红外辅助提取技术在丹参等中药有效成分提取分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的中药活性成分提取方法存在溶剂消耗量大、费时、操作步骤繁琐或活性成分提取率不高、杂质清除率低等问题,是导致现有中成药质量难以控制、疗效难以稳定的重要原因之一,也严重阻碍了中药现代化的进程。因此,研究、开发和采用新的中药提取及制药新工艺、新技术是目前研究工作者亟待解决的课题。红外辐射是介于可见光与微波之间的电磁波,物质的分子在吸收红外能后,可使光子的能量转变成分子的振动或转动能量。可以设想,在红外辐射下,基质内部温度可迅速上升,并增大被分离物质在介质中的溶解度;同时红外辐射还可加速被萃取成分向溶剂的扩散,从而缩短提取时间,提高提取效率。本研究基于以上设想,采用市售的普通硬质红外灯泡作为辐射光源,以丹参、大青叶等常用中药材作为研究对象,对红外辅助提取酚酸类、二萜醌类、生物碱类及挥发油类等典型的中药有效成分的可行性进行了考察。
     在第一章中,我们建立了红外辅助提取法与高效液相色谱法连用,同时提取分析了丹参中4种水溶性的酚酸类有效成分和4种脂溶性的二萜醌类有效成分,并将该法与常用的几种提取方法进行了比较。经正交实验优化后的红外辅助提取的条件为:提取时间:15min,提取溶剂:70%的甲醇水溶液,固液比为0.1:15(g/mL)。在优化后得到的色谱条件下,8种待测组分在所考察的浓度范围中线性良好(r>0.9994),天间精密度和天内精密度均达到要求,回收率在96.90%104.30%之间,RSD均小于2.5%。最后,我们对不同产地的多批丹参药材中的活性成分进行了提取分析。通过使用红外辅助提取技术,能在较短的时间内从丹参中提取出8种有效成分,其提取出的量与传统提取技术,例如水浴回流提取,超声提取法以及微波辅助提取相比大致相当,有些更高。
     在第二章中,我们对红外辅助提取法在吲哚生物碱类有效成分中的提取应用作了研究,选取的代表性中药材为大青叶。同时,为了进一步考察红外辅助提取法相对传统提取方法的优势或劣势,我们同样将红外辅助提取法与索氏提取法、超声辅助提取法和微波辅助提取法进行了比较。在这一章中,我们在对提取溶剂、提取时间、固液比等影响因素进行优化之外,还考察了红外光源的功率对提取结果的影响。经实验得到的最佳提取条件为:提取溶剂为三氯甲烷,红外灯功率为275W,提取时间为20min,固/液比为0.1:20(g/mL)。在优化的色谱条件下,靛蓝与靛玉红在所考察的浓度范围中线性良好(r>0.9996),天间精密度和天内精密度均达到要求,回收率大于96.0%,RSD均小于2.0%。虽然红外辅助提取法所用的提取时间较微波辅助提取法较长,但与索氏提取法和超声辅助提取法相比,其提取时间还是大大缩短了。对于靛蓝来说:通过这四种提取方法得到的提取量按多少排序,分别为:红外辅助提取法>微波辅助提取法>索氏提取法>超声辅助提取法;对于靛玉红,这四种提取方法得到的提取量按多少排序分别为:索氏提取法>红外辅助提取法>微波辅助提取法>超声辅助提取法。
     为进一步对红外辅助提取法适用的提取物质类型进行研究,在第三章中,我们选择孜然中的挥发油成分作为提取目标,考察了红外辅助提取技术在中药挥发油成分提取方面的可行性,同时辅以氮气吹扫无溶剂固相微萃取的手段,开创了一种新的挥发油提取方法。我们对固相微萃取头的类型及提取时间等主要的影响因素进行了简单的优化,得到最佳的提取条件为:采用75μm CAR/PDMS涂层的固相微萃取头,红外光源的功率为275W,提取时间为2min。在优化后的气相色谱和质谱条件下,通过GC-MS分离鉴定得到的孜然挥发性化合物共有28种,与文献报道的较为相符。
     在前三章中,我们应用红外辐射对代表性中药中的几类不同的有效成分进行了提取分析,证明红外射线与微波辐射相似,对中药材中的活性成分具有同微波相当的提取效率,提取时间较短,成本低等优点。又由于采用微波辅助合成反应被广为报道,因此,我们在第四章中对红外辐射是否可以同微波一样应用到有机合成反应中作一个简单的初步型探究。水杨酸甲酯的合成实验是有机化学教学中的经典实验,故我们选用该合成实验来考察红外射线用于有机合成的可行性。结果证明红外辐射用于简单有机合成反应是可行的。该方法同传统的水浴回流和微波辅助反应一样,亦是通过红外射线对反应原料的致热效应来实现的。但是由于红外光源的功率较微波低,红外辐射辅助反应相对微波辅助反应来说致热效应也相应的低,但较水浴回流来说要强。所以导致微波辅助反应所需的时间最短,红外辅助反应次之,水浴回流最长。
     本研究的研究结果将有望为中药活性成分提取的工艺改进提供一种新的思路,为中药现代化的推进奠定必要的技术基础,对中药的提取分离精制及天然保健品的制备和生产具有重要的应用价值和广阔的应用前景。
It is well known that conventional extraction techniques, including solvent extraction, Soxhlet extraction, heat-reflux extraction, et al., often involves large solvent consuming, long extraction time, low extraction rate or low percentage impurity clearance. It was also reported that microwave-assisted extraction and supercritical fluid extraction had been employed to extract the active compounds from TCMs. But these methods both need sophisticated equipments (microwave oven or supercritical fluid extraction system) and high cost. Therefore, developing a simple and low-cost extraction method is still in great needs nowadays.
