水基压裂液高温延缓型交联剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国低渗透油气藏具有类别多、含量高、分布广等特点,储量约占探明储量的2/3以上,开发潜力巨大。该类油气田具有储层致密、渗透率低、喉道微细等特征,易发生永久堵塞伤害作用。因此,低渗透油气储层对压裂液体系的性能要求更高,要求压裂液返排能力较好且对储层伤害较小。
     针对低渗透油气田的上述特征,为改善现有水基压裂液破胶不彻底、不易返排,对储层渗透率的伤害较大等缺陷,本文合成了两种高温延缓型交联剂:有机硼交联剂BOC-1和有机锆交联剂ZOC-1,二者复配制得有机硼锆交联剂BZC-1。相比较现有有机硼、有机锆交联剂,本文在稠化剂种类和交联体系pH值等方面有所改变。分别以聚乙烯醇(PVA)、羧甲基羟丙基胍胶(CarboxymethylHydroxypropyl Guar gum,简称CMHPG)和羟丙基胍胶(Hydroxypropyl Guar gum,简称HPG)为稠化剂,开发了有机硼/聚乙烯醇(BOC/PVA)、有机锆/羧甲基羟丙基胍胶(ZOC/CMHPG)、有机硼锆/羟丙基胍胶(BZC/HPG)交联压裂液体系。同时,研究了不同因素对凝胶性能的影响,并对压裂液进行了室内评价。所得结果如下:
     (1)BOC-1的最佳合成工艺为:硼砂20%,甘露醇13.5%,水/丙三醇(体积比3:1)混合溶剂65%,NaOH1.5%。pH值9~10,反应温度80℃,反应时间4~5h。
     ZOC-1的最佳合成工艺为:氧氯化锆8%,甘露醇/乳酸25%,水/丙三醇(体积比3:1)混合溶剂65%,NaOH2%。pH值3~4,反应温度85℃,反应时间4~5h。
     BOC-1与ZOC-1以质量比1:1复配,搅拌均匀后可制得易破胶、耐高温的有机硼锆交联剂BZC-1。
     (2)BOC-1、ZOC-1及BZC-1凝胶具有良好的延缓交联性能,延缓交联时间分别可达70~120s、85~125s、80~120s。可通过调节体系温度、pH值及交联比等,控制交联时间和凝胶性能。
     (3)室内研究了稠化剂浓度、交联比、pH值、温度对凝胶性能的影响,确定了BOC/PVA、ZOC/CMHPG、BZC/HPG压裂液基本配方为:1.5%/0.8%/0.6%稠化剂+1.5%/2%/1.5%交联剂+1.5%/2%/2%pH调节剂%+1%/1%/1%破胶剂+1%/1%/1%黏土稳定剂。
     (4)参照《SY/T5107-2005水基压裂液性能评价方法》和《SY/T6376-2008压裂液通用技术条件》对三种压裂液体系进行了性能评价,结果表明:BOC/PVA、ZOC/CMHPG、BZC/HPG压裂液体系具有良好的流变性能,耐温温度分别可达95℃、115℃、130℃,对应温度下的剪切表观黏度分别为70~80mPa·s、80~90mPa·s、80~90mPa·s,具有较好的耐剪切性能,携砂性能良好。
     (5)BOC/PVA、ZOC/CMHPG、BZC/HPG压裂液体系破胶液黏度低,最大黏度分别为6mPa s、4.8mPa s和5.5mPa s;残渣量低,分别为100mg/L、321mg/L和208mg/L;对岩心伤害率低,分别为15.02%、24.51%和20.41%,低于行业标准的规定。
     (6)BZC/HPG压裂液体系中加入吸附抑制剂,可有效改善有机锆交联剂对储层伤害严重的缺点。兼具BOC/PVA体系耐剪切、对储层伤害小和ZOC/CMHPG体系耐高温的优点,适于低渗透高温深井压裂改造。
     结果表明,开发的压裂液体系耐温耐剪切性能良好、破胶液残渣量低且对岩心伤害较小,适于高环保要求、不同井深井温的低渗透油气储层压裂改造。
The distribution of low permeability oil and gas resources in Chinais more oil and gas, more hydrocarbon reservoir types, wide distributionarea,etc. The reserves accounts for more than two-thirds of the provenreserves, they have great potential for exploitation. The oil and gas fieldhas dense reservoir, low permeability, larynx way subtle features,subject to have permanent jams damage effect. Therefore, lowpermeable oil and gas reservoir has higher requirements on theperformance of fracturing fluid system. Requires the discharge abilityof fracture fluid return is better and less damage to the formation.
