频率域高精度波场延拓算子构建技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气勘探开发的不断深入,面临的勘探和开发对象也越来越复杂,其中包括复杂构造油气藏、岩性油气藏和裂缝油气藏等的勘探开发。因此,对地震偏移成像提出了更高的精度要求。
     本文基于频率域高精度波场延拓算子构建技术,提出了两种新的频率域波场延拓算子:PADE高阶近似的波场延拓算子和有理式近似的波场延拓算子。从方法理论、精度分析、计算效率、参考速度的选择等四个方面与常规频率域算子对比,证明了它们的高成像精度和效率,具有重要的价值。具体包含以下几个方面的研究:
     (1)方法理论:对于非均匀介质的单程波方程,为了避免k_0( z_i )/ k_z ( z_i )中的k_z ( z i)=0,常规的近似方法是对k_0( z_i )/ k_z ( z_i )进行Taylor展开或PADE展开。本文的PADE高阶近似算子采用一种新的PADE展开方法,与常规的PADE展开相比,其具有更高的精度;有理式近似算子采用一阶分式近似,二阶抛物近似,其系数根据横向速度对比给定,满足频散误差最小。然后把近似后的k_0( z_i )/ k_z ( z_i )分解为1+a,通过推导,单程波方程可以表示为类似SSF的分裂步框架,分为时移项插值和频移项两步延拓,极大地提高了计算效率。
     (2)精度分析:对SSF算子、PADE高阶近似算子、有理式近似算子以及FFD算子的成像精度从横向速度对比、传播角度和相对误差的关系以及频散误差分析两方面进行了研究。结果表明,PADE高阶近似算子和有理式近似算子的成像精度明显优于SSF算子。PADE高阶近似算子适应中等横向速度对比介质,有理式近似算子适应强横向速度对比介质。从对SEG/EAGE模型的偏移试验来看,PADE高阶近似算子、有理式近似算子可以达到与FFD算子相当的偏移成像效果。
     (3)计算效率:SSF算子每延拓一层需要2次FFT,PADE高阶近似算子以及有理式近似算子需3次FFT和一次插值。FFD算子(相当于5次FFT)需2次FFT和一次FD校正。在相同的硬件条件下,对同一模型进行试算,PADE高阶近似算子的CPU时间比SSF增加31%,有理式近似算子的CPU时间比SSF算子增加44%,但远小于FFD的CPU时间。
     (4)参考速度选择研究:从参考速度大于和小于真实速度两方面研究了参考速度的选择对SSF算子、PADE高阶近似算子和有理式近似算子的影响。结果表明:不论参考速度大于或小于真实速度,PADE高阶近似算子和有理式近似算子的成像精度均比SSF算子有显著改进。
     (5)实际资料数值模拟:利用本文提出的高精度波场延拓算子分别对生物礁滩储层和J井地震响应进行数值模拟,模拟剖面与原始地震剖面有很高的吻合度,说明地质模型的建模和数值模拟是准确的,也验证了本文频率域高精度波场延拓算子的实际资料成像能力。
With the deepening of oil and gas exploration and development, exploration tar-gets and conditions have become more and more complex, which includes the explo-ration and development of complex structure oil and gas reservoirs, lithological res-ervoirs and fractured reservoirs. Therefore, there is a higher requirement of seismic migration imaging accuracy.
     This paper based on the building technology of high-accuracy wave field extrap-olation operators in frequency domain raises two high-precision wave field continua-tion operators: PADE high-order approximate operator and rational fraction approxi-mation operator. We compared high-accuracy wave field extrapolation operators with general operator in frequency domain in methodology, accuracy analysis, computa-tional efficiency and selection of reference velocity. The results show that they have high imaging accuracy and efficiency, and they are of great value. This paper contains the following specific aspects:
     Frist, methodology: For non-uniform medium wave equation, in order to avoid k_z ( zi) =0, the normal approximation is Taylor expansion and PADE expansion. PADE high-order approximate operator uses a new PADE expansion method, which has a higher accuracy compared with the conventional PADE expansion. Rational fraction approximation operator uses fraction approximation at the first-order and parabolic approximation at the second-order. Coefficient is determined with the given lateral velocity contrast, which meets the minimum error dispersion. Than we de-compose k_0( zi ) / k_z ( zi )with1+a. Though deduction, one-way wave equation can be expressed as a split-step framework similar to SSF and be expressed as two-step ex-tension: Frequency shift and interpolation in time shift, which is greatly improved the computational efficiency.
