陶瓷复合装甲抗侵彻能力数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子弹侵彻陶瓷复合装甲的研究具有重要的军事应用背景和民用价值,一直受到众多学者广泛的关注,对防护工程结构设计有重要意义。
     本文主要以直径为12.7mm,平动速度为500m/s的平头弹和圆头弹为例,利用LS-DYNA有限元程序对子弹侵彻靶板过程中的弹靶的损伤破坏机理及物理过程进行了研究。主要研究内容和成果如下:
     以3-20mm厚的钢板为基材,子弹选用Rigid、Plastic-kinematic和Johnson-cook三种本构模型对钢板抗侵彻能力模拟分析,得到钢板的极限穿透厚度分别为16mm、6.3mm、6.8mm,选Johnson-cook本构模型作为子弹后续试验模型;选用平头弹和圆头弹侵彻不同厚度钢板进行模拟分析,得到平头弹侵彻钢板的极限穿透厚度为6.8mm,圆头弹侵彻钢板的极限穿透厚度为7.5mm,平头弹的破坏区域较大,圆头弹有较强的侵彻能力。
     分析探讨B4C陶瓷/钢板复合靶板的防护能力与靶板结构设计之间的关系,得知B4C陶瓷做面板复合靶有较优的抗弹性能。B4C陶瓷/钢板复合靶层间界面的法向失效应力为43MPa,剪切失效应力25MPa时,子弹的剩余速度为22m/s;层问界面的法向失效应力为86MPa,剪切失效应力30MPa时,子弹的剩余速度为0m/s,得知提高靶板间界面强度可提高陶瓷复合靶抗弹性能。
     对约束状态下的B4C陶瓷复合靶板结构进行模拟研究。5mm厚B4C陶瓷做面板,背板分别取1-9mm厚的钢板、铝板和纤维板进行约束,得到钢板、铝板、纤维板的最优厚度比分别是6mm,6mm,4mm;纤维板做背板能够发挥较好的支撑作用。B4C(5mm)/钢板(3mm)复合靶中陶瓷面板侧向约束时,陶瓷锥的基本形成时间是6.4μs;陶瓷非侧向约束时,陶瓷锥的基本形成时间是6.6μs,得知陶瓷侧向约束提高复合靶抗弹性能;纤维板做盖板B4C陶瓷复合靶板有较优的抗弹性能。
     本文的研究结果为陶瓷复合靶结构设计提供了一定的参考价值。
The research of bullet penetration ceramic composite targets has great significance both in military and engineering, and so that it always attracts the attention of scholars at home and abroad. It has important meaning for the structure design of the protective engineering.
     In this paper, finite element analysis software LS-DYNA was used to study the damage and its physical process of projectile and target during the process of impact projectile invading into armored materials which based on flat bombs and round shells of diameter 12.7mm and translational velocity 500m/s. The main research content and the achievement of this paper is as follows:
     Take 3-20mm thick steel plate as the basic material, Rigid, Plastic-kinematic and Johnson-cook material model was employed to simulation for Anti-penetration ability of the steel plate, Limit penetration by plate thickness are 16mm,6.3mm,6.8mm, Johnson-cook material model selected as the bullets follow-up test model; Flat bombs and round shells was employed to simulation for Anti-penetration ability of the steel plate of different thickness, penetrated by flat bombs, steel limit thickness is 6.8mm, penetrated by round shells, steel limit thickness is 7.5mm, flat bombs which destroyed large areas, round shells with strong penetration ability.
     Analysis the relationship between the structural design of the target plate with the protective capacity of the B4C Ceramic/metal composite plate, the simulation results show that, B4C ceramic to compound target's panel have good anti-ballistic properties. B4C ceramic/steel composite target layer interface normal stress failure of 43MPa, Shear failure stress of 25MPa, residual velocity of bullet is 22m/s; Interface normal stress failure of 86MPa, shear failure stress of 30MPa, residual velocity of bullet is Om/s, enhance interfacial strength can improve ceramic composite targets anti-penetration performance.