     As an important form of electromagnetic wave, infrared radiation (IR) has wavelengths between about 750 nm and 1 mm. IR has been widely employed as heat resource for health care due to its high penetration ability. Infrared can also be used in cooking and heating food as it predominantly heats the opaque, absorbent objects, rather than the air around them. The high efficiency of the infrared heater is achieved by matching the wavelength of the infrared heater to the absorption characteristics of the material.
     In this study, we focused on developing a new extraction method for separation and determination of active compounds in TCMs (Traditional Chinese Medicine) using the commercial infrared bulb as infrared radiation source. The infrared-assisted extraction of combined with modern chromatographic methods, were applied for separation and qualition of different kinds of target compounds such as phenolic acids, diterpenoids, alkaloids and volatile oils from TCMs.
     In chapter 1, an infrared-assisted extraction (IRAE) method was developed and coupled with high-performance liquid chromatography (HPLC) for simultaneous determination of four phenolic acids and four diterphenoids in radix Salviae Miltiorrhizae (Chinese name Danshen). The extraction conditions of IRAE were optimized using orthogonal design, and the optimal conditions were as follows: extraction time of 15 min; extraction solvent of 70%(v/v) methanol in water solution, and solid/liquid ratio of 0.1:15 (g/mL). Under the optimized chromatographic conditions, all the target compounds were well separated with high resolution. Good linearity (r>0.9994) was observed over the concentration ranges investigated, and intra-day and inter-day precision were high. Recoveries of the eight compounds were from 96.90%-104.30% and relative standard deviations (RSD) were below 2.5%. By using this IRAE method, with a much shorter extraction time, the determined amounts of the eight active components of Danshen were comparable with or even higher than those extracted with conventional heat-reflux extraction and ultrasound-assisted extraction methods. The IRAE method was further established by simultaneous quantification of the four phenolic acids and four diterpenoids in Danshen from different geographic origins.
     In chapter 2, the developed IRAE-HPLC method, was employed to determination of indigo and indirubin in leaves of Isatis indigotica Fort. (Chinese name Daqingye). This newly developed and optimized infrared-assisted extraction (IRAE) method was compared with ultrasound assisted extraction (UAE), Soxhelt extraction (SE) and microwave-assisted extraction (MAE) in terms of extraction amounts of these two active components. Besides the influence factors mentioned in chapter 1, we also investigated the effect of different infrared power on the extraction results. The optimal conditions were as follows:extraction reagent of trichloromethane; power of infrared lamp of 275W; extraction time of 20 min; liquid/solid ratio 20 mL/0.1g. Under the optimized chromatographic conditions, indigo and indirubin were well separated with high resolution. Good linearity (r>0.9996) was observed over the concentration ranges investigated, and intra-day and inter-day precision were high. Recoveries of these two compounds were above 96.0% and relative standard deviations (RSD) were below 2.0%. The results showed that the amounts of indigo extracted by IRAE were a little higher than that extracted by other three extraction methods, while for indirubin, the amount obtained by MAE reached the highest.
     In chapter 3, we employed, for the first time, a novel strategy for extracting essential oil compounds from cumin with nitrogen purge-solvent free-infrared assisted-solid phase microextraction (IRAE-SPME) coupled with gas chromatography mass spectrometry (GC-MS). Some parameters, including SPME fiber coating and irradiation time, were optimized. The optimal conditions were as follows:SPME fiber coating of 75μm CAR/PDMS; power of infrared lamp of 275W; irradiation time of 2 min.28 volatile substances was obtained by GC-MS and the results showed the method is simple, rapid and solvent-free.
     Since the use of microwave radiation for organic synthesis has been widely reported, we were interested in that whether the infrared radiation could be applied to the organic synthesis. So, in chapter 4, a simple method for synthesis of methyl salicylate using infrared radiation has been developed. The results showed that using infrared radiation for simple organic reactions is practicable.
     In summary, the main contributes of this dissertation is that we initially investigated the feasibility of extraction active components from TCMs with infrared radiation. The developed methods were successfully applied to separation and analysis of phenolic acids, diterpenoids, alkaloids and volatile oils from different plant materials. We also established a method to synthesis of methyl salicylate using new infrared radiation. We aimed at exploring and finding out new techniques in sample preparation of plant material analysis, so that more breakthroughs can be obtained in the quality control research study of TCMs.