     Second, accuracy analysis: From the relationship of lateral velocity contrast, transmission angle, the relative error and error analysis of the dispersion, we com-pared the accuracy of SSF operator, PADE high-order approximate operator and ra-tional fraction approximation operator. The results show that the imaging precision of PADE high-order approximate operator and the rational fraction approximation oper-ator have a great improver then SSF operator. PADE high-order approximate operator adapts medium of lateral velocity contrast. The rational fraction approximation oper-ator adapts medium of strong lateral velocity. From the imaging precision of SEG / EAGE model, we can see PADE high-order approximate operator, the rational frac-tion approximation operator can achieve a considerable imaging precision of migra-tion compared with the FFD operator.
     Third, computational efficiency: SSF operator needs two FFT in one extension, PADE high-order approximate operator and rational fraction approximation operator need three FFT and one interpolation. The FFD operator needs five FFT, which is in-cluded with two FFT and one FD. Under the same hardware, we test on the same model. the CPU time of PADE high-order approximate operator caused 31% compu-ting time more than SSF operator, and rational fraction approximation operator caused 44% computing time more than SSF operator.
     Fourth, selection of reference velocity: From the reference velocities is larger or smaller than true velocities, the paper studies the influence of SSF operator, PADE high-order approximate operator and the rational fraction approximation operator in reference velocities selection. The results show that whether the reference velocities is larger or smaller than true velocities, the imaging precision of PADE high-order ap-proximate operator and the rational fraction approximation operator have a great im-prover than SSF operator.
     Fifth, numerical simulation of the actual data: This paper uses high-precision wave field continuation operator to do numerical simulation of reef reservoir and J well. Simulation of seismic profile has a high degree of the original agreement. It de-scribes the geological model of the modeling and numerical simulation is accurate, it also proved accurate imaging capabilities of frequency domain wave field continua-tion operator in the actual data.
引文
[1] Claerbout J.F. Imaging the earth’s interior. Blackwell. 1985.
    [2] Gazdag J. Wave equation migration with the phase-shift method. Geophysics, 1978,43: 1342-1351.
    [3] Stoffa P.L., Fokkema J.T., de Luna Freire R.M. and Kessinger W.P. Split-step Fourier migra-tion. Geophysics, 1990, 55:410-421.
    [4] Wu R.S. Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method. Journal of Geophysics Research, 1994, 99: 751-766.
    [5] Ristow D.and Rühl T. Fourier finite-difference migration. Geophysics, 1994, 59:1882-1893.
    [6] Jin S., Wu R.S. and Peng C. Seismic depth migration with pseudo-screen propagators. Com-putational Geosciences, 1999, 3:321-335.
    [7] De Hoop M.V., Le Rousseau J.H. and Wu R.S. Generalization of the phase-screen approxima-tion for the scattering of acoustic waves. Wave Motion, 2000, 31:285-296.
    [8] Le Rousseau J.H. and de Hoop M.V. Modeling and imaging with the scalar generalized-screen algorithms in isotropic media. Geophysics, 2001, 66:1551-1568.
    [9] Wu R.S. Wave propagation, scattering and imaging using dual-domain one-way and one-return propagators. Pure and Applied Geophysics, 2003, 160:509-539.
    [10] Clayton R.W. and Stolt R.H. A Born-WKBJ inversion method for acoustic reflection data [J]. Geophysics, 1981,46(11):1559-1567.
    [11] D.Yevick, D.J. Thomson, Complex Padéapproximants for wide-angle acoustic propagators, J. Acoust. Soc. Amer, 2000, 108: 2784-2790.
    [12] Fu Li-Yun, Comparison of Different One-Way Propagators for Wave Forward Propagation in Heterogeneous Crustal Wave Guides. Bulletin of the Seismological Society of America, Vol. 96, No. 3, pp. 1091-1113.
    [13] Fu Li-Yun, Broadband constant-coefficient propagators. Geophysical Prospecting, 2005, 53, 299-310.
    [14] Fu Li-Yun, Fourier depth migration methods with application to salt-related complex geo-logical structures. SEG Int'l Exposition and 72nd Annual Meeting * Salt Lake City, Utah * October 6-11, 2002.
    [15] Fu Li-Yun, Wavefield interpolation in the Fourier wavefield extrapolation. Geophysics, VOL.69, NO. 1 (JANUARY-FEBRUARY 2004); P. 257-264.
    [16] Zhang J H ,Wang W M ,Yao Z X. Comparison between the Fourier finite-difference method and the generalized-screen method. Geophysical Prospecting, 2009, 57: 355-365.
