豆浆高频通电加热与极板污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以物理学、电磁学、食品物性学、化工原理、测试技术等多学科的理论为基础,主要开展了三个方面的研究工作:一是自行设计并制作了用于液体食品通电加热的高频大功率电源和液体食品高频连续通电加热装置,解决了通电加热中极板污染等制约通电加热技术发展的关键性问题;二是通过自行研制的设备,对豆浆的部分理化特性做了相关实验,阐述了通电加热对豆浆主要特性的影响;三是通过对豆浆通电加热过程中极板污染机理的研究,设计了污染的控制方法,提出了最佳通电加热条件。
     主要内容有:
     1、开发研制了用于液体食品通电加热的高频大功率电源和液体食品高频连续通电加热装置,包括电源部分和液路部分两个模块,该装置的电源和流量参数都可调,方便研究不同条件下,液体食品通电加热过程中各种参数的变化。电源部分包括平滑调节电压、占空比、频率和对加热室双极性高频方波电压电流的采集等,使该装置能够完成在不同电场条件下特性变化的研究。液路部分包括调节加热室压力、流速等,使装置能够完成不同加热条件下液体食品特性变化的研究,同时可以通过调节流量控制加热时间,通过调节压力防止被加热液体食品沸腾等。
     2、设计制作了试验研究装置能够实时采集较大频率范围不同占空比的双极性方波电压和电流信号。
     3、提出了利用复阻抗研究豆浆电导率的方法,利用该方法研究了豆浆通电加热中豆浆电导率的变化,试验研究发现,低频下,豆浆电导率随频率升高增大,频率超过1000Hz时影响不明显。不同频率下,豆浆的电导率虽然不同,但是其随温度的变化规律都是线性的,豆浆的固形物质量分数会影响电导率,但是不会影响其变化趋势。
     4、通电加热过程中,大豆蛋白的热变性和豆浆在空气中暴露的时间会增大豆浆的电导率。
     5、蛋白质在极板上的黏附会发生焦糊,在豆浆电导率的测量中,会使豆浆的电导率下降。
     6、研究了豆浆通电加热中极板污染的问题,研究发现,极板的污染主要是豆浆中蛋白质在极板上的黏附造成,并且由于黏附物的电阻相对豆浆较大,因而其发热相对较快从而加速了污染。提出极板污染最可行的解决办法是升高电源频率,并确定了固形物含量为6.8%的豆浆,电流密度为5000A/m2,利用白行研制设备通电加热时的最佳条件。
     本文最后总结了通电加热技术中的关键性问题和需要进一步研究的内容,并为通电加热技术在我国的推广应用提供了理论和试验依据。
The heat treatment of milk is an important part of traditional soybean food production. High temperature steam produced by coal-fired boilers is used as a heating source. The use of coal-fired boiler will be restricted because of policy of energy-saving. Ohmic heating technology, which is considered as the most powerful potential heat technology, has many advantages such as uniform heating, no heat transfering face, easy controlling and environmental protection. Although the corresponding research of ohmic heating technology for food is in progress at home and abroad, the influence of the mechanism of ohmic heating on soybean milk quality has not been reported.
     This paper is based on multidisciplinary theory including Physics, Electromagnetics, Food Matter, Chemical Engineering, Electrostatic technology, testing technology and so on. It mainly carries out the reaserch work of2phases. Fast, continuous ohmic heating device of liquid food is designed and manufactured, and the key problem, electrode pollution, which constrains the development of the ohmic heating technology, has been solved. Secondly, related experiments on the part of the physical and chemical characteristics of soybean milk have been made, using self-developed device. Main characters of ohmic heating on soybean milk have been expounded. Pollution of electrode is developed, and the best ohmic heating condition is designed.
     Main contents of the paper are shown as follows.
