燃煤电厂烟气固碳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的燃烧向环境中释放了大量温室气体,以CO_2为主的大量温室气体的释放,导致了严重的温室效应及全球气候异常现象,已成为世界各国需要共同关注的全球性问题。在各主要温室气体中,CO_2对温室效应的贡献率达到了55%。我国是以煤炭为主的能源结构,煤炭生产单位热量引起的CO_2排放量比石油和天然气分别高出约36%和61%。因此,我国在温室气体减排方面面临着巨大压力。燃煤电厂生产过程中排放大量CO_2,是最大固定排放源之一。燃烧后捕捉技术,被认为是短期内能够为化石燃料电厂提供有效CO_2分离捕捉的技术。根据燃煤电厂及其烟气系统特点,利用粉煤灰和烟气含有的能量分离捕捉烟气中的CO_2,充分体现了清洁生产和循环经济的思想。
     针对以上问题,本论文以分离捕捉燃煤电厂烟气中的CO_2为研究对象,利用垂直式固定床反应装置,研究了高温吸收剂循环分离CO_2的碳酸化过程。普通钙基材料存在吸收容量低、循环稳定性差及易烧结等问题,通过改性、掺杂等手段制备了一系列高温钙基吸收剂,用于分离捕捉模拟烟气中的CO_2。论文主要包括以下五部分:
     1.利用醋酸钙、氢氧化钙、碳酸钙和氧化钙等钙基材料,通过简单制备过程得到四种高温钙基吸收剂,并研究了其碳酸化反应特性。确定反应气流速、吸收剂颗粒粒径及碳酸化反应温度等因素对钙基吸收剂CO_2吸收性能的影响。通过XRD、SEM及氮吸附等表征手段分析吸收剂反应前后的成分,结构及形貌的变化。用失活模型拟合钙基吸收剂吸收CO_2的实验穿透曲线。最后对钙基吸收剂吸收CO_2的机理进行分析;
     2.在上述钙基吸收剂中掺入粉煤灰,得到钙基粉煤灰吸收剂。以CaO-CaO/FA为例进行前期实验条件确定,如最佳反应气流速为0.1L/min、吸收剂粒径为0.8mm、粉煤灰掺杂量为25%及最佳反应温度为650℃等。XRD分析结果表明CaO-CaO/FA吸收剂通过制备过程形成了大量矿物。失活模型能够很好的拟合CaO-CaO/FA吸收剂吸收CO_2的实验数据。对不同钙基材料制备的钙基粉煤灰吸收剂的碳酸化特性进行了研究。
     3.高温吸收剂的循环稳定吸收性能十分重要。煅烧温度和煅烧气氛对吸收剂CO_2吸收性能的影响研究表明,850℃为吸收剂最佳煅烧温度,降低煅烧气氛中的CO_2分压能够减缓吸收剂活性的衰减。通过对钙基和钙基粉煤灰吸收剂的多循环研究发现,CaAc_2-CaO和CaAc_2-CaO/FA具有最优越的CO_2吸收性能和循环稳定性。第15次循环后,CaAc_2-CaO/FA比CaAc_2-CaO表现出了更好的循环稳定性。Dolomite-CaO和Dolomite-CaO/FA吸收剂的碳酸化反应特性研究表明,其CO_2吸收性能和循环吸收稳定性能较差。
     4.研究了La和Ce改性钙基吸收剂的碳酸化特性。10%La/CaO和5%Ce/CaO吸收剂表现出了最优异的CO_2吸收性能。10%La/CaO吸收剂中的La_2O_3不仅是作为一种类“骨架”存在,还是一种活性成分,能够协同捕捉CO_2分子;5%Ce/CaO吸收剂含有部分铈的氧化物,碳酸化反应后生成了Ce_4O_2C_2和CeO2C2物质。多循环研究结果表明,10%La/CaO和5%Ce/CaO在循环吸收CO_2的过程具有良好的循环稳定性。SEM表明,经历20次循环后5%Ce/CaO出现严重的烧结塌陷现象,部分区域颗粒完全粘连到了一起。
     5.初步研究CaAc_2-CaO和CaAc_2-CaO-FA吸收剂在流化床反应器中的碳酸化特性。多循环流化床实验中,这两种吸收剂仍表现出较好的CO_2吸收性能,但随着循环次数的增加,穿透时间明显变短,穿透曲线出了重合。循环后产物的XRD分析发现,含有部分未反应的CaO,说明吸收剂在流化床反应器中流化状态不佳。最后,我们提出了一种燃煤电厂同步固硫固碳工艺。
The combustion of fossil fuels releases plentiful CO_2to the environment, whichhas led to serious green-house effect and global climate anomaly phenomenon. It hasbecome the common concern global problems all over the world. In all kinds ofgreenhouse gas, the contribution rates of CO_2reach to55%for green-house effect.The China energy structure is dominated by coal, CO_2release of production unit heatfrom coal higher than oil and gas about36%and61%, respectively. Therefore, Chinahas faced great pressure in the greenhouse gas emission reduction. The CO_2emissionfrom coal-fired power plants is one of the major stationary sources. Post-combustionhas been recognized as the more effective CO_2separation and capture technology forcoal-fired power plants in the short term. According to the characteristics ofcoal-fired power plants, using original high-temperature flue gas and fly ash from theproduction process separate and capture CO_2from flue gas, which conform to thecurrent idea of Cleaner Production and Recycling Economy.