    [17] Matthias Ehrhardt, Andrea Zisowsky. Discrete non-local boundary conditions for split-stepPadéapproximations of the one-way Helmholtz equation, Journal of Computational and Applied Mathematics 200 (2007).471-490.
    [18] Jing-Bo Chen. On the selection of reference velocities for split-step Fourier and general-ized-screen migration methods, Geophysics, 2010:S249-S257.
    [19] Lian-Jie Huang,Miehael Fehler and Ru-Shan Wu,Extended local Born Fourier migration method[J].Geophysics,1999,64(l):1535-1545.
    [20] Linbin Zhang, James W. Rector III. Split-step complex Padé-Fourier depth migration. Geo-physics. J. Int. (2007).171, 1308-1313.
    [21] J′er ?ome H. Le Rousseau and Maarten V. de Hoop. Modeling and imaging with the scalar generalized-screen algorithms in isotropic media, Geophysics, 2001:1551-1568.
    [22] Li-nong Liu and Jian-feng Zhang. 3D wavefield extrapolation with optimum split-step Fouri-er method, Geophysics, 2006:T95-T108.
    [23]贺振华.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989.56-74.
    [24]贺振华,李正文.勘查技术工程学[M].北京:地质出版社,2005.
    [25]黄德济,贺振华,包吉山编著.地震勘探资料数字处理[M].北京:地质出版社,1990.
    [26]贺振华,黄德济等.裂缝油气藏地球物理预测[M],成都:四川科学技术出版社,2007.
    [27]陆基孟,地震勘探原理[M],山东东营:石油大学出版社,2006.
    [28]朱广生、陈传仁.勘探地震学教程[M],武汉:武汉大学出版社,2005.
    [29]牟永光、陈小宏等.地震数据处理方法[M],北京:石油工业出版社,2007.
    [30]张白林、尹成等.地震资料数字处理方法[M],北京:石油工业出版社,2003.
    [31]渥?伊尔马滋(美)著,刘怀山等译.地震资料分析-地震资料处理、反演和解释[M].北京:石油工业出版社,2006.
    [32]何樵登.地震勘探原理与方法[M].北京:地质出版社,1986.
    [33]王家映编著.地球物理反演理论[M].中国地质大学出版社,1998.
    [34]李录明,李正文著.地震勘探原理、方法及解释[M].地质出版社,2007.
    [35]牟永光.储层地球物理学[M].北京:石油工业出版社,1996.
    [36]张关泉.利用低阶偏微分方程组的大倾角差分偏移[J].地球物理学报,1986.29(3):272-282.
    [37]马在田.高阶有限差分偏移.石油地球物理勘探[J],1982,17:6-15.
    [38]熊晓军.单程波动方程地震数值模拟新方法研究[D].成都:成都理工大学,2007.
    [39]熊晓军,贺振华,黄德济.起伏地表混合法波场延拓与成像[J].天然气工也业,2007 27(1):44-46.
    [40]熊晓军,贺振华,黄德济.三维波动方程正演及模型应用研究[J].石油物探,2005, 44(6): 554-556.
    [41]熊晓军,贺振华,黄德济.起伏地表的单程波动方程地震叠前正演[J].天然气工业,2007,27(1):44-46.
    [42]熊晓军,贺振华,黄德济.复杂地表条件下的地震波场模拟方法研究[J].西安石油大学学报(自然科学版),2006,21(6):5-7.
    [43]熊晓军,贺振华,黄德济等.一种新的裂缝储层的数值模拟方法[J].石油地球物理勘探,2006,41(1):52-56.
    [44]熊晓军,贺振华,肖盈等.基于波动方程数值模拟的生物礁地震响应特征分析[J].山地地震勘探,2010,24(1):27-30.
    [45]陈学华,贺振华,文晓涛等.低频阴影的数值模拟与检测[J].石油地球物理勘探,2009,44(3):298-303.
    [46]贺振华、Gardner,G.H.F等.多次覆盖地震资料的叠前偏移[J].石油地球物理勘探,1986,21(1):11-22.
    [47]贺振华、Gardner,G.H.F等.倾斜平面波地震剖面的F-K正演模拟及偏移[J].石油物探,1985,24(3).
    [48]贺振华.用二维付氏变换及希氏变换作倾斜滤波[J].物探与化探计算技术,1985,7(3):234-243.
    [49]熊高君等.三维定位原理与三维反射波场模拟[J].矿物岩石,2002,22(3):93-97.