引文
[1]Niu GG, Xie YC, Lou JF, Liu HZ, Isolation and purification of glycyrrhizic acid with solvent extraction[J]. Separation and Purification Technology,2005,44(3):189-192.
    [2]Hartonen K, Parshintsev J, Sandberg K, Bergelin E, Nisula L, Riekkola ML, Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques[J]. Talanta,2007,74(1):32-38.
    [3]Tung YT, Chang WC, Chen PS, et al., Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds[J]. Journal of Separation Science, 2011,34(7):844-851.
    [4]Xia EQ, Ai XX, Zang SY, et al., Ultrasound-assisted extraction of phillyrin from Forsythia suspense[J]. Ultrasonics Sonochemistry,2011,18(2):549-552.
    [5]黄爱华,曾元儿,迟玉广等,正交试验优选枳实中新橙皮苷的提取工艺[J].中药新药与临床药理,2009,20(6):580-582.
    [6]谷建,刘宇,梁剑平等,均匀设计优化超声提取黄花补血草中总黄酮[J].中药材,2009,32(12):1910-1912.
    [7]孟国良,王峰祥,白花丹参多糖的超声提取工艺研究[J].现代中药研究与实践,2009,23(1):67-68.
    [8]Xu LY, Tian LQ, Li K, et al., Study on the volatile oil by SFE-CO, from crude and processed Rhizoma Atractylodis by GC-MS. Zhong Yao Cai,2007,30 (1):16-20.
    [9]Al-Marzouqi AH, Rao MV, Jobe B, Comparative evaluation of SFE and steam distillation methods on the yield and composition of essential oil extracted from spearmint (Mentha spicata) [J]. Journal of Liquid Chromatography & Related Technologies,2007,30 (4):463-475.
    [10]罗艳萍,郭立玮,朱方剑,贯叶连翘超临界提取物的高效液相色谱分析[J].中成药,2009,31(4):582-584.
    [11]张瑞菊,张国英,孙海波等,苦参中黄酮类化合物的超临界提取及定性研究[J].时珍国医国药,2009,20(7):1764-1766.
    [12]He ZY, Xia WS, Microwave-assisted extraction of phenolics from Canarium album L. and identification of the main phenolic compound[J]. Natural Product Research,2011,25(2):85-92.
    [13]Jin ZX, Wang BQ, Chen ZJ, Microwave-assisted extraction of tannins from Chinese herb Agrimonia pilosa Ledeb [J]. Journal of Medicinal Plants Research,2010, 4(21):2229-2234.
    [14]Yingjia Yu, Taomin Huang, Gengli Duan, Development of gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase micro extraction for rapid determination of volatile constituents in ginger[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,43:24-31.
    [15]蒋永红,唐仕荣,银杏渣中多糖的超声波-微波协同萃取及抗氧化性研究[J].食品工业科技,2009,30(7):244-246.
    [16]周明,杜欣,杨德等,超声波-微波协同萃取对灵芝多糖提取率的影响[J].湖北农业科学,2009,48(7):1727-1729.
    [17]唐仕荣,宋慧,刘全德等,超声波-微波协同萃取姜辣素的工艺研究[J].食品与机械,2008,24(6):76-79.
    [18]卢凯,微波的原理及特点.农业机械化与电气化,2007(1):61-62.
    [19]黄宏嘉,微波原理.1963,北京:科学出版社.
    [20]丁轶文,丁光宏,红外辐射光谱在针灸研究中的应用[J].针刺研究,2006,31(4):252-255.
    [21]李文永,王玉玲,马登程,吴磊磊,红外技术在临床医学领域中的应用[J].高校理科研究,2008,1:118.
    [22]Mirzoev EB, Kobyalko VO, Zeinalov AA, et al. The use of electromagnetic radiation in the ultraviolet and infrared ranges in technologies for farrow sows keeping [J]. Sel'skokhozyaistvennaya Biologiya,2008,2:78-83.
    [23]夏朝勇,朱文学,张仲欣,红外辐射技术在农副产品加工中的应用与进展[J].农机化研究,2006,1:196-201.
    [24]Lee SC, Kim JH, Jeong SM, Kim DR, Effect of far-infrared radiation on the antioxidant activity of rice hulls [J]. J. Agric. Food Chem.2003,51(15):4400-4403.
    [25]Lee SC, Jeong SM, Kim SY, Nam KC, Ahn, DU, Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls [J]. J. Agric. Food Chem.2005,53(5):1495-1498.
    [26]Lee SC, Kim SY, Jeong SM, Park JH, Effect of far-infrared irradiation on catechins and nitrite scavenging activity of green tea [J]. J. Agric. Food Chem.2006, 54(2):399-403.
    [27]Lee SC, Jeong SM, Kim SY, Park HR, Nam KC, Ahn, DU, Effect of far-infrared radiation and heat treatment on the antioxidant activity of water extracts from peanut hulls [J]. Food Chem.2006,94:489-493.