     The separation and capture CO_2from flue gas of coal-fired power plants werestudied in this dissertation. The carbonation reaction processes of high temperaturesorbent were investigated at vertical fixed-bed reactor. Considered ordinary calciumbase materials low CO_2adsorption capacity, poor cycle stability and sinter problem,modification and doping means were used to improve and prepare a series of sorbentsfor CO_2separation and capture from simulate flue gas. This dissertation mainlycontents five sections:
     1. Use of acetic acid calcium, calcium hydroxide, calcium carbonate and calciumoxide, obtained four kinds of Ca-based sorbents by the simple preparation process,and the carbonation characteristics of those sorbents were studied. Reactionconditions for Ca-based sorbents were determined, such as eaction gas velocity,sorbents particle size and carbonation temperature and so on. The constituents,surface morphology information and physical properties of Ca-based sorbents andreaction products were analyzed by XRD, SEM and N2adsorption-desorption. Thedeactivation mode was used to fit experimental breakthrough curves. The CO_2 absorption mechanism of Ca-based sorbents was discussed.
     2. Doping fly ash to Ca-based sorbents, obtained the Ca-based fly ash sorbents.Taking CaO-CaO/FA sorbent for example, determined the gas velocity0.1L/min,sorbent particle size of0.8mm,25%fly ash doping content and the optimum reactiontemperature and so on. The XRD results shown that a large number of mineralsformed by the preparation process for Ca-based fly ash sorbents. The CO_2experimental breakthrough curves of Ca-based fly ash sorbents can well be fitted withthe deactivation model. Other Ca-based fly ash sorbents, such as CaAc_2-CaO/FA,CaCO3-CaO/FA, Ca(OH)2-CaO/FA and dolomite sorbents, their characteristics ofcarbonation were investigated in detail.
     3. The cycles performance of sorbents is of critical importance. Results indicatedthat, the optimum calcination temperature of regeneration is850℃, and reducing theCO_2partial pressure of calcining atmosphere can slow down the sorbents activity. Itwas found from multicycles reaction of Ca-based and Ca-based fly ash sorbents that,CaAc_2-CaO and CaAc_2-CaO/FA had the best CO_2absorption performance and cyclestability. And after15thcycles, CaAc_2-CaO/FA shows the better cycle stability thanCaAc_2-CaO sorbent. The characteristics of carbonation of Dolomite-CaO andDolomite-CaO/FA sorbent showed that, they have low CO_2absorption capacity andpoor cycle stability.
     4. The carbonation performances of rare earth modified Ca-based sorbents wereinvestigated in fix-bed reactor.10%La/CaO and5%Ce/CaO sorbents showedexcellent CO_2absorption performances. The optimum calcination temperature ofLa-/Ce-doping Ca-based sorbents is850℃for the preparation process. La_2O_3in thesorbents is not only as a kind of “skeleton structure” exists, but also an activeingredient can capture CO_2.5%Ce/CaO sorbent contains a series of cerium oxide,could become Ce_4O_2C_2and CeO2C2after carbonation reaction. Multilcycles reactionresults indicated that,10%La/CaO and5%Ce/CaO sorbents have showed bettercycle stability. The SEM morphology showed clearly that5%Ce/CaO sorbent appearserious sintering and collapse phenomenon after20thcycles, and partially sorbentparticles adhesion together.
     5. The characteristics of carbonation of CaAc_2-CaO and CaAc_2-CaO-FA sorbents were conducted at the fluidized bed reactor. During multicycles fluidizedbed experiments, it was found that CaAc_2-CaO and CaAc_2-CaO-FA sorbents showgood CO_2absorption performance. With the increase of cycles times, thebreakthrough time obviously become short and curves cross and overlap. The XRD ofproducts after cycles found that contains some unreacted CaO. It is mainly becausethe fluidized state of sorbent not good in the reactor. Finally, we have developed akind of fix sulfur in combustion and capture carbon from flue gas technology forcoal-fired power plants in this dissertation.
引文
[1]Pew center on global climate change, coal and climate change facts,(2008), available athttp://www.Pewclimate.org/global-warming-basics/coalfacts.cfm
    [2]International Energy Agency, world energy outlook2007: China and India Insight,2007,593
    [3]World, China and India statistics from International Energy Agency, world energy outlook2007:China and India Insights,592,596
    [4]Larry P., Peter F., Capture CO2from coal-fired power plants:challenges for a comprehensivestrategy,2010,4, http://www.crs.gov
    [5]Stangding T. H., Climate change projections hinge on global CO2, temperature data, Oil GasJournal,2001,46:22,24,26,28.