    [50]贺振华等.数学检波器与波动方程地震叠前正演[J].成都理工大学学报(自然科学版),2004,31(6):675-678.
    [51]贺振华等.等时叠加波动方程叠前正演[J].物探化探计算技术,2005,27(3):195.
    [52]蒋先艺.基于二维与三维复杂结构模型正演的地震数据采集设计方法研究[D].成都:成都理工大学信息工程学院,2004.
    [53]胡光岷.频率波数域地震波变速成像研究[D].成都:成都理工学院,2000.
    [54]张金海.地质构造建模研究[D].成都:成都理工大学信息工程学院,2004.
    [55]张永刚.地震波场数值模拟方法[J].石油物探,2003,42(2):143-148.
    [56]蒋先艺,刘贤功,宋葵.复杂构造模型正演模拟[M].北京:石油工业出版社,2004.
    [57]张永刚.地震波场数值模拟方法[J].石油物探,2003,42(2):143-148.
    [58]张钋,刘洪等.射线追踪方法的发展现状[J].地球物理学进展,2000,15(1),36-45.
    [59]佘德平.数值模拟技术的发展现状[J].勘探地球物理进展,2003,(Z1) .
    [60]熊忠.碳酸盐岩礁滩相地层地震特征波动方程模拟研究[D].成都理工大学博士论文,2008.
    [61]符力耘,孙伟家,李东平.退化的Fourier偏移算子及其在复杂断块成像中的应用[J].地球物理学报,2007 ,50 (4) :1241-1250.
    [62]符力耘.地震波探测地质构造复杂性的定量分析方法[J].中国科学D辑:地球科学2009年第39卷第9期: 1179 - 1190.
    [63]孙伟家,符力耘,姚振兴.基于耦合反射/透射系数单程波传播算子的地震波模拟研究[J].地球物理学报,2009,52(10):2558-2565.
    [64]刘定进,周云何,杨瑞娟等,高精度屏算子地震偏移成像方法研究[J].石油物探,2010, 6 (1):531-535.
    [65]杨俊.基于声学波动方程的偏移速度误差分析[D].成都:成都理工大学,2006.
    [66]薛明星.波动方程叠前深度偏移与波形反演研究[D].成都:成都理工大学,2008.
    [67]熊高君,贺振华等.共炮记录正演模拟检波点下延记录原理[J].石油物探,1999,38(2):43-49.
    [68]熊高君,贺振华等.改进的正演模拟定位原理[J].石油地球物理勘探,1998,33(6): 742-748.
    [69]吴永国.复杂地质体波动方程地震波场模拟与偏移成像[D].成都:成都理工学,2007.
    [70]张关泉.波动方程的上行波和下行波的耦合方程组[J].应用数学学报,1993, 18(2):251-263.
    [71]熊小兵,贺振华.相位移加有限差分法波动方程正演模拟[J].石油物探,1998, 37(3):22-28.
    [72]吴永国,贺振华,黄德济等.基于惠更斯原理的波动方程共炮点道集地震正演[J].成都理工大学学报(自然科学版),2008,35(3):274-278.
    [73]胡光岷,黄德济,常建华等.叠前正演模拟与偏移的网络并行计算[J].物探化探计算技术,2001,23(4):318-323.
    [74]郑四连.复杂储层地震波场正演与偏移[D].成都:成都理工大学,2004.
    [75]朱遂伟,张金海,姚振兴.高阶优化傅里叶有限差分算子偏移[J].石油地球物理勘探,2009,44(6):680~684.
    [76]李录明,罗省贤.相移加校正叠前深度偏移及偏移速度分析[J].石油地球物理勘探1997,32(1):57-67.
    [77]程玖兵,王华忠,于富文,马在田.波动方程共炮检距道集叠前深度偏移[J].石油地球物理勘探,2001;36(5):526-532.
    [78]陈生昌,曹景忠.基于Rytov近似的叠前深度偏移方法[J].石油地球物理勘探,2001, 36(6):690-697.
    [79]陈生昌,曹景忠.稳定的Born近似叠前深度偏移方法[J].石油地球物理勘探,2001, 36(3):291-296.
    [80]陈生昌,曹景忠,马在田.混合域单程波传播算子及其在偏移成像中的应用[J].地球物理学进展,2003,210-217.
    [81]陈生昌,马在田.波动方程的高阶广义屏叠前深度偏移.地球物理学报[J],2006,49(5): 1445-1451.
    [82]李振春,刘玉莲,丁伟等.基于最优Born近似的叠前深度偏移方法[J],石油大学学报(自然科学版),2002,26(5):32-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700