     Several kinds of B4C ceramic composite targets were simulated. B4C ceramic of 5mm thick to compound target's panel, back to take steel, aluminum and fiber board of 1-9mm thick to constrain, steel, aluminum, fiber board optimal thickness ratio are 6mm,6mm,4mm, fire backboard can play better supporting role. The confined B4C(5mm)/steel(3mm) ceramic composite targets, the basic form of ceramic cone time is 6.4μs; unconfined B4C ceramic targets, the basic form of ceramic cone time is 6.6μ.s, the confined ceramic composite targets have excellent protection ability compared to unconfined B4C ceramic targets to projectiles penetration; cover plates made of fibre has excellent anti-penetration performance under projectile impact.
     The results of this paper give reference to structural design of B4C ceramics compound target.
引文
[1]FE.Heuze弹体对岩土材料(特别是岩石)侵入研究的综述[J].防护工程,1994,3(1):96-113
    [2]赵宝荣,陆惠忠,王建军等.装甲钢抗破甲射流的强度效应试验研究[J].兵器材料科学与工程,1997,20(3):3-6
    [3]李树涛,田时雨,钟涛等.纤维层厚度对陶瓷复合靶板抗弹性的影响[J].兵器材料科学与工程,2008,31(6):20-23
    [4]杜忠华,赵国志,沈培辉等.小型穿甲弹侵彻陶瓷/金属板分析模型[J].兵器材料科学与工程,2006,29(60):54-56
    [5]张先锋,李永池,于少娟.氧化锆增韧陶瓷抗射流侵彻实验研究[J].实验力学,2007,22(6):631-636
    [6]姜春兰,陈放,李明等.钨球对陶瓷/铝复合靶的侵彻与贯穿[J].兵工学报,2001,22(1):37-40
    [7]胡秀章,刘永胜,王肖钧等.超短钢纤维混凝土抗侵彻性能的实验研究[J].弹道学报,2008,20(2):5-8
    [8]李平,李大红,宁建国等.A12O3陶瓷复合靶抗长杆弹侵彻性能和机理实验研究[J].爆炸与冲击,2003,23(4):289-294
    [9]J.A.Tenland, H.Sjl. Penetration into concrete by truncated projectiles[J]. Int. J. Impact Engng,2004,30(4):447-464
    [10]J.K.Gran, D.J. Frew. In-target radial sterss measuerments from penetration experiments in to concrete by ogive-nose steel projectiles[J]. Int. J. Impact Engng, 1997,19 (8):715-726
    [11]M.J.Forrestal, B.S.Altman, J.D.Cargile etal. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. Int. J. Impact Engng,1994,15 (4):395-405
    [12]H.M.Wen. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes[J]. Compos Struct,2000,49(3): 321-329
    [13]H.M.Wen. Penetration and perforation of thick FRP laminates[J]. Compos Sci Technol,2001,61(8):1163-1172
    [14]A. N. Dancygier and D. Z. Yankelevsky. High strength concrete response to hard projectile impact[J]. Int. J Impact.Engrg,1996,18 (6):583-599
    [15]D.L.Orphal, R.R.Franzen, A.J.Piekutowski et al. Penetration of confined a luminum nitride targets by tungsten long rods at 1.5-4.5 km/s[J]. Int.J.Impact.Engng, 1996,18(4):355-368
    [16]G.L.Taylor. The formation and enlargement of a circular hole in a thin plate sheet[J]. Quart J.Mwch.AppI.Math,1952,1(1):103-148