     According to the above characteristics of low permeable oil andgas fields, to improve the defects that existing water-based fracturingfluid can’t gelout completely, can’t easy to backflow, and damage onreservoir permeability is big, two water-based fracturing fluidhigh-temperature delayed crosslinking agent were synthesized: boron-organic crosslinking agent BOC-1and zirconium-organic crosslinkingagent ZOC-1. Boron&zirconium-organic crosslinking agentBZC-1were blended with both BOC-1and ZOC-1. Compared to theexisting organic boron&organic zirconium crosslinking agent, we’vedone some improvement on thickener types and crosslinking system pHvalue. Using polyvinyl alcohol (PVA) respectively, carboxymethylhydroxypropyl guar gum (CMHPG) and hydroxypropyl guar gum (HPG)as thickening agent, developed organic boron/polyvinyl alcohol(BOC/PVA), organic zirconium/carboxymethyl hydroxypropyl guargum (ZOC/CMHPG), organic boron zirconium/hydroxypropyl guar gum(BZC/HPG) crosslinked fracturing fluid system. At the same time, thispaper studies the different factors on the performance of thecrosslinking frozen glue, and evaluates the fracture fluid in laboratory. The results are as follows:
     (1) The best synthetic process of BOC-1:20%of borax,13.5%ofmannitol,65%of water/glycerin(3:1volume ratio),1.5%of NaOH,pH value9~10, reaction temperature80℃, reaction time4~5h.
     The best synthetic process of ZOC-1:8%of zirconium oxychloride,25%of mannitol/lactic acid,65%of water/glycerin(3:1volume ratio),2%of NaOH, pH value3~4, reaction temperature85℃, reaction time4~5h.
     The mass ratio of BOC-1and ZOC was1:1, compound them andadd special absorption inhibitors, stir and get easy gel breaking, hightemperature resistant organic boron zirconium crosslinker BZC-1.
     (2) BOC-1, ZOC-1and BZC-1crosslinked gel have good delaycrosslinking properties, delay crosslinking time can be up to70~120s、85~125s、80~120s respectively. We can control crosslinking time andfrozen glue performance by adjusting the system temperature, pH valueand crosslinking ratio, etc.
     (3) In laboratory, we studied influence of the thickener amount,crosslinkeing ratio, pH value and temperature on crosslinking frozenglue,determined the basic formula of BOC/PVA, ZOC/CMHPG andBZC/HPG fracturing fluid system:1.5%/0.8%/0.6%thickener+1.5%/2%/1.5%crosslinking agent+1.5%/2%/2%pH regulator+1%/1%/1%gel breaking agent+1%/1%/1%clay stabilizer.
     (4) With reference to “the SY/T5107-2005water-based fracturingfluid performance evaluation method "and" SY/T6376-2008fracturingfluid general technology conditions”, the performance evaluationresults of the three kinds of fracturing fluid system show that:BOC/PVA, ZOC/CMHPG and BZC/HPG fracturing fluid system havegood rheological properties, the best temperature is up to95℃,115℃and130℃respectively, the apparent shear viscosity undercorresponding temperature is respectively70~80mPa·s,80~90mPa·sand80~90mPa·s, had better resistance to shear performance, goodproppant carrying capacity.
     (5) BOC/PVA, ZOC/CMHPG and BZC/HPG fracturing fluid system have low gel breaking liquid viscosity, the biggest viscosity isrespectively6mPa s、4.8mPa s and5.5mPa s, low resikual volume,is respectively100mg/L,321mg/L and208mg/L, low core damage, is15.02%,24.51%and20.41%respectively, lower than theindustry-standard requirements.
     (6) By using composite inhibitor adsorption and special gelbreaking agent,BZC/of HPG fracturing fluid system combines theadvantages of BOC/PVA and ZOC/CMHPG fracturing fluid system,suitable for low permeability of the high temperature deep wellfracturing transformation.
     The results show that, the newly developed fracturing fluid systemhave good resistence of heat and shear, low glue residue, and low coredamage. It’s suitable for high environmental requirements and lowpermeability of deep well of oil and gas reservoir fracturingtransformation with different well depth and well temperature.
引文
[1]胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学,2009,11(8):35.
    [2]王岩楼,张传绪,于俊波等.低丰度低渗透低产油田增效开采技术[M].北京:石油工业出版社,2010:57-59,96.
    [3]万仁溥,罗英俊.采油技术手册[M].北京:石油工业出版社,1998,31-39.
    [4]吴信荣.压裂液、破胶剂技术及其应用[M].北京:石油工业出版社,2003,51-57.
    [5]付美龙,唐善法,黄俊英.油田应用化学[M].武汉:武汉大学出版社,2005,119-136.
    [6]王鸿勋,张琪.采油工艺原理(第一版)[M].北京:石油工业出版社,1989,215.
    [7]于涛,丁伟,罗洪君.油田化学剂(第二版)[M].北京:石油工业出版社,2008,72-80.