    [6]郝吉明,马广大,大气污染控制工程,第二版,北京,高等教育出版社,2002.
    [7]姜安玺等编著,空气污染控制,第二版,北京,化学工业出版社,2010.
    [8]Edward S. Rubin编著,工程与环境导论,郝吉明,叶雪梅译,北京,科学出版社,2004。
    [9]郭庆杰等,温室气体二氧化碳捕集和利用技术进展,北京,化学工业出版社,2010.
    [10]Demirbas A., Potential applications of renewable energy sources, biomass combustionproblem in boil power systems and combustion related environmental issues[J]. Prog. EnergyCombus. Sci.,2005,31:171-192
    [11]Demirbas A., Carbon dioxide emission and carbonation sensors[J], Enery Sources, Part A,2008,30:70-78
    [12]朱跃钊,廖传华,王重庆等编著,二氧化碳的减排与资源化利用,第一版,北京,化学工业出版社,2010.
    [13]Metz B., Davidson O., Bosch P., Dave R. and Meyer L., Mitigation, in intergovernmentalpanel on climate change, Fourth Assessment Report, Climate Change2007. UK, CambridgeUniversity Press,2007.
    [14]Luis M. R., David C., Pilar L., Yolanda L., Ana M., Reduction of greenhouse gas emissionsby integration of cement plants, power plants, and CO2capture systems[J]. Greenhouse GasSci. Technol.,2011,1:72-82
    [15]贾德森·金著,分离过程,大连工学院化工原理和化学工程教研所译,第2版,北京,化学工业出版社,1987.
    [16]周艳欣,吸附精馏法回收二氧化碳工艺[D],天津,天津大学,2004.
    [17]Dubois L., Thomas D., CO2absorption into aqueous solutions of monoethanolamine,methyl-diethanolamine, piperazine and their blends[J], Chem Eng Technol,2009,32(5):710-718.
    [18]Freeman S. A., Dudas R., Wagener D., et al, Carbon dioxide capture with concentrated,aqueous piperazine[J], Energy Procedia,2009,1:1489-1496.
    [19]Shao W., Luzheng Z., Liangxiong L., et al, Adsorption of CO2and N2on synthesized NaYzeolite at high temperatures[J], Adsorption,2009,15:497-505.
    [20]Delgado J. A.,Uguina M. A., Sotelo J. L., et al, Separation of carbon dioxide/methanemixtures by adsorption on a basic resin[J], Adsorption,2007,13:373-383.
    [21]Anand B. R., Edward S. R., A technical, economic, and environmental assessment ofamine-based CO2capture technology for power plant greenhouse gas control [J], Environ. Sci.Technol.,2002,36:4467-4475.
    [22]Curt M. W., Brian R. S., Evan J. G., et al, Separation and capture of CO2from large stationarysources and sequestration in geological formations–coal beds and deep saline aquifers[J], Air&Waste Management Association,2003,53:645-715.
    [23]李莉,袁文辉,韦朝海,二氧化碳的高温吸附剂及其吸附过程[J],化工进展,2006,2(8):918-922
    [24]王志,董传明,吕强等,PVAm/PAN复合膜的制备及其对CO2/CH4的分离性能[J],化工学报,2003,54(8):1188-1191.
    [25]张卫风,中空纤维接触器分离燃煤烟气中二氧化碳的实验研究[D],杭州,浙江大学,2008.
    [26]张阿玲,温室气体CO2的控制和回收利用,北京:中国环境出版社,1996.
    [27]Colin A.S., Sandra E.K., Geoff W.S., Carbon dioxide separation through polymeric membranesystems for flue gas application[J], Recent Patents on Chemical Engineering,2008,1:52-66.
    [28]Chen H., Obuskovic G., Majumdar S., Sirkar K.K., Immobilized glycerol-based liquidmembranes in hollow fiber for selective CO2separation from CO2-N2mixtures, J. Membr Sci,2001,183:75-88.
