2008,页1999-2003.
    [45]马丽丽,黄宏斌,邓苏.基于语义聚类的层次化语义覆盖网构建方法研究.计算机与数字工程,第10期,2008,页135-139.
    [46]乔百友,王国仁,邢云龙等.一种基于语义的super-peer网络构建方法,东北大学学报(自然科学版),第29卷,第1期,2008,页61-64.
    [47]张伟.基于语义的动态超节点网络模型及搜索算法.[学位论文],中南大学,2009.
    [1]Y. Liu, Y. Gu, H. Zhang, W. Gong, et al. Application Level Relay for High-bandwidth Data Transport, In Proceedings of First Workshop on Networks for Grid Applications (GridNets), San Jose, Oct.2004.
    [2]S. Savage, T. Anderson, A. Aggarwal, et al. Detour:a case for informed internet routing and transport. Tech. Rep. TR-98-10-05,1998.
    [3]Savage Stefan, Collins Andy, Hoffman Eric, et al. End-to-end effects of Internet path selection. ACM SIGCOMM computer communication review.vol.29, no.4,1999, pp.289-299.
    [4]Ma Tao, Zhang Chunhong. A power law relay routing overlay. In Proceedings of 4th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP 2011). China,2011, pp.258-262.
    [5]Ma Tao, Zhang Chunhong, Zen Zhimin. Selecting relays for faster paths in embedded internet delay space. International Journal of Advancements in Computing Technology, vol.4, no.2,2012, pp.176-184.
    [6]Buford J., Wang A., Xiaojun Hei, et al. Discovery of In-Band Streaming Services in Peer-to-Peer Overlays. In Proceedings of GLOBECOM'07, USA,2007, pp.242-247
    [7]David Andersen, Hari Balakrishnan, M. Frans Kaashoek, et al. Resilient overlay networks. In Proceedings of 18th ACM Symposium on Operating Systems Principles, Canada,2001.
    [8]Baset S., Schulzrinne H. An analysis of the skype peer-to-peer Internet telephony protocol. In Proceedings of ICC,2006, pp.1-11.
    [9]Shansi Ren, Lei Guo, Xiaodong Zhang. ASAP:an AS-Aware Peer-Relay Protocol for High Quality VoIP, In Proceedings of International Conference on Distributed Computing Systems(ICDCS'06), Portugal,2006, pp.70.
    [10]K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, and D. Wetherall. Improving the reliability of internet paths with one-hop source routing. In Proceedings of USENIX OSDI'04,2004.
    [11]Cristian Lumezanu, Dave Levin, Neil Spring. PeerWise Discovery and Negotiation of Faster Paths. In Proceedings of HotNets,2007.
    [12]Kaafar Mohamed Ali, Cantin Francois, Gueye Bamba, et al. Detecting Triangle Inequality Violations for Internet Coordinate Systems. In Proceedings of 2009 IEEE International Conference on Communications Workshops(ICC 2009), Germany, 2009.
    [13]Han Zheng, Eng Keong Lua, Marcelo Pias, et al. Internet Routing Policies and Round-Trip-Times. In Proceedings of Passive and Active Network Measurement, USA,2005, pp.236-250.
    [14]p2psim data sets.http://www.pdos.lcs.mit.edu/p2psim/kingdata
    [15]Wong B, Slivkins A, Sirer EG. Meridian:A lightweight network location service without virtual coordinates. In Proceedings of the ACM SIGCOMM.2005. pp.85-96.
    [16]King data set, http://www.eecs.harvard.edu/-syrah/nc.
    [17]A. Bavier, M. Bowman, B. Chun, et al. Operating System Support for Planetary-Scale Network Services. In Networked Systems Design and Implementation, San Francisco,2004.
    [18]Ma Tao, Hu Qingyuan. On the power law property of latency-reducing relays. In Proceedings of 17th IEEE International Conference on Parallel and Distributed Systems(ICPADS 2011), Taiwan,2011, pp.788-792.
    [19]Barabasi, Albert-Laszlo. Scale-Free Networks. Scientific American, no.288, May 2003, pp.60-69.
    [20]Dabek F, Cox R, Kaashoek F, Morris R. Vivaldi:A decentralized network coordinate system. In Proceedings of the ACM SIGCOMM. USA,2004, pp.15-26.