    [28]Bao HM, Liu T, Zhang LY, et al., Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping [J]. Proteomics,2009. 9(4):1114-1117.
    [29]Bao HM, Liu T, Chen X, et al., Efficient In-Gel Proteolysis Accelerated by Infrared Radiation for Protein Identification [J]. Journal of Proteome Research,2008, 7(12):5339-5344.
    [30]Wang S, Liu T, Zhang LY, et al., Efficient Chymotryptic Proteolysis Enhanced by Infrared Radiation for Peptide Mapping [J]. Journal of Proteome Research,2008, 7(11):5049-5054.
    [31]Wang S, Bao HM, Zhang LY, et al., Infrared-Assisted On-Plate Proteolysis for MALDI-TOF-MS Peptide Mapping [J]. Analytical Chemistry,2008,80(14): 5640-5647.
    [1]Lam FY, Ng SCW, Cheung JHY, Yeung JHK, Mechanisms of the vasorelaxant effect of Danshen (Salvia miltiorrhiza) in rat knee joints. J. Ethnopharmacol.2006, 104 (3):336-344.
    [2]Fish JM, Welcohons DR, Kim YS, Lee SH, Ho WK, Antzelevitch C, Dimethyl lithospermate B, an extract of Danshen, suppresses arrhythmogenesis associated with the Brugada syndrome. Circulation,2006,113 (11):1393-1400.
    [3]Lam FY, Yeung JHK, Cheung JHY, et al. Pharmacological evidence for calcium channel inhibition by Danshen (Salvia miltiorrhiza) on rat isolated femoral artery. J. Cardiovasc. Pharmacol.2006,47(1):139-145.
    [4]Zhou LM, Zuo Z, Chow MSS, Danshen:An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol.2005,45(12): 1345-1359.
    [5]Li LN, Water Soluble Active Components of Salvia miltiorrhiza and Related Plants. Zhong Guo Yao Xue 1997,6,57-58.
    [6]Zheng GH, Kakisawa H, Zhong Guo Zhong Yao Za Zhi 1989,24,6-8.
    [7]Tang MK, Ren DC, Zhang JT, Du GH, Effect of salvianolic acids from Radix Salviae miltiorrhizae on regional cerebral blood flow and platelet aggregation in rats. Phytomedincine,2002,9 (5):405-409.
    [8]Chan K, Chui SH, Wong DYL, Ha WY, Chan CL, Wong RNS, Protective effects of Danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sci.2004,75 (26):3157-3171.
    [9]An LK, Bu XZ, Wu HQ, Guo XD, Ma L, Gu LQ, Reaction of tanshinones with biogenic amine metabolites in vitro. Tetrahedron,2002,58 (52):10315-10321.
    [10]The Pharmacopoeia Commission of PRC. Pharmacopoeia of the People's Republic of China, Version 2005, vol.1, Bejing Chemical Industry Press Beijing 2005, p 52.
    [11]Chen YF, Jaw I, Shiao MS, Tsai TH, Determination and pharmacokinetic analysis of salvianolic acid B in rat blood and bile by microdialysis and liquid chromatography. J. Chromatogr. A,2005,1088(1-2):140-145.
    [12]Ma HL, Qin MJ, Qi LW, Wu G, Shu P, Improved quality evaluation of Radix Salvia miltiorrhiza through simultaneous quantification of seven major active components by high-performance liquid chromatography and principal component analysis. Biomed. Chromatogr.2007,21(9):931-939.
    [13]Chen AJ, Li CH, Gao WH, Hu ZD, Chen XG, Separation and determination of active components in Schisandra chinensis Baill. and its medicinal preparations by non-aqueous capillary electrophoresis. J. Pharm. Biomed. Anal.2005,37(4):811-816.
    [14]Chen AJ, Zhang JY, Li CH, Chen XF, Hu ZD, Chen XG, Separation and determination of active components in Radix Salviae miltiorrhizae and its medicinal preparations by nonaqueous capillary electrophoresis. J. Sep. Sci.2004,27(7-8): 569-575.
    [15]Ye ZL, Hu CC, Fan XH, Cheng YY, Simultaneous analysis of seven major saponins in Compound Danshen Dropping Pills using solid phase extraction and HPLC with DAD and ESI-MS detectors. J. Liq. Chromatogr. Relat. Technol.2006, 29(11):1575-1582.
    [16]Hu P, Liang QL, Luo GA, Zhang ZZ, Jiang ZH, Multi-component HPLC fingerprinting of radix salviae miltiorrhizae and its LC-MS-MS identification. Chemical & Pharmaceutical Bulletin,2005,53(6):677-683.
    [17]Chen JH, Wang FM, Lee FSC, Wang XR, Xie MY, Separation and identification of water-soluble salvianolic acids from Salvia miltiorrhiza Bunge by high-speed counter-current chromatography and ESI-MS analysis. Talanta,2006,69(1):172-179.
    [18]Liu SH, Zhang XG, Sun SQ, Discrimination and feature selection of geographic origins of traditional Chinese medicine herbs with NIR spectroscopy. Chin. Sci. Bull. 2005,50(2):179-184.