    [17]A.L.Florence. Interaction of projectiles and composite armour. Part II[M]. California:Stanford Research Institute,1969:5-18
    [18]陈志斌.重金属球对多层间隔薄板斜侵彻能力的计算[J].弹道学报,1994,1(3):77-81
    [19]张庆明,黄风雷,周兰庭.破片贯穿目标等效靶的极限速度[J].兵工学报,1996,17(2):21-25
    [20]李强,马常祥,赖祖涵等.高强低合金钢甲弧形弹侵彻速度与深度的计算[J].爆炸与冲击,1996,16(4):349-353
    [21]龚自明,方秦,张亚栋.靶体网格尺寸对数值计算侵彻深度的影响分析[C].中国岩石力学与工程学会.第1届全国工程结构抗冲击爆炸作用学术会议论文集.南京:《解放军工大学学报》,2007:220-224
    [22]纪冲,龙源,万文乾.杆式弹丸贯穿金属靶板数值模拟及影响因素研究[J].弹箭与制导学报,2005,25(3):57-63
    [23]张雁宁,邵式亮,沈刘军.破片侵彻双层钢板门的数值模拟[J].太原理工大学学报,2008,39(2):316-318
    [24]陈燕,张文宇,米双山.不同密度弹丸对靶板的损伤仿真与评估研究[J].军械工程学院学报,2008,20(3):43-47
    [25]刘占芳,李建鹏,常敬臻.计及弹型对防弹钢板侵彻能力的数值模拟[J].重庆大学学报,2008,31(7):800-803
    [26]杜烨,曹红松,崔亮.弹丸侵彻钢靶能力的数值模拟分析[J].弹箭与制导学报,2009,29(2):144-146
    [27]记霞,王利.弹丸侵彻多层靶板数值分析[J].探测与控制学报,2006,28(2):42-45
    [28]岳小兵,龙源,方向等.高速模拟钢质弹丸侵彻多层靶仿真[J].解放军理工大学学报,2003,4(4):40-44
    [29]周翔,龙源,岳小兵.高速碰撞中攻角对动能弹侵彻多层间隔靶能力的影响[J].弹道学报,2004,16(4):7-11
    [30]王芳,董永香,冯顺山.叠层靶对低速弹丸的抗侵彻性分析[J].中北大学学报,2009,30(1):27-30
    [31]王有亮,张磊.穿甲弹斜侵彻数值仿真[J].计算机辅助工程,2006,15(S1):288-290
    [32]汪德武,高洪泉,杜海霞等.斜侵彻弹体运动分析与仿真[J].弹箭与制导学报,2006,26(3):121-123
    [33]申志强,曾首义,蒋志刚.穿甲子弹偏心入射陶瓷复合靶板数值模拟分析[C].第15届全国结构工程学术会议.第15届全国结构工程学术会议论文集.北京:《工程力学》杂志社,2006:457-461
    [34]王金相,赵彦森,张晓丽.爆炸复合金属靶抗侵彻性能分析[J].科学技术与工程,2008,8(18):5164-5168
    [35]张晓晴,杨桂通,黄小清.弹体侵彻陶瓷/金属复合靶板问题的研究[J].工程力学,2006,23(4):155-159
    [36]李裕春,程克明,沈蔚等.高速长杆弹对陶瓷复合靶侵彻的数值模拟[J].兵器材料科学与工程,2009,32(1):34-37
    [37]张明,何煌,曾首义.穿甲子弹侵彻陶瓷复合装甲的有限元分析[J].先进制造技术,2006,25(7):37-39
    [38]黄正祥,宣世峰.射流斜侵彻陶瓷复合装甲的数值模拟和实验研究[J].弹箭与制导学报,2006,26(4):115-117
    [39]虞青俊,李玉龙,邓琼等.SiCp/Al功能梯度装甲板抗侵彻性能的试验与数值模拟[J].复合材料学报,2007,24(5):6-12
    [40]杜忠华,赵国志,杨玉林.陶瓷/玻璃纤维/钢板复合靶板抗弹性能的研究[J].兵工学报,2003,24(2):219-221
    [41]李裕春,程克明,沈蔚等.高速长杆弹对陶瓷复合靶侵彻的数值模拟[J].兵器材料科学与工程,2008,32(1):34-37
    [42]蒋志刚,申志强,曾首义等.穿甲子弹侵彻陶瓷/钢复合靶板试验研究[J].弹道学报,2007,19(4):38-42
    [43]C.J.den Reijer. Impact on ceramic faced armor [D]. Netherlands:Delft University of Technology,1991:23-26
    [44]R.Cortes, C.Navarro, M.A.Martinez et al. Numerical modeling of normal impact on ceramic composite armours[J]. Int. J. ImpactEngng,1992,12(4):639-651
    [45]B.K.Fink. Performance metrics for composite integral armor[J]. J of Thermoplast Compos Mater,2000,13(10):417-431
    [46]G.Ben-Dor, A.Dubinsky, T.Elperin et al. Optimization of two component ceramic armor for a given impact velocity [J]. Theoretical and Applied Fracture Mechanics, 2000,33(3):185-190
    [47]R.A.W.Mines. A one-dimensional stress wave analysis of a lightweight composite armour[J]. Compos Struct,2004,64(1):55-62