    [21]G. Wang, B. Zhang, et al. Towards network triangle inequality violation aware distributed systems. In Proceedings of 7th ACM SIGCOMM Internet Measurement Conference, USA,2007, pp.175-188.
    [22]Lee Sanghwan, Zhang, Zhi-Li, Sahu Sambit, et al. On suitability of Euclidean embedding of internet hosts. In Proceedings of Joint International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS 2006), France, 2006, pp.157-168.
    [1]Jacobson Van, Smetters Diana K, Thornton James D, et al. Networking named content. In Proceedings of the 2009 ACM Conference on Emerging Networking Experiments and Technologies (CONEXT'09), Italy,2009, pp.1-12.
    [2]Stoica I, Morris R, Karger D, et al. Chord:A scalable peer-to-peer lookup service for Internet applications. In Proceedings of ACM SIGCOMM, New York,2001, pp.149-160.
    [3]S. Ratsanamy, P. Francis, M. Handley, et al. A Scalable Content-Addressable Network. In Proceedings of ACM SIGCOMM, USA,2001, pp.161-172.
    [4]A. Rowstron, P. Druschel. Pastry:Scalable, distributed object location and routing for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms, Germany,2001, pp.329-350.
    [5]Maymounkov P., Mazieres, D. Kademlia:A peer to peer information systems based on the XOR metric. In Proceedings of the First International Workshop on Peer to Peer Systems (IPTPS).2002, pp.53-65.
    [6]Ma Tao, Zhang Chunhong. Topology proximity and property-aware distributed hash tables based on network coordinates. Advances in Information Sciences and Service Sciences, vol.4, no.7,2012, pp.308-316.
    [7]姜义.网络敏感的对等网络覆盖网的若干关键技术研究.[学位论文],上海交通大学,2007.
    [8]连淑娟,孙波,魏云刚.结构化P2P网络拓扑匹配技术综述.计算机应用研究,第26卷,第8期,2009.
    [9]邱彤庆,陈贵海.一种令P2P覆盖网络拓扑相关的通用方法.软件学报,第18卷,第2期,2007,页381-390.
    [10]朱丹,徐向阳,梁燕等.结构化P2P中覆盖网络拓扑匹配的研究.微计算机应用,第29卷,第6期,2008,页19-22.
    [11]Shuheng Zhou, Gregory R. Ganger, Peter Steenkiste. Location-based Node IDs: Enabling explicit locality in DHTs, Carnegie Mellon University School of Computer Science Technical Report CMU-CS-03-171, September 2003.
    [12]Shuheng Zhou, Gregory R. Ganger, Peter Steenkiste. Balancing Locality and Randomness in DHTs. Carnegie Mellon University Technical Report CMU-CS-03-203, November 2003
    [13]Li Lichun, Ji Yang, Ma Tao, et al. Locaility aware P2PSIP. In Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS 2008), Australia,2008, pp.295-302.
    [14]S. Ratnasamy, M. Handley, R. Karp, et al. Topologically-aware overlay construction and server selection, In Proceedings of IEEE INFOCOM 2002,2002, pp.143-144.
    [15]Xu Zhichen, Tang Chunqiang, Zhang Zheng. Building topology aware overlays using global soft state. In Proceedings of International Conference on Distributed Computing Systems (ICDCS 2003). USA,2003, pp.500-508.
    [16]Landsiedel, O. Lehmann, K. Wehrle. T-DHT:Topology-Based Distributed Hash Tables, In Proceedings of International Conference in Peer-to-Peer Computing,2005, pp.1190-1199.
    [17]Guo Yang, Suh Kyoungwon, Kurose Jim. P2Cast:Peer-to-peer patching for video on demand service. Multimedia Tools and Applications, vol.33, no.2,2007, pp.109-129.
    [18]D. Karger, M. Ruhl. Finding Nearest Neighbors in Growth-restricted Metrics. In Symposium on Theory of Computing, Montreal,, Canada, May 2002.
    [19]张春红,裘晓峰,弭伟.P2P技术全面解析.人民邮电出版社,2010年,页80.
    [20]Buford J., Wang A., Xiaojun Hei, et al. Discovery of In-Band Streaming Services in Peer-to-Peer Overlays. In Proceedings of GLOBECOM'07, USA,2007, pp.242-247.
    [21]Dabek F, Cox R, Kaashoek F, Morris R. Vivaldi:A decentralized network coordinate system. In Proceedings of the ACM SIGCOMM. USA,2004, pp.15-26.