    [19]Liu M, Li YG, Chou GX, Cheng XM, Zhang M, Wang ZT, Extraction and ultra-performance liquid chromatography of hydrophilic an lipophilic bioactive components in a Chinese herb Radix Salviae Miltiorrhizae. J. Chromatogr. A 2007, 1157(1-2):51-55.
    [20]Qu HB, Zhai XJ, Shao Q, Cheng YY, Simultaneous determination of seven active compounds in radix salviae miltiorrhizae by temperature-control led ultrasound-assisted extraction and HPLC. Chromatographia,2007,66(1-2):21-27.
    [1]Zheng JL, Wang MH, Yang XZ, Wu LJ, Study on bacteriostasis of isatis indigotic fort. Chin. J. Microecol.2003,15:18-19.
    [2]Fang JG, Hu Y, Tang J, Wang WQ, Yang ZQ, Antiviral effect of Folium Isatidis on herpes simplex virus type I, Chin. J. Chin. Mat. Med.2005,30:1343-1346.
    [3]Fang JG, Shi CY, Tang J, Wang WQ, Liu YH, Screening of active fraction of antiendotoxin from Folium Isatidis. Chin. Tradit. Herbal Drugs.2004,35:60-62.
    [4]Bradbury J, From Chinese medicine to anticancer drugs, Drug Discov. Today. 2005:10:1131-1132.
    [5]Pan ZA, Sun XF (Eds.), Chinese Pharmacopoeia, first ed., Council of China. Beijing,2005,142-143.
    [6]Sugihara K, Kitamura S, Yamada T, Okayana T, et al., Aryl hydrocarbon receptor-mediated induction of microsomal drug-metabolizing enzyme activity by indirubin and indigo. Biochemical and biophysical research communications,2004, 318:571-578.
    [7]Mak NK, Leung CY, Wei XY, Shen XL, Wong RNS, Fung MC, Inhibition of RANTES expression by indirubin in influenza virus-infected human bronchial epithelial cells. Biochem. Pharmacol.2004,67:167-174.
    [8]Wang L, Liu X, Chen R, Liu MX, et al., New use of indigoid bisindole derivatives for treating cancer, psoriasis, neurodegenerative disorders, glomerulonephritis, PCT Int. Appl.2003:63-65.
    [9]Oka H, Ikai Y, Ohno T, Kawamura N, et al., Identification of unlawful food dyes by thin-layer chromatography fast-atom-bombardment mass-spectrometry. J. Chromatogr. A.1994,674:301-307.
    [10]Sun LX, Tang H, Yin P, Ling LL, Bi KS, Determination of the Content of Indigo and Indirubin in the Indigowoad Root and Leaves by RP-HPLC, J. Shenyang Pharm. Univ.2000,17:191-193.
    [11]Deng XY, Zheng SN, Gao GH, Fan G, Li F, Determination and pharmacokinetic study of indirubin in rat plasma by high performance liquid chromatography. Phytomedicine,2008,15:277-283.
    1. Ani V, Varadaraj MC, Naidu KA. Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin [J]. European Food Research and Technology,2006,224(1):109-115.
    2. Jalali-Heravi M, Zekavat B, Sereshti H. Use of gas chromatography-mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway [J]. Journal of Chromatography A,2007, 1143(1/2):215-226.
    3.杨文菊,杨涛,刘龙,等.气相色谱质谱法测定孜然挥发油中枯茗醛含量的方法研究[J].食品科学,2009,30(6):208-212.
    4. Shetty RS, Singhal RS, Kulkarni PR. Antimicrobial properties of cumin [J]. World Journal of Microbiology & Biotechnology,1994,10(2):232-233.
    5. Tunc I, Berger BM, Erler F, et al., Ovicidal activity of essential oils from five plants against two stored-product insects [J]. Journal of Stored Products Research, 2000,36(2):161-168.
    6. Dhandapani S, Subramanian VR, Rajagopal S, et al., Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats [J]. Pharmacological Research,2002,46(3):251-255.
    7. Nalini N, Sabitha K, Viswanathan P, et al., Influence of spices on the bacterial (enzyme) activity inexperimental colon cancer [J]. Journal of Ethnopharmacology, 1998,62(1):15-24.
    8. Allahghadri T, Rasooli I, Owlia P, et al., Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran[J]. Journal of Food Science,2010,75(2):54-61.
    9. Dhandapani S; Subramanian R; Rajagopal S, et al., Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats[J]. Pharmacological Research, 2002,46(3):251-255.
    10. Cao J, Qi ML, Zhang Y, et.al., Analysis of volatile compounds in Curcuma by headspace solvent microextraction-gas chromatography-mass spectrometry [J]. Analytica Chimica Acta,2006,561(1-2):88-95.
    11. Zahradnickova H, Bouman EAP, Optimization of the solid-phase micro- extraction method in the determination of Ixodes ricinus(L.) volatiles[J]. Journal of Separation Science,2006,29(2):236-241.