    [29]陆建刚,陈敏东,张慧,等,膜气体吸收过程中复合溶液化学增强因子预测[J],化学工程,2009,37(10):10-13
    [30]张慧,任红伟,陆建刚,稽艳,燃煤电厂中CO2的捕集[J],南京信息工程大学学报(自然科学版),2009,1(2):129-133
    [31]Yong Z., Mata V., Rodriguer A. E., Adsorption of carbon dioxide on chemically modified highsurface area carbon-based adsorbents at high temperatures[J], Adsorption,2001,7(1):41-50
    [32]Rouf S. A., Eic M., Adsorption of SO2from wet mixtures on hydrophobic zeolites[J],Adsorption,1998,4:25-33
    [33]Huesca R. H., Diaz L., Armenta G. A., Adsorption equilibrate and kinetics of CO2, CH4andN2in natural zeolites[J], Separ. Purif. Technol.,1999,15:163-173
    [34]IPCC, Carbon dioxide capture and storage[M],2005, UK, Cambridge
    [35]Hengwei L., Kelly S. G., Catalyzing strategic transformation to a low-carbon economy: aCCS [J], Energy Policy,2010,38:59-74
    [36]Yang H., Xu Z., Fan M., Gupta R., et al., Progress in carbon dioxide separation and capture: areview[J], Journal of Environmental Sciences,2008,20:14-27
    [37]Damen K., Van T. M., Faaij A., Turkenburg W., A comparison of electricity and hydrogenproduction systems with CO2capture and storage[J], Prog Energy Combust Sci.,2006,32(2):215-246
    [38]Feron P. H. M., Hendriks C. A., CO2capture process principles and costs[J], Oil and gasscience and technology-rev, IFP,2005,60(3):451-459
    [39]Terry F. W., Combustion processes for carbon capture[J], Science Direct,2007,31:31-47
    [40]Rao A., Rubin E. S., A technical, economic, and environmental assessment of amine-basedCO2capture technology for power plant greenhouse gas control[J], Environ Sci Technol,2002,36:4467-4475
    [41]Croiest E., NOx and SO2emission from O2/CO2recycled coal combustion[J], Fuel,2001,80:2117-2121
    [42]李峻,O2/CO2气氛下CH4火焰温度特性的实验研究[J],华中科技大学学报:自然科学版,2002,30(10):17-19
    [43]郑楚光,郑瑛,李帆等,温室效应及其控制对策[M],北京:中国电力出版社,2001,
    [44]Ramesh T., Shi S., Hui A., Xin X. Y., Post combustion CO2capture by carbon fibremonolithic adsorbents[J], Progress in energy and combustion science,2009,35:438-455
    [45]Richter H.J., Knoche K., Reversibility of combustion process, efficiency and costing, secondlow analysis of processes, ACS symposium,1983,235:71-85
    [46]Tans, P., Trends in atmospheric carbon dioxide-Mauna Loa, NOAA/ESRL,2007,http://www.esrl.noaa.gov/gmd/ccgg/trends/.
    [47] CO2CRC, CO2CRC image library-diagrams (general), The Cooperative Research Centrefor Greenhouse Gas Technologies,2007.http://www.co2crc.com.au/imagelibrary/diagrams_g.html.
    [48]Davison J., Freund P., Smith A., Putting Carbon Back in the G round[R], IEA GreenhouseGas R&D Programme: Glouces-tershire. United Kingdom,2001.
    [49]Herzog H. J., What Future for Carbon Capture and Sequestration?[J]. Environ. Sci. Technol.,2001,35:148-153
    [50]Hendriks C. A., Blok K., Underground Storage of Carbon Dioxide [J], Energy Convers.Mgmt.,1995,36:539-542.
    [51]Huesemann M. H., Can advances in science and technology prevent global warming?[J],Mitigation and Adaption Strategies for Global Change,2006,(11):539-577.
    [52]Armor J. N., Addressing the CO2dilemma[J], Catalysis Letters,2007,(114):115-121.
    [53]Peter G. B., Edward T. P.,et al., Experiment on the Ocean Sequestration of Fossil Fuel CO2:pH Measurement and Hydrate Formation[J], Marine Chemistry,2000,72:83-93
    [54]IPCC,2005, IPCC special report on carbon dioxide capture and storage, Prepared by WorkingGroup III of the Intergovernmental Panel on Climate Change, Cambridge University Press,Cambridge, United Kingdom and New York, NY, USA.
    [55]Huijgen, W.J.J., Comans, R.N.J., Carbon dioxide sequestration by mineral carbonation:Literature review[J],2007,31-60.
    [56]Bertos, F.M., Simons, S.J.R., Hills, C.D., Carey, P.J., Accelerated carbonation of contaminatedland and waste residues as a contribution to carbon sequestration, Fourth Annual Conferenceon Carbon Capture&Sequestration,2005, May2-5, Alexandria, Virginia, USA
    [57]Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., Rush, H., Ex-situ aqueousmineral carbonation[J], Environ. Sci. Technol.2007,41:2587-2593.
    [58]Kuusik, R., Uibu, M., Trikkel, A., CO2emission in Estonia oil shale based energysector–prospects for abatement by wet mineral carbonization,8th International Conference onGreenhouse Gas Control Technologies,2006,19-22June, Trondheim, Norway.
    [59]Sung K., CO2Fixation by Chlorella HA-1Cultured in Bubble Columns[J]. SanopMisaengmul Hakhoechi,1998,26(1):1-6
    [60]Menz K., Biotechnological Use of Carbon Dioxide as Raw Material Using Microalgae[J].Forsch Tech Innovation,1997,23:85-89
    [61]Kwata M., Carbon Dioxide Fixation with Microalgae. JP:10248553,1998-09-22
    [62]Shiraina, Yoshihiro. Molecular Mechanism of CO2Acclimation of Microalgae[J]. SeibutsuKogaku Kaishi,1991,77(4):154-157
    [63]Hongqun Y.; Zhenghe X.; Maohong F.; Rajender G.; Rachid B. S.; Alan E. B.; Ian W. Progressin carbon dioxide separation and capture: a review[J]. Journal of Environmental Sciences,2008,20,14-27.