     1. Continuous ohmic heating device of liquid food was designed and made, including power supply section and liquid road section. This device resolved some key problems such as the electrode pollution when works for long hours. Experimental device was designed. So the voltage, duty cycle, frequency of the device can be adjusted smoothly. The acquisition of the voltage and current, which are high frequency and non-sinusoidal, was realized. So the device is able to research the soy milk changes in the characteristics under different electric field conditions. Pressure of heat chamber and velocity can be adjusted, so heat time can be controlled and boiling will be prevented。
     2. Test device is designed to real-time acquisition of larger frequency range duty cycle bipolar square wave voltage and current signals.
     3. Plate pollution in ohmic heating of soybean milk was researched. The reason for pollution is adhere to soybean milk protein. Resistance of adhesion properties is larger than that of soybean milk, so the heating speed is higher, and then the speed of pollution is increased. The most effective way to solve the pollution is to increase the power frequency. Study found that pollution can be effectively reduced when the power frequency is higher than1000Hz. Change of solids content will not change the influence of frequency over pollution.
     4. Within ohmic heating process, the thermal denaturation of the soy protein and soy milk in the air exposure time will increase the conductivity of the milk.
     5. The proteins in the adhesion of the electrode plate will occur fouling, and soybean milk conductivity measurement value will decrese.
     6. Change of soybean milk conductivity was researched in soybean milk ohmic heating. Time of exposure in the air can affect the soybean milk conductivity. Although the conductivity of soybean milk will change at different frequency, variation with temperature is liner. Soybean milk solid content can affect conductivity but the variation law will not be changed.
     Critical issues of ohmic heating technology and further research are summarized. Theoretical and experimental basis are provided for ohmic heating technology's popularization and application.
引文
Akintunde T Y T, Akintunde B O. Development of models for prediction the yield and quality of soymilk. The Journal of Food Technology in Africa,7(2):55-58.
    Alwis A A, Halden K, Fryer P J. Shape and conductivity effects in the ohmic heating of foods[J].Chemical Engineering Research and Design,1989.67:158-168.
    Amatore, C., Berthou, M., & Hebert, S.. (1998) Fundermental principles of electrochemical ohmic heating of solutions. Electroanalytical Chemistry,457:191-203.
    Ayadi, M. A., Leuliet, J. C., Chopard, F., Berthou, M., & Lebouche. M.. Continuous ohmic heating unit under whey protein fouling. Innovative Food Science and Emerging Technologies,2004,5:465-473.
    Ayadi, M.A., Benezech, T., Chopard, F., & Berthou, M.. (2008) Thermal performance of a flat ohmic cell under non-fouling and whey protein fouling conditions. LWT-Food Science and Technology,41:1073-1081.
    Bansal, B., Chen, X.D., & Lin, S. X. Q.. (2005) Skim milk fouling during ohmic heating. Heat exchanger fouling and cleaning:challenges and opportunities. Engineering Conferences Intl.; Kloster Irsee, Germany; June 5-10:Engineering Conferences International, New York, U.S.A.
    Bansal B, Chen X D. Effect of temperature and power frequency on milk fouling in an ohmic heater [C]//2006 Institution of Chemical Engineers, Food and Bioproducts Processing,2006,84(c4):286-291.
    Changani S D, Belmar M T, Fryer P J. Engineering and chemical factors associated with fouling and cleaning in milk processing [C]//Experimental Thermal and Fluid Science 1997, Elsevier Science inc,1997,14:392-406.
    Chen X D, Chen J, Farid M M. A computational investigation of whey protein based fouling of heat exchanger and holding tube [C]//International Association of Engineering and Food.8th Intl. Congress on Engineering and Food, Puebla City, Mexico:2000. April 10-13:1821-6.
    Chen X D, Chen J, Wilson D I. Modelling whey protein based fouling of heat exchangers— further examining the deposition mechanisms [C]//Proceedings of heat exchanger fouling—fundamental approaches & technical solutions. United Engineering Foundation, Inc. New York, U.S.A. Davos, Switzerland:2001. July 8-13.