    12 Lopez P, Huerga MA, Batlle R, et al., Use of solid phase microextraction indiffusive sampling of the atmosphere generated by different essential oils[J]. Analytica Chimica Acta,2006,559(1):97-104.
    13. Theodoridis G, Application of solid phase microextraction in the investigation of protein binding of pharmaceuticals. [J]. Journal of Chromatography B-analytical Technologies in The Biomedical and life Sciences,2006,830(2):238-244.
    14. Kwon JH, Choi YH, Chung HW, et al., The characteristics of a microwave extraction process used for saikosaponins from Bupleurum falcatum root [J]. International Journal of Food Science and Technology,2006,41(1):67-75.
    15.杨艳,吴素玲,张卫明,孙晓明,张锋伦,微波辅助水蒸汽蒸馏法和无溶剂微波萃取法提取孜然精油工艺的研究[J].食品科学,2009,30(8):42-46.
    16. Yu YJ, Huang TM, Duan GL, et al., Development of gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-Phase microextraction for rapid determination of volatile constituents in ginger [J]. Journal of Pharmaceutieal and Biomedieal Analysis 2007,43,24-31.
    1. Gedye R, Smith F, Westaway K, et al., The use of Microwave-Ovens For Rapid Organic-Synthesis[J]. Tetrahedron Lett,1986,27(3):279-282.
    2. Giguere RJ, Bray TL, Duncan SM, et al., Application of Commercial Microwave-Ovens To Organic-Synthesis [J]. Tetrahedron Lett,1986,27(41):4945-4948.
    3.张洁,周国川,蒋奎,李举联,何菱,微波辅助含氮杂环的N-芳基化反应,华西药学杂志,2004,19(4):250-253.
    4. Zhang D, Crivello JV, Stoffer JO, Polymerizations of epoxides with microwave energy [J]. Polym.Sci.partA:Polym.Phys.2004,42(23):4230-4246.
    5. Bagley MC, Jenkins RJ, Lubinu MC, et al., A simple continuous flow microwave reactor [J]. J. Org. Chem.,2005,70(17):7003-7006.
    6. Santagada V, Perissutti E, Caliendo G, The application of microwave irradiation as new convenient synthetic procedure in drug discovery[J]. Curr Med Chem,2002, 9(13):1251-1283.
    7. Yang BH, Buchwald SL. Palladium-catalyzed amination of aryl halides and sulfonates [J]. Organomet Chem,1999,576(1-2):125-146.
    8.李靖,董社英,陈双莉,戈蔓,水杨酸甲酯合成实验的改进[J].大学化学,23(2):44-47.
    9.程定海,山桂云,李述燕,水杨酸甲酯的合成研究[J].西华师范大学学报(自然科学版),2004,25(4):434-436.
    [1]赵永良,王超,韩亚朋,等.中药现代化研究关键问题与前景[J].中国医药指南,2011,9(4):123-126.
    [2]谢振伟,但德忠,赵燕,周娜.超声波辅助萃取技术在样品预处理中的应用[J].化学通报,2005,68(8):W090.
    [3]吴素仪,丘泰球,范晓丹.超声波在中草药有效成分提取应用中的研究进展[J].江苏中医药,2008,4(7):93-94.
    [4]王铮敏.超声波在植物有效成分提取中的应用[J].三明高等专科学校学报,2002,19(4):45-47.
    [5]Tung, YT, Chang WC, Chen PS, et al. Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds [J]. Journal of Separation Science. 2011,34(7):844-851.
    [6]Xia EQ, Ai XX, Zang SY, et al. Ultrasound-assisted extraction of phillyrin from Forsythia suspense [J]. Ultrasonics Sonochemistry,2011,18(2):549-552.
    [7]Trendafilova A, Chanev C, Todorova M. Ultrasound-assisted extraction of alantolactone and isoalantolactone from Inula helenium roots [J]. Pharmacognosy Magazine,2010,6(23):234-237.
    [8]Chen XP, Wang WX, Li SB, et al. Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells [J]. Carbohydrate Polymers,2010,80(3):944-948.
    [9]贲永光,丘泰球,李金华.双频超声强化对三七总皂苷提取的影响[J].江苏大学学报(自然科学版),2007,28(1):12-16.
    [10]张晓燕,丘泰球,徐彦渊.不同超声作用方式对葛根有效部位提取率的影响[J].应用声学,2006,25(3):151-155.
    [11]Hauthall WH. Advances with supercritical fluids [J]. Chemosphere,2001,43 (1): 1231.
    [12]Johnston KP, et al. Water in carbon dioxide microemulsions:an environment for hydrophiles including proteins [J]. Science,1996,271:6241.
    [13]陈伟,吴畏,黄开华,等.超临界流体技术在生物资源活性成分萃取中的应用及展望[J].上海农业学报,2009,25(1):135-138.
    [14]Benelli P, Riehl CAS, Smania A, et al. Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: Mathematical modeling and extract composition [J]. Journal of Supercritical Fluids, 2010,55(1):132-141.