    [64]Li L.; Yuan W. H.; Wei C. H. Adsorption and adsorptive process for carbon dioxide at hightemperature[J], Chemical Industry and Engineering Progress,2006,25,918-922.
    [65]Yong Z., Mata, V., Rodrigues, A.E., Adsorption of carbon dioxide at high temperature—Areview[J], Separ. Purif. Technol.,2002,26,195-205.
    [66]Blamey J., Anthony E.J., Wang, J., Fennell P.S., The calcium looping cycle for large-scaleCO2capture[J], Progr. Energy Combust. Sci.,2010,36,260-279.
    [67]Vasilije M., Edward J. Anthony, Lime-based sorbents for high-temperature CO2capture—areview of sorbent modification methods[J], Int. J. Environ. Res. Public Health,2010,7:3129-3140;
    [68]Wang, X.P., Yu, J.J., Cheng, J., Hao, Z.P., Xu, Z.P., High-temperature adsorption of carbondioxide on mixed oxides derived from hydrotalcite-like compounds[J], Environ. Sci. Technol.,2008,42,614-618.
    [69]Wen, X., Sun, N.N., Li, B., Li, J.P., Wang, F., Dynamic adsorption study of CO2adsorption byMgO/Al2O3[J], J. Fuel Chem. Technol.,2010,38(2):247-251
    [70]Anthony E. J., solid looping cycles: a new technology for coal conversion[J], Ind. Eng. Chem.Res.,2008,47:1747-1754;
    [71]房凡,李振山,蔡宁生,钙基CO2吸收剂循环反应特性的试验与模拟[J],中国电机工程学报,2009,29(14):30-35
    [72]王保文,郑瑛,贺铸等,CaO高温分离CO2过程的数值模拟[J],工程热物理学报,2006,27(6):1051-1053
    [73]房凡,李振山,蔡宁生,钙基CO2吸收剂的种类和粒径对循环煅烧/碳酸化的影响[J],工程热物理学报,2008,29(4):698-702
    [74]冯志翔,郑瑛,张璐等,CaO碳化-煅烧循环捕捉CO2高温烧结特性研究[J],工程热物理学报,2009,30(3):537-539
    [75]Lee D. K., An apparent kinetic model for the carbonation of calcium oxide by carbondioxide[J]. Chem. Eng. J,2004,100:71-77
    [76]Ababades J. C.,Anthony E. J., Wang J. and Oakey J. E., Fluidized bed combustion systemsintegrating CO2capture with CaO[J]. Environ. Sci. Technol.,2005,39:2861-2866.
    [77]Romeo L. M., Lara Y., Lisbona P., Escosa J. M., Optimizing make-up flow in a CO2capturesystem using CaO[J]. Chem. Eng. J.,2009,147:252-258
    [78]Xu, X., Song C.S., Anderesen J.M., Novel polyethylenimie-modified mesoporous molecularsieve of MCM-41type as high-capacity adsorbent for CO2capture[J], Energy Fuels,2002,16,1463-1469.
    [79]Junichi I., Lin Y.S., Mechanism of high-temperature CO2sorption on lithium zirconate[J],Environ. Sci. Technol.,2003,37,1999-2004.
    [80]Siriwardane R.V., Shen M.S., Fisher E.P., Adsorption of CO2on molecular sieves andactivated carbon[J], Energy Fuels,2001,15,279-284
    [81]Lin P. C., Huang C. W., Ching T. H., Hsisheng T., Magnesium hydroxide extracted from amagnesium-rich mineral for CO2sequestration in a gas-solid system[J], Environ.Sic.Technol.,2008,42,2748-2752
    [82]Abanades J. C., Rubin E. S., Anthony E. J., Sorbent cost and performance in CO2capturesystems[J]. Ind. Eng. Chem. Res.,2004,43(13):3462-3466.
    [83]Berker Ficicilar, Timur Dogu, Breakthrough analysis for CO2removal by activated byhydrotalcite and soda ash [J]. Catalysis Today,2006,115(1/4):274-278.