    [48]L.Westerling, P.Lundberg, B.Lundberg. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities[J]. Int J Impact Eng,2001,25(7):703-14
    [49]R.Subramanian, S.J.Bless. Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s[J]. Int J Impact Engng,1995, 17(4):807-816
    [50]D.L.Orphal, R.R.Franzen, A.J.Piequtowski et al. Penetration of confined aluminum nitride targets by tungsten long rods at 1.5 to 4.5 km/s[J]. Int J Impact Engng,1996,18(4):355-368
    [51]D.L.Orphal, R.RFranzen. Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s[J]. Int J Impact Engng, 1997,19(1):1-13
    [52]D.L.Orphal, R.RFranzen, A.C.Charters et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s[J]. Int J Impact Engng,1997,19(1):15-29
    [53]A.Tate. Further results in the theory of long rod penetration[J]. J Mech Phys Solids,1969,17(3):141-150
    [54]P.Lundberg, L.Westerling, B.Lundberg. Influence of scale on the penetration of tungsten rods into steel-backed alumina[J]. Int J Impact Engng,1996,18(4):403-416
    [55]尚晓江,苏建宇,王化锋等LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2008:2-18
    [56]李裕春,时党勇,赵远ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006:16-25
    [57]时党勇,李裕春.基于ANSYS/LS-DYNA 8.1进行显示动力分析[M].北京:清华大学出版社,2005:156-165
    [58]LSTC.LS-DYNA keyword user's manual version 970[M]. CA:Livermore Software Technology Corporation,2003:816-820
    [59]麻震宇.侧向约束陶瓷复合靶板抗弹机理研究[D].长沙:国防科学技术大学,2007:13-14
    [60]张小坡,石全,王广彦.基于LS-DYNA的圆柱形破片侵彻靶板有限元分析[J].科学技术与工程,2007,7(23):6004-6009
    [61]H.Kurtaran, M.Buyuk, A.Eakandarian. Design automation of a laminated armor for best impact performance using approximate optimization method[J]. Int J Impact Engng,2003,29(1):397-406
    [62]L.Westerling, P.Lundberg, B.Lundberg. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [J]. Int J Impact Engng,2001,25(7):703-714
    [63]申祖武,刘志翔,王天运等.爆炸产生破片对陶瓷/纤维复合靶板的侵彻分析[J].爆破,2008,25(4):14-16
    [64]白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005:30-54
    [65]王峰.有限元方法及其在高速碰撞中的应用[D].安徽:中国科学技术大学,2007:16-18
    [66]R.Zaera, S.Sanchez-Saez, J.L.Perez-Castellanos et al. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact[J]. Composite Part A,2000, 31(8):823-833
    [67]杜忠华.动能弹侵彻陶瓷复合装甲机理[D].南京:南京理工大学,2002:15-17
    [68]杜忠华,赵国志.子弹垂直侵彻陶瓷/铝合金靶板的数值分析模型[J].兵工学报,2001,22(4):477-480
    [69]黄良钊,张巨先.弹丸对陶瓷靶侵彻试验中的约束效应研究[J].兵器材料科学与工程,1999,22(4):13-17
    [70]晏麓晖,曾首义,蒋志刚等.陶瓷厚度与约束对陶瓷复合靶抗弹性能的影响[J].弹道学报,2009,21(3):15-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700