    Christian G K, Changani S D, Fryer P J. The effect of adding minerals on fouling from whey protein concentrate—development of a model fouling fluid for a plate heat exchanger [C]//Trans IChemE 2002,80:231-9.
    de Alwis, A. A. P., Halden, K., & Fryer, P. J.. (1989) Shape and conductivity effects in the ohmic heating of foods. Chemical Engineering Research an Design,67:159-168.
    Dunn J, Salisbur y K, Bushnell A, et al. Sterilization using pulsed w hite light[J]. Med. Device Technology,1997,8(6):24-26.
    Eiot-Godereaux S C, Zuber F, Goullieux A. Processing and stabilization of cauliflower by ohmic heating technology [J]. Innovative Food Science and Emerging Technologies. 2001,2(4):279-287.
    FDA. Ohmic and Inductive Heating. http://www.cfsan.fda.gov/-comm/ift-ohm.html.
    Fu W R, Hsieh C C. Simulation and verification of two-dimensional ohmic heating in static system[J]. Joural of food process engineering.1999(22):81-89
    GB/T14769-93,食品中水分的测定方法[S]
    Ghnimi, S., Flach-Malaspina, N., Dreschc, M., Delaplaceb, G, & Maingonnat, J.F.. (2008) Design and performance evaluation of an ohmic heating unit for thermal processing of highly viscous liquids. Chemical Engineering Research and Design.86:626-632.
    Grijspeerdt, K., Hazarika, B., & Vucinic, D.. (2003) Application of computational fluid dynamics to model the hydrodynamics of plate heat exchangers for milk processing. Journal of Food Engineering,57(3):237-242.
    Halden K, Alwis A A, Fryer P J. Changes in the electrical conductivity of foods during ohmic heating [J]. International Journal of Food and Technology,1990,25:9-25.
    Hajirostamloo B. Comparison of nutritional and chemical parameters of soymilk and cow milk. World Academy of Science, Engineering and Technology,2009,57:436-438.
    Hyun-Soo K, Hyung-Tae M, Myung-Joong Y. On-line dead-time compensation method using disturbance observer[J]. IEEE Transactions on Power Electronics,2003, 18(6):1336-1345.
    Jun S, Sastry S K. Model and optimization of ohmic heating of foods inside a flexible package [J] Journal of Food Process Engineering,2005,417(28):417-436.
    Jun S, Sastry S K. Reusable pouch development for long term space missions:A 3D ohmic model for verification of sterilization efficacy [J]. Journal of Food Engineering,2007, 80:1199-1205.
    Kanjanapongkul K, Tia S, Wongsa-Ngasri P. et al. Coagulation of protein in surimi wastewater using a continuous ohmic heater[J]. Journal of Food Engineering,2009,91: 341-346.
    Khalaf W G, Sastry S K. Effect of fluid viscosity on the ohmic heating rate of solid-liquid mixture[J]. Journal of Food Engineering.1996,27:145-158.
    Knirsch M. C, Santos C. A., Vicente A., & Penna T.. Ohmic heating a review[J]. Trends in Food Science & Technology,2010,21(9):436-441.
    Li F D, Li L T, Li Z, et al. Determination of starch gelatinization temperature by ohmic heating[J]. Journal of Food Engineering,2004,62(2):113-120.
    Li Y, Li J, Liu Z, etc. Vacuum Coating of Heat Sensitive Liquid Ingredient into Feed Pellets[J]. Transactions of the ASAE,2003,46(2):383-387
    Lima M, Sastry S K. The effects of ohmic heating frequency on hot—airdrying rate and juice yield[J]. Journal of Food Engineering,1999(41):115—119
    Marcos C K, Carolina A S, Antonio A M, et al. Ohmic heating- a review[J]. Trends in Food Science & Technology,2010,21:436-441
    Min S, Evrendilek G A, Zhang H Q. Pulsed electric fields:processing system, microbial and enzyme inhibition, and she If life extension of foods [J]. IEEE Transactions on Plasma Science,2007,35(1):59-73.