    [84]Barelli L.; Bidini G.; Gallorini F.; Servili S. Hydrogen production through sorption-enhancedsteam methane reforming and membrane technology: A review [J], Energy,2008,33(4):554-570
    [85]Abanades J. C., Alvarez D., Conversion limits in the reaction of CO2with lime[J], EnergyFuels,2003,17(2):308-315
    [86]Abanades J. C., Grasa G., Alonso M., et al., Cost structure of a postcombustion CO2capturesystem using CaO[J], Environmental Science and Technology,2007,41(15):5523-5527
    [87]Baker R., The reversibility of the CaCO3=CaO+CO2[J], Journal of Applied ChemistryBiotechnology,1973,23(10):733-742
    [88]Sun P., Grace J. R., Lim C. J., et al., The effect of CaO sintering on cyclic CO2capture inenergy system[J], AIChE Journal,2007,53(9):2432-2442
    [89]Lu H., Smirniotis P. G., Nanostructured Ca-based sorbents with high CO2uptake efficiency[J],Chemical Engineering Science,2009,64(9):1936-1943
    [90]李英杰,赵长遂,作为新型CO2吸收剂的乙酸钙循环碳酸化特性[J],中国电机工程学报,2008,28(8):65-70.
    [91]李英杰,赵长遂,段伦博等,醋酸调制钙基吸收剂的循环碳酸化特性[J],东南大学学报:自然科学版,2008,38(1):123-128
    [92]Li Y. J., Zhao C. S., Duan L. B., et al., cyclic calcination/carbonation looping of dolomitemodified with acetic acid for CO2[J], Fuel Processing Technology,2008,89:1461-1469
    [93]Li Z. S., Fan F., Cai N. S., CO2capture from flue gases using three Ca-based sorbents in afluidized bed reactor[J], Journal of Environmental Engineering,2009,6:418-425.
    [94]李振山,蔡宁生,黄煜煜等,CaO循环吸收CO2的实验研究[J],燃烧科学与技术,2005,11(4):379-383.
    [95]李振山,蔡宁生,赵旭东等,CaO与CO2循环反应动力学特征[J],燃烧科学与技术,2006,12(6):481-485.
    [96]Manovic V., Anthony E. J., Steam reactivation of spent CaO-based sorbent for multiple CO2capture cycles[J], Environ. Sci. Technol.,2007,41,1420-1425
    [97]Manovic V., Anthony E. J., Sequential SO2/CO2capture enhanced by steam reactivation of aCaO-based sorbent [J], Fuel,2008,87,1564-1573
    [98]Fennell P. S., Davidson J. F., Dennis J. S., Hayhurst A. N., Regeneration of sintered limestonesorbents for the sequestration of CO2from combustion and other systems[J], J. Energy Inst.,2007,80:116-119
    [99]Materic B. V., Sheppard C., Smedley S. I., Effect of repeated steam hydration reactivation onCaO-based sorbents for CO2capture[J], Environ. Sci. Technol.,2010,44:9496-9501
    [100]Li Y. J., Zhao C. S., Qu C., Duan L., Li Q., Liang C., CO2capture using CaO modifiedwith ethanol/water solution during cyclic calcination/carbonation[J], Chem. Eng. Technol.,2008,31(2):237-244
    [101]Scala F., Montagnaro F., Salation P., Enhancement of sulfur uptake by hydration of spentlimestone for fluidized-bed combustion application[J], Ind. Eng. Chem. Res.,2001,40(11):2495-2501
    [102]Gora D., Anthony E. J., Bulewicz E. M., Jia, L., Steam reactivation of16bed and fly ashesfrom industrial-scale coal-fired fluidized bed combustors[J]. Fuel,2006,85:94-106
    [103]Lysikov A. I., Salanov A. N., Okunev A. G., Change of CO2carrying capacity of CaO inisothermal recarbonation-decomposition cycles[J], Ind. Eng. Chem. Res.,2007,46:4633-4638
    [104]Manovic V., Anthony E. J., Parametric study on CO2capture capacity of CaO-based sorbentsin looping cycles[J], Energy Fuels,2008,22,1851-1857
    [105]Manovic V., Anthony E. J., Thermal activation of CaO-based sorbent and self-reactivationduring CO2capture looping cycles[J], Environ. Sci. Technol.,2008,42,4170-4174
    [106]Manovic V., Anthony E. J., Grasa G., Abanades J. C., CO2looping cycle performance of ahigh-purity limestone after thermal activation/doping[J], Energy Fuels,2008,22,3258-3264
    [107]Alexander R., Ettireddy p. r., Panagiotis G. S., Parametric study of Cs/CaO sorbents withrespect to simulated flue gas at high temperatures[J], Ind. Eng. Chem. Res.,2005,44:6485-6490
    [108]Liu W.Q., Nathanael, Wl L., Bo F., Wang G.X., Joao C.D.D.C., Calcium Precursors for theProduction of CaO Sorbents for Multicycle CO2Capture[J], Environ. Sci. Technol.,2010,44,841-847
    [109]Liang Y., Harrison D.P., Carbon Dioxide Capture Using Dry Sodium-Based Sorbents[J],Energy Fuels,2004,18(2),569-575
    [110]Park, Y.C., Ho, J.S., Woo, P.K., Park, Y.S., Keun, Y.C., Effect of bed height on the carbondioxide capture by carbonation/regeneration cyclic operations using dry potassium-basedsorbents[J], Kor. J. Chem. Eng.,2009,26(3),874-878
    [111]Seo Y. W., Jo S. H., Ryu H. J., Dal H. B., Chong K. R.u, Yi C. K., Effect of waterpretreatment on CO2capture using a potassium-based solid sorbent in a bubbling fluidizedbed reactor[J], Kor. J. Chem. Eng.,2007,24(3),457-460
    [112]Zhao C.W., Chen X.P., Zhao C.S., CO2adsorption using dry potassium-based sorbents withdifferent supports[J], Energy Fuels,2009,23,4683-4687
    [113]Chong K.R., Joong B.L., Tae H.E., Je M.O., Chang K.Y., Development of Na and K-basedsorbents for CO2capture from flue gas, Fourth annual conference on carbon capture andsequestration DEO/NETL,2005,may,2.