    [1]宋建涛,沙朝锋,杨智应等.语义对等网构造及搜索机制研究.计算机研究与发展,第41卷,第4期,2004,页647-652.
    [2]Cohen Edith, Fiat Amos, Kaplan Haim. Associative search in peer to peer networks: Harnessing latent semantics In Proceedings of The 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003),2003, pp.1261-1271
    [3]S.Brin, L.Page.The Anatomy of a Large-scale Hypertextual Web Search Engine, In Proceedings of the WWW&Conference,1998.
    [4]J.M.Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM, vol.46, no.5,1999, pp.604-632
    [5]Y.Azar,A.Fiat,A.R.Karlin, Spectral Analysis of Data, In Proceedings of ACM Symposium on Theory of Computing(STOC), Greece,2001.
    [6]Lei Guo,Song Jiang,Li Xiao,and Xiaodong Zhang, Exploiting content localities for efficient search in P2P systems,Proceedings of the 18th International Symposium on Distributed Computing(DISC), Netherlands,2004.
    [7]E.P.Markatos,Tracing A Large-Scale Peer-to-Peer System:An Hour in the Life of Gnutella, In Proceedings of Second IEEE/ACM International Symposium of Cluster Computing and the Grid,2002.
    [8]Ishikawa N, Sumino H, Omata E, et al. Semantic content search in P2P networks based on RDF schema. In Proceedings of the PACRIM,2003, pp.143-148.
    [9]Joseph S, Enrico G, et al. NeuroGrid:Semantically routing queries in peer-to-peer networks. In Proceedings of the International Workshop on Web Engineering and Peer-to-Peer Computing,2002, pp.202-214.
    [10]Daniel AM. Scalable P2P search. IEEE Internet Computing, vol.7, no.2,2003, pp.83-87.
    [11]Sripanidkulchai K, Maggs B, Zhang H. Efficient content location using interest-based locality in peer-to-peer systems. In Proceedings of the ACM SIGCOMM 2003,2003, pp.175-186.
    [12]于婧,汪斌强.SSON:一种基于结构化P2P网络路由的语义覆盖网络结构.计算机科学,第34卷,第6期,2007,页4-18.
    [13]A. Crespo, H. Garcia-Molina, Semantic Overlay Networks for P2P Systems,Stanford University Technical Report, Computer Science Department, Stanford University, Oct.2002.
    [14]马丽丽,黄宏斌,邓苏.基于语义聚类的层次化语义覆盖网构建方法研究.计算机与数字工程,第10期,2008,页135-139.
    [15]乔百友,王国仁,邢云龙等.一种基于语义的super-peer网络构建方法,东北大学学报(自然科学版),第29卷,第1期,2008,页61-64.
    [16]张伟.基于语义的动态超节点网络模型及搜索算法.[学位论文],中南大学,2009.
    [17]于婧,张建辉,顾小卓.基于主题和物理位置相近原则的层次化对等语义覆盖网络结构,电子信息学报,第30卷,第8期,2008,页1999-2003.
    [18]Pagani Elena, Rossi Gian Paolo, Pertoso Enrico. ORION:Ontology-based query routing in overlay networks. Journal of Parallel and Distributed Computing, vol.69, no.1,2009, pp.28-38.
    [19]许立波,于坤,吴国新SemreX:一种基于语义相似度的P2P覆盖网络.软件学报,第17卷,第5期,2006,页2106-2117.
    [20]Tang C, Xu Z, Mahalingam M. Peer-to-Peer information retrieval using self-organizing semantic overlay networks. In Proceedings of the ACM SIGCOMM 2003,2003, pp.175-186.
    [21]Kim Sungsu, Strassner John, Hong James Won-Ki. Semantic overlay network for peer-to-peer hybrid information search and retrieval. In Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management,2011, pp.430-437.
    [22]Maymounkov P., Mazieres, D.Kademlia:A peer to peer information systems based on the XOR metric. In Proceedings of the First International Workshop on Peer to Peer Systems (IPTPS).2002, pp.53-65.
    [23]薛飞腾.一种基于语义社区的对等网络架构.[学位论文],电子科技大学,2010.
    [24]Dabek F, Cox R, Kaashoek F, Morris R. Vivaldi:A decentralized network coordinate system. In Proceedings of the ACM SIGCOMM. USA,2004, pp.15-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700