    Nakamura, T., Utsumi, S., and Mori, T, Network structure formation in thermally induced galation of glycinin, J. Agric. Food Chem.,1984,32:349-352
    NaturalNews, http://www.naturalnews.com/z0 19860_soy_pasterization_isoflavones.html.
    Obata A, Matsuura M. Decrease in the gel strength of tofu caused by an enzyme reaction during soybean grinding and its control. Bioscience, Biotechnology, and Biochemistry, 1993,57(4):542-545.
    Oliveira A C, Jacobina C B, Lima A M N, et al. Dead-time compensation in the zero-crossing current region[C]//Proceedings of the Power Electronics Specialist Conference. Acapulco, Mexico:IEEE,2003:1937-1942.
    Pereira R, Martins J, Mateus C, et al. Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating[J]. Chemical Papers, 2007,61(2),121-126.
    QBT 2132-2008, 植物蛋白饮料豆奶(豆浆)和豆奶饮料[S]
    Samaranayake C P, Sastry S K, zhang H. Pulsed ohmic heating—a novel technique for minimization of electrochemical reactions during processing [J] Journal of Food Science, 2005,70(8):460-465.
    Samaranayake C P, Sastry S K. Electrode and pH effects on electrochemical reactions during ohmic heating [J]. Journal of Electroanalytical Chemistry.2005,577(1,15):125-135.
    Sastry, S K, & Barach, J. Ohmic and inductive heating[J]. Journal of Food Science,2000, 65(4S):42-46.
    Saulis G, Rodaite-Riseviciene R, Snitka V. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy [J]. Bioelectrochemistry,2007.70(2):519-23.
    Seon-Hwan H, Jang-Mok K. Dead time compensation method for voltage-fed PWM inverter[J]. IEEE Transactions on Energy Conversion,2010,25(1):1-10.
    Singh, R. P., Voit, D.C., & Barrett, D.E.. (2007) A multi-purpose fruit and vegetable processor for long duration space missions. World of Food Science,2:1-16.
    Stancl J, Zitny R. Milk fouling at direct ohmic heating[J]. Journal of Food Engineering, 2010(99):437-444
    Sudhir K S. A model for heating of liquid-particle mixtures in a continuous flow ohmic heater [J]. Journal of Food Process Engineering,1992,15:263-278.
    Sudhir K, Sastry S K, Salengke S. Ohmic heating of solid-liquid mixtures:a comparison of mathematical models under worst-case heating conditions[J]. Journal of Food Process Engineering,1998,21:441-458.
    Tham H J, Chen X D, Young B.2D computer simulations of ohmic heating of milk solutions in laminar annular flow [C]//Chemeca 2008:Towards a Sustainable Australasia, Engineers Australia,2008:1518-1527
    Tunde Akintunde, T. Y., & Akintunde, B. O.. (2002) Development of models for prediction the yield and quality of soymilk. The Journal of Food Technology in Africa,7(2):55-58.
    Uemura K, Isobe S. Developing a new apparatus for inactivating escherichia coli in saline water with high electric field ac [J].Journal of Food Engineering,2002,53(3):203-207.
    Uemura K, Isobe S. Developing a new apparatus for inactivating bacillus subtilis spore in orange juice with a high electric field ac under pressurized conditions [J].Journal of Food Engineering,2003,56(4):325-329.
    Urasaki N, Senjyu T, Uezato K, et al. An adaptive dead-time compensation strategy for voltage source inverter fed motor drives[J]. IEEE Transactions on Power Electronics, 2005,20(5):1150-60.
    Urasaki N, Senjyu T, Uezato K, et al. Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive[J]. IEEE Transactions on Energy Conversion,2007,22(2):271-280.
    van Asselt AJ, Vissers MMM, Smit F, de Jong P.2005. In-line control of fouling. Proceedings of heat exchanger fouling and cleaning-challenges and opportunities; Kloster Irsee, Germany; June 5-10:New York U.S.A.; Engineering Conferences International.