    [114]Zhao C.W., Chen X.P., Zhao C.S., Liu Y.K., Carbonation and hydration characteristics ofdry potassium-based sorbents for CO2capture[J], Energy Fuels,2009,23,1766-1769
    [115]Li Y. J., Zhao C. S., Chen H. C., et al., Cyclic CO2capture behavior of KMnO4-dopedCaO-based sorbent[J], Fuel,2010,89,642-649
    [116]Lu H., Ettireddy P. R., Panagiotis G. S., Calcium oxide based sorbents for capture CO2athigh temperatures[J], Ind. Eng. Chem. Res.,2006,45,3944-3949
    [117]Li Z. S., Cai N. S., Huang Y. Y., Synthesis, experimental studies, and analysis of a newcalcium-based carbon dioxide absorbent[J], Energy Fuels,2005,19(4):1447-1452
    [118]Li Z. S., Cai N. S., Huang Y. Y., Effect of preparation temperature on cyclic CO2capture andmultiple carbonation-calcination cycles for a new Ca-based CO2sorbents[J], Ind. Eng. Chem.Res.,2006,45(6):1911-1917.
    [119]罗聪,郑瑛,丁宁等,掺杂镧铝盐对钙基循环捕捉CO2能力的影响[J],中国电机工程学报,2010,30(29):49-54
    [120]Luo C., Zheng Y., Ding N., et al, Development and performance of CaO/La2O3sorbentsduring calcium looping cycles for CO2capture[J], Ind. Eng. Chem. Res.,2010,49(22):11778-11784.
    [121]Salvador C., Lu D., Anthony E. J., et al, Enhancement of CaO for CO2capture in an FBCenvironment[J], Chemical Engineering Journal,2003,96(1-3):178-195.
    [122]罗聪,郑瑛,丁宁等,纳米复合钙基高温CO2吸收剂的合成与性能[J],中国电机工程学报,2011,31(8):45-50
    [123]Li L., King D. L., Nie Z., et al., Magnesia-stabilized calcium oxide absorbents withimproved durability for high temperature CO2capture[J], Ind. Eng. Chem. Res.,2009,48(23):10604-10613.
    [124]Liu W., Feng B., Wu Y., et al., Synthesis of sintering-resistant sorbents for CO2capture[J],Environ. Sci. Technol.,2010,44(15):3093-3097
    [125]Albrecht K. O., Wagenbach K. S., Satrio J. A., et al., Development of a CaO-based CO2sorbent with improved cyclic stability[J], Ind. Eng. Chem. Res.,2008,47(20):7841-7848.
    [126]赵德明,分离工程,杭州,浙江大学出版社,2011
    [127]Do D. D. Adsorption analysis: equilibria and kinetics, London: Imperial College Press,1998,82:290-300
    [128]Ruthven D. M., Principles of adsorption and adsorption processes, New York: John Wiley&Sons,1984.29-85
    [129]Takahashi A., Yang R.T., Cu(I)-Y-Zeolite as a superior adsorbent for diene/olefinseparation[J]. Langmuir,2001,26(17):8405-8413
    [130]Douglas A., Costas T., Separation of CO2from flue gas: A review[J], Separ. Sci. Technol.,2005,40(1~3):321-348
    [131]Hill K. J., Winter E. R.S., Thermal dissociation pressure of calcium carbonate[J], Journal ofPhysical Chemistry,1956,60(4):1361-1362.