    [15]唐倩,杨元娟,杨宪.超临界流体萃取红豆杉中有效成分的工艺优化[J].重庆医学,2010,39(23):3173-3177.
    [16]Ma Q, Huang Z. Extraction of carotenoids from calyx of Physalis alkekengi var. francheti by supercritical CO2 [J]. Science and Technology of Food Industry,2011, 32(1):250-252.
    [17]Yu ST, Chu JY, Wang N, Wang S, et al. Supercritical Fluid CO2 Extraction of Radix Peucedani Volatile Oil and Componens Analysis[J]. Journal of Food Science and Biotechnology,2010,29(2):255-257.
    [18]张卫强,邓宇.微波辐射技术在天然产物活性成分萃取中的应用[J].化学工业与工程技术,2008,22(5):1-3.
    [19]王琴.微波辅助萃取技术在天然产物活性成分提取中的研究[J].内蒙古科技与经济,2008,174(20):90-94.
    [20]He ZY, Xia WS. Microwave-assisted extraction of phenolics from Canarium album L. and identification of the main phenolic compound [J]. Natural Product Research,2011,25(2):85-92.
    [21]Chi YS, Zhang ZD, Li CP, et al. Microwave-assisted extraction of lactones from Ligusticum chuanxiong Hort. using proticionic liquids[J]. Green Chemistry,2011, 13(3):666-670.
    [22]Liazid A, Guerrero RF, Cantos E, et al. Microwave assisted extraction of anthocyanins from grape skins [J]. Food Chemistry,2011,124(3):1238-1243.
    [23]Yu YJ, Huang TM, Duan GL, et al. Development of gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-Phase microextraction for rapid determination of volatile constituents in ginger[J]. Journal of Pharmaceutieal and Biomedieal Analysis,2007,43:24-31.
    [24]Jiang CZ, Sun Y, Zhu XN, et al. Solvent-free microwave extraction coupled with headspace single-drop microextraction of essential oils from flower of Eugenia caryophyllata Thunb [J]. Journal of Separation Science,2010,33(17-18): 2784-2790.
    [25]Wang ZM, Ding L, Li TC, Zhou X, et al. Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim[J]. Journal of Chromatography A,2006,1102:11-17.
    [26]李嘉蓉主编.天然药物化学试验[M],北京:中国医药科技出社,1998,25-27.
    [27]席国萍,宋国斌.大孔吸附树脂分离纯化黄连小檗碱研究[J].中国医药导报,2011,8(5):44-46
    [28]Gong ZH, Ren GP, Shu QX, Xiao WJ. Study on Separation and Purification of Chlorogenic Acid from Honeysuckle Flower by Macroporous Resin [J]. Journal of Instrumental Analysis,2011,30(1):85-90.
    [29]Sun R, Fu K, Fu YJ, et al. Preparative separation and enrichment of four taxoids from Taxus chinensis needles extracts by macroporous resin column chromatography [J]. Journal of Separation Science,2009,32(9):1284-1293.
    [30]张兆旺,孙秀梅.试论“半仿生提取法”制备中药口服制剂[J].中国中药杂志,1995,20(11):670.
    [31]王宇卿,闰明,贺金华,陈文,杨媛媛,董晓全.中药半仿生提取法的研究进展[J].医药导报,2007,26(7):754-756.
    [32]Yang GY, Du SM, Huang LY. Optimization of Semi-bionic Extraction Technology of Tinosporae Radix by Uniform Design, China Pharmacy,2010,21 (39): 3689-3690.
    [33]李立,周芳,刘敏,等.半仿生法提取黄岑苷的研究[J].中成药,2007,29(10):1527-1529.
    [34]Wang R, Liu XY, Ma LZ, Gao PM. Optimization of the Extraction Condition of Semi-bionic Extraction and Antibacterial Activities for Ardisia crenata Sims of Miao Nationality Herba [J]. Lishizhen Medicine and Materia Medica Research,2009, 20(12):3092-3094.
    [35]Zhao XM, Sun XM, Zhang ZW, Hui JG, Experimental studies on Compound Duzhong Jiangya Preseription by semi-bionic extraction[J]. Zhongguo ZhongyaoZaZhi,2007,32 (21):2247-2252.
    [36]马建民,王振铃,于凤芝,向双云.中药有效成分提取新技术的应用综述[J].中国兽药杂志,2008,42(5):46-49.
    [37]肖连东.酶法改性麦芽蛋白功能特性的研究[J].中国食品学报,2009,9(5):151-156.
    [38]韩伟,马婉婉,骆开荣.酶法提取技术及其应用进展[J].中国制药装备,2010,17(6):15-18.
    [39]张帅,沈楚燕,董基.酶法提取猴头菇多糖的研究[J].河南工业大学学报(自然科学版),2010,31(2):76-79.
    [40]项雷文,陈文韬.纤维素酶法提取杭白菊中总黄酮工艺优化[J].化学工程与装备,2009(5):26-29.
    [41]Zhang B, Hou XZ. Study on Extraction of Total Flavonoids from Bergamot by Compound Enzymolysis[J]. Food Research and Development,2010,31(10):188-192.