    Yong-Kai L, Yen-Shin L. Dead-time elimination of PWM-controlled inverter/converter without separate power sources for current polarity detection circuit[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2121-2127.
    Yongsawatdiggul J, Park J W, Kolbe E. Electrical conductivity of whiting surimi paste during ohmic heating [J]. Journal of Food Science,1995,60(5):922-925,935.
    Zareifard M R, Ramaswamy M S, Trigui M, etc. Ohmic heating behaviour and electrical conductivity of two-phase food systems[J]. Innovative Food Science and Emerging Technologies,2003(2):45-55
    Zhao Y Y, Kolbe E. A method to characterize lectrode corrosion during ohmic heating [J].Journal of Food Process Engineering,1999:81-89.
    陈波,程玉来.(2008)欧姆加热对大豆酱杀菌效果及其营养成分的影响.中国酿造,3:37-39.
    丁文彦,马凤鸣,徐江宁等,脉冲强光杀菌技术的初步试验[J].农业机械学报,2008,39(6):105-108.
    葛文光.食品的欧姆加热技术[J].食品与机械,1997(8):26-29
    耿敬章,仇农学,丁辉煌.(2008)欧姆加热对嗜酸耐热菌的电穿孔效应.食品与生物技术学报,27(3):79-82.
    郭瑞丽,李玲.膜分离技术及其应用简介[J].新疆大学学报(自然科学版),2003(4):410-413
    韩雪琴.大豆的营养保健作用及其发展[D].内蒙古农业大学职业技术学院,2011:(3- 5)
    杭锋,陈卫,陈帅等,食品微波加热杀菌动力学描述模型的选择[J].农业工程学报,2008,24(6):49-52
    胡庆波,吕征宇.一种新颖的基于空间矢量PWM的死区补偿方法[J].中国电机工程学报,2005,25(3):13-17.
    贾原媛,李修伦.欧姆加热在食品工业中的应用[J].天津轻工业学院学报,2002(2):13-17
    柯强,李文红,陈英旭.紫外线杀菌效能的研究[J].环境污染与防治,2003(6):136-144
    雷鸣书,黄勇,蒋正宇.脉冲磁场灭菌[J].食品科学1994(12):12-14
    李法德,孙玉利,李陆星.连续通电加热条件下豆浆的电导率[J].农业工程学报,2008,24(12):275-278.
    李法德,李里特,辰巳英三.不同加热条件对豆浆电导率的影响[J].农业机械学报,2003,34(6):107-111.
    李恒,汪清民,黄润秋/多杀菌素的研究进展[J].农药学学报2003(5):1-12
    李陆星.连续通电加热系统的温度分布与极板污染的实验研究[D].泰安:山东农业大学,2007.
    李陆星,许振珊,李法德.连续通电加热系统极板污染问题的实验研究[J].食品科技,2010,35(7):153-156.
    李里特,电磁处理技术与食品加工新探索(上)[J].食品与机械,1995(5):7-9
    李里特.食品物性学[M].北京:中国农业出版社,,2001,308-316.
    李清明,谭兴和,何煜波等.微波杀菌技术研究进展[J].食品与发酵工业,2003(10):86-89
    李修渠.通电加热在食品加工中的应用[J].食品科技,2001.(6):10-12.
    梁灵,梁燕.酸辣椒的加工工艺[J].食品科技,1998(4):22-23
    林向阳,阮榕生,白松等,非热杀菌技术在食品中的应用[J].农产品加工(学刊),2005,5(2):9-12
    刘栋良,贺益康.交流伺服系统逆变器死区效应分析与补偿新方法[J].中国电机工程学报,2008,28(21):46-50.
    刘军锋,李叶松.死区对电压型逆变器输出误差的影响及其补偿[J].电工技术学报,2007,22(5):117-122.