    [132]Gregg, S.J., Sing K.S., Adsorption, Surface Area and Porosity,2nd ed,1982, Academic Press:London
    [133]Othman M.R., Rasid N.M., Fernando W.J.N., Mg-Al hydrotalcite coating zeolites forimproved carbon dioxide adsorption[J], Chemical Engineering Science,2006,61,1555-1560
    [134]刘妮,赵敬德,骆仲泱等,钙基固硫剂高温固硫反应特性的TGA试验研究[J],中国电机工程学报,2002,10:153-156
    [135]Yasyerli S., Dogu,G., Ar I., Dogu T., Activaties of copper oxide and Cu-V and Cu-Mo mixedoxides for H2S removal in the presence and absence of hydrogen and predictions of adeactivation model[J], Ind. Eng. Chem. Res.,2001,40:5206-5214
    [136]Yasyerli S., Dogu,G., Ar I., Dogu T., Sulfur dioxide adsorption isotherms and breakthroughanalysis on molecular sieve5A zeolite[J], Chem. Eng. Commun.,2003,190,1041-1054
    [137]Dogu T., Extension of moment analysis to nonlinear systems[J], AIChE J.,1986,32,849-852
    [138]Shi J.J., Liu Y.M., Chen J., Zhang Y., Shi Y. Dynamic performance of CO2adsorption withamine-modified SBA-16[J], Acta Phy.-Chim. Sin.,2010,26(11),3023-3029
    [139]Fang F., Li Z.S., Cai N.S., CO2capture from flue gases using a fluidized bed reactor withlimestone[J], Kor. J. Chem. Eng.,2009,26(5):1414-1421
    [140]Yan L., Masateru N., Masayoshi S., High calcium utilization and gypsum formation for drydesulfurization process[J], Energy Fuels,1999,13(5):1015-1020
    [141]Moore, A. E.; Taylor, H. F. W. Crystal Structure of Ettringite [J]. Nature1968,218:1048-1049.
    [142]Lei L., Xia W., Xin F., Feng W., Ning Z., Fukui X., Wei W., Yuhan S., MgO/Al2O3sorbentfor CO2capture [J]. Energy Fuels,2010,24(10):5773-5780.
    [143]杨磊,周奇彬,于宏兵等,CaO/FA吸附剂高温吸收CO2及穿透特性研究[J],化工学报,2012,63(2):606-611
    [144]silaban A., Harrion P. High temperature capture of carbon dioxide: characteristics of thereversible reaction between CaO(s) and CO2(g)[J],Chem. Eng. Comm.,1995,137(7):177-190
    [145]Shimizu T.,Hirama T., Hosoda H., et al. A twin fluid-bed reactor for removal of CO2fromcombustion process[J]. Trans. I Chem. E,1999,77(al):62-68
    [146]Wang J. S., Anthoy E. J, Abanades J. C., et al. Clean and efficient use of petroleum coke forcombustion and powwe generation [J]. Fuel,2004,83(10):1341-1348
    [147]关键,王勤辉,骆仲泱等,新型零排放煤气化燃烧利用系统的优化及性能预测[J],中国电机工程学报,2010,26(9):7-13.
    [148]沈来宏,肖军,高杨,串行流化床生物质催化制氢模拟研究[J],中国电机工程学报,2006,26(11):7-11.
    [149]李英杰,赵长遂,钙基吸收剂循环煅烧/碳酸化反应过程特性研究[J],中国电机工程学报,2008,228(2):55-60.
    [150]Grasa G., Abanades J. C., Alonso M., et al,Reactivity of highly cycled particles of CaO in acarbonation/calcinations loop[J], Chemical Engineering Journal,2007,137(3):561-567.
    [151]Wang J. S., Anthony E. J., On the decay behavior of the CO2absorption capacity ofCaO-based sorbents[J], Ind. Eng. Chem. Res.,2005,44(3):627-629.
    [152]Hugh H., Lu D., Anthony E. J., et al, Improved long-term conversion of limestone-derivedsorbent for situ capture of CO2in a fluidized bed combustor[J], Ind. Eng. Chem. Res.,2004,43(18):5529-5539.
    [153]Gupta H., Fan L. S., Carbonation-calcination cycle using high reactivity calcium oxide forcarbon dioxide separation from flue gas[J], Ind. Eng. Chem. Res.,2002,41(8):4035-4042.
    [154]杨磊,赵文岩,稀土负载粉煤灰吸附剂的制备及其对地下水重氟的去除研究[M],内蒙古大学,2009,6.
    [155]毛少瑜,李咏平,赵景泰等,草酸铵在铝酸镧和铝酸铈的前驱体合成中的应用[J],厦门大学学报(自然科学版),1997,36(4):585-588.
    [156]Shirsat A. N., Ali M., Kaimal K. N. G., et al,Thermochemistry of La2O2CO3decomposition[J], Thermochim Acta,2003,399(1~2):167-170.
    [157]Chandradass J., Cha Y. J., Kim K. H., Effect of alumina precursor on the synthesis ofLaAlO3nanopowders by reverse micelle processing[J], Metals and Materials International,2009,15(6):1045-1048.
    [158]Songlin R., Lian G., Synthesis of LaAlO3powder using triethanolamine[J], CeramicsInternational,2008,34:443-446.
    [159]Romeo L. M., Lara Y.,Lisbona P. and Escosa J. M. et al., Oxyfuel carbonation/calcinationscycle for low cost CO2capture in existing power plants[J]. Energ. Convers. Manage.,2008,49:2809-2814.
    [160]Lisbona P., Martinez A., Lara Y., Romeo L. M., Integration of carbonate CO2capture cycleand coal-fired power plants: a comparative study for different sorbents[J]. Energy Fuel,2010,24:728-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700