    [42]戴瑜,李姣娟,周尽花,等.半纤维素酶法提取杜仲叶绿原酸[J].林业科技开发,2009,23(3):96-99.
    [43]郁军,岳鹏翔,程其春,等.酶法改性甜菊糖甙的工艺研究[J].食品科学,2008,29(8):214-218.
    [44]殷涌光,闫琳娜,于庆宇,等.酶解法提高松针黄酮抗氧化性能试验[J].农业机械学报,2009(6):129-132.
    [45]Oka F, Oka H, Ito Y. Systematic search for suitable two phase solvent systems for high-speed counter-current chromatograph [J]. Journal of Chromatography A,1991, 538(1):99-108.
    [46]刘高宏,魏立莉.高速逆流色谱技术在中药有效成分分离领域中的应用[J].甘肃中医,2010,23(11):62-64.
    [47]Berthod A, Schmitt N. Water-organic solvent systems in counter-current chromatography:liquid stationary phase retention and solvent polarity [J]. Talanta, 1993,40:1489-1498.
    [48]祝顺琴,谈锋.高速逆流色谱在天然产物分离中的应用[J].中国医药工业杂志,2005,36:788-791.
    [49]Guan RJ, Wang DJ, Yu ZY, et.al. Preparative isolation and purification of the active components from Viticis Fructus by high-speed countercurrent chromatography [J]. Chinese Journal of Chromatography,2011,28 (11):1043-1047.
    [50]Zhan KY, Xu K, Yin HZ. Preparative separation and purification of gingerols from ginger (Zingiber officinale Roscoe) by high-speed counter-current chromatography [J]. Food Chemistry,2011,126(4):1959-1963.
    [51]程悦,严志勇,卢嘉丽,叶创兴,王冬梅.高速逆流色谱分离制备苦茶中的苦茶碱[J].中山大学学报(自然科学版),2010,49(3):65-69.
    [52]Chu X, Sun A L, Liu R M. Preparative isolation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography [J]. J Chromatogr A,2005,1097(1/2): 33-39.
    [53]Liu Z, Du Q, Wang K, et al. Completed preparative separation of alkaloids from Cephaltaxus fortunine by step-pH-gradient high-speed counter-current chromatography [J]. J. Chromatogr. A,2009,1216(22):4663-4667.
    [54]Tong SQ, Yan JZ, Guan YX. Preparative separation of isomeric caffeoylquinic acids from Flos Lonicerae by pH-zone-refining counter-current chromatography [J]. J. Chromatogr. A,2008,1212(1/2):48-53.
    [55]Jerz G, Wybraniec S, Gebers N, et al. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry [J]. J. Chromatogr. A,2010,1217(27):4544-4554.
    [56]冯银巧,周如金,唐玉斌,胡鑫鑫.分子印迹技术在固相萃取中的应用[J].理化检验(化学分册),2011,47(1):125-128.
    [57]白杨.分子印迹聚合物简介及研究进展[J].江西蓝天学院学报,2007,2(2):25-28.
    [58]Robert W, Alexandra M, Michael J. et al. Molecular imprinting and solid phase extraction of flavonoid compounds [J]. Bioseparation,2002,10(6):379-387.
    [59]颜流水,井晶,黄智敏,等.槲皮素分子印计聚合物的制备及固相萃取性能研究[J].分析试验室,2006,25(5):97-100.
    [60]向海燕,周春山,钟世安,等.白藜芦醇分子印迹聚合物合成及其对中药虎杖提取液活性成分的分离[J].应用化学,2005,22(7):739-743.
    [61]陈立娜,都述虎,马坤芳,蔡政.分子印记技术在葛根素分离中的应用及溶剂对聚合物识别能力的影响[J].林产化学与工业,2008,28(3):18-22.
    [62]Yan FC, Peng N, Wang M, Huang XS. Preparation of Molecularly Imprinted Polymers for 6-Gingerol Separation [J]. Food Science,2009,30(20):227-230.
    [63]赵玉,徐雅琴,崔崇士,等.超声波协同复合酶法提取南瓜多糖最佳条件的研究[J].农产品加工,2009(7):13-15.
    [64]Glisic SB, Ristic M, Skala DU. The combined extraction of sage (Salvia officinalis L.) ultrasound followed by supercritical CO2 extraction [J]. Ultrasonics Sonochemistry,2011,18(1):318-326.
    [65]马涛,毛红燕,石太渊,刘德明.五味子多糖的微波辅助-半仿生提取工艺优化[J].中国食品学报,2011,11(1):98-105.
    [66]唐仕荣.微波-超声波协同萃取银杏黄酮的工艺研究[J].云南化工,2007,34(3):13-16.
    [67]Cai H, Yang GY, Ye F, Huang LY, Wang G. Optimization of the extraction technology of Semi-bionic Enzyme from water-soluble component of Salvia miltiorrhiza of Fangling by Orthogonal Test[J]. China Pharmacy,2011,22(3): 222-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700