    刘燕群.影响电导率测量准确度的综合因素[J].河北化工,2004,27(1):63-64.
    刘燕燕,曾新安.脉冲电场对大豆分离蛋白溶解性及亚基的影响[J].食品工业科技,2009,30(7):77-80.
    刘志胜.豆腐凝胶的研究[D].中国农业大学:2000.
    齐达,李晶,董力等.节镍型不锈钢的耐腐蚀性能比较[J].腐蚀与防护:2010.31(10):756-759
    仇农学,陈颖.臭氧溶解特性及对耐热菌非热杀菌的研究[J].农业工程学报,2004,20(4):157-159
    孙向东,钟彦儒,任碧莹,等.一种新颖的死区补偿时间测量方法[J].中国电机工程学报,2003,23(2):103-107.
    孙玉利.液态食品连续通电加热系统的实验研究[D].泰安:山东农业大学,2005.
    孙玉利,李法德,杨玉娥,等.通电加热技术在食品工业中的应用研究进展[J].农业工程学报:2004,20(6):296-300.
    谭属琼;陈厚荣;刘雄;食品工业中超高压处理技术研究进展[J].食品与发酵工业,2010,36(12):146-151
    涂顺明,邓丹雯,等.商品杀菌新技术[M].北京:中国轻工业出版社,2004:255-287.
    王高林,于泳,杨荣峰,等.感应电机空间矢量PWM控制逆变器死区效应补偿[J].中国电机工程学报,2008,28(15):79-83.
    王冉冉,朱敏,李法德.食品通电加热中极板污染问题研究进展[J].农业工程:2011,1(1):67-71
    夏文水,钟秋平.食品冷杀菌技术研究进展[J].中国食品卫生杂志,2003,15(6)539-544.
    肖淑先.膜分离技术[J].中国海洋平台,1998(2):34-40
    徐刚,梁红波,施文芳.辐射技术在食品加工中的应用[J].辐射研究与辐射工艺学报,2002(2):1-6
    徐军,陈永红.食品欧姆加热原理及其影响因素[J].食品工业,1999(5):42-44
    杨炳辉.含颗粒流体食品电阻加热制成设计之考量因素[J].食品工业(台湾),1999,31(2):1-7
    杨铭铎,邓云,余善明.食品通电加热技术的主要影响因素[J].中国食品报,2001:9-10
    杨铭铎,张春梅,李钢.(2008)基于通电加热技术的猪皮胨凝胶工艺.食品与发酵工业,34(2):149-152.
    杨铭铎,张春梅,李钢.(2009)猪肉通电加热解冻及快餐肠制作工艺研究.农业工程学报,25(s1):107-111.
    杨荣峰,陈伟,于泳,等.自适应滤波在电流矢量死区补偿方法中的应用[J].电工技术学报,2009,24(7):65-69.
    杨玉娥,李法德,孙玉利,王明林,马明.(2007)加热方式对猪里脊肉质构特性的影响.农业机械学报,38(11):60-64.
    张红印,葛飞.非加热杀菌的机理及应用[J].肉类工业,1999(8):14-16
    张稳婵.光波辐射在食品加工中的应用[J].运城学院学报,2003(3):46-47
    周亚军,王淑杰,苏丹,钱曦,吕晨艳,李英.(2009)含水果颗粒胶体溶液通电加热速度建模与工艺优化.农业机械学报,40(10):121-125,160.
    周亚军,殷涌光,于庆宇,刘微.含颗粒液态食品通电加热加工特性及影响因子[J].食品与发酵工业,2003,29(7):75-77
    周亚军,殷涌光,刘微,姚婷.含颗粒液态食品通电加热研究动态[J].农业工程学报,2004,20(1):26-29
    植村邦彦,五十部诚一郎,今井哲哉,等.有限要素法によゐ通電加热にゎけゐ温度分布の解析[J].日本食品科学工学会誌,1996,43(5):510-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700