    [8] Colinet, I., V. Dulong, T. Hamaide, et al. Unusual rheological properties of anew associative polysaccharide in salt media[J]. Carbohydrate Polymers,2009,77(4):743-749.
    [9]李颖川.采油工程(第一版)[M].北京:石油工业出版社,2002,208-217.
    [10]卢拥军.九十年代国外压裂液技术发展的新动向[J].石油与天然气化工,1998,27(2):115-118.
    [11]赵小充,纪常杰.国外新型无伤害压裂液技术[J].国外油田工程,2000,(11):5.
    [12]梁文利,赵林,辛素云.压裂液技术研究新进展[J].断块油气田,2009,16(1):95-98.
    [13] Dawson, J.C., H.V. Le,D. Cramer. Successful Application of a NovelFracturing Fluid in the Wasatch Formation in Eastern[R]. SPE AnnualTechnical Conference and Exhibition. New Orleans, Louisiana,1998.
    [14] Weaver, J., E. Schmelzl, M. Jamieson, et al. New Fluid Technology AllowsFracturing Without Internal Breakers[R]. SPE Gas Technology Symposium.Calgary, Alberta, Canada,2002.
    [15] Peles, J., R.W. Wardlow, G. Cox, et al. Maximizing Well Production withUnique Low Molecular Weight Frac Fluid[R]. SPE Annual TechnicalConference and Exhibition. San Antonio, Texas,2002.
    [16] Norman Williamd, Jasinski Raymind.J, Nwlson Erik. B. Hydraulic fracturingprocess and compositions[P]. US5551516,1995-02-17.
    [17]任锰钢.气井压裂化学助剂的合成及室内评价研究[D].西安:西安理工大学,2011.
    [11] Pal, R. Rheological behaviour of surfactant-flocculated water-in-oilemulsions[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,1993,71(2):173-185.
    [13]李炳坤.井下工程[M].北京:石油工业出版社,1998,52-55.
    [14]陈立滇,程杰成.油田化学新进展[M].北京:石油工业出版社,1999,3-8.
    [17]谭明文,何兴贵,张绍彬等.泡沫压裂液研究进展[J].钻采工艺,2008,31(05):129-132.
    [18]唐燕祥.瓜尔胶与田菁胶化学改性的研究进展[J].矿冶,1995,4(3):67-71.
    [19]邹时英,王克,殷勤俭等.瓜尔胶的改性研究[J].化学研究与应用,2003,15(3):63-67.
    [20]崔元臣,周大鹏,李德亮.田菁胶的化学改性及应用研究进展[J].河南大学学报(自然科学版),2004,34(4):30-32.
    [21]高飞.香豆胶的化学改性及其生产工艺研究[D].西安:西安石油大学,2008.
    [22]许凯,王恩浦.金属交联羧甲基羟丙基纤维素的性质[J].油田化学,1992,9(2):116-121.
    [23] Daniel P. Vollmer,David J.Alleman. HEC no longer the preferredpolymer.SPE65398.2001
    [24] Carl lukach,Thomas CzMajewicz,Albert R.Reid, et al. Didydroxypropylmixed etherderivatives of cellulose. U.S. Patent,4,523,010.1984
    [25]艾伯特.R.雷德,小理查德.D.罗伊斯.制备羧甲基疏水改性的羟乙基纤维素(CMHMHEC)的方法.中国专利,88107171.1988.
    [26]曹森林,李德仪.酸化压裂添加剂的发展与展望[J].石油与天然气化工,1991,20(1):71-85.
    [27]张友松,胡克祥.我国变性淀粉生产现状及发展方向[J].精细与专用化学品,2003(18):3-5.
    [28] Brent L Estes, Cory J Bernu. Viscocification of heavy brines for use in oilfield uses microfibrous cellulose and stabilized nonionic starchderivative.U.S. patent,6,133,203.2000.
    [29]周亚军,王淑杰,于庆宇等.玉米变性淀粉压裂液稠化剂的研制[J].吉林大学学报(工学版),2003,33(3):64-67.
    [30]李秀花,陈进富,佟曼丽.近期国内外水基压裂液添加剂的发展概况[J].石油与天然气化工,1995,24(1):12-17.
    [31]罗建辉,陈桂英,孙广华等.一种耐温耐盐共聚物增稠剂[P].中国专利,98102592.1998.
    [32]罗建辉,卜若颖,白凤莺等.一种梳形抗盐聚合物增稠剂[P].中国专利,O1136798.2001.
    [33]韩秀山.聚丙烯酸钠的应用[J].四川化工与腐蚀控制,2002,5(2):17-20.
    [34]张斌,陈鸣才.丙烯酸酷类增稠剂的制备方法[P].中国专利,02149677.2002.
    [35]张文胜,任占春,秦利平等.水基植物压裂液用交联剂类型及性能[J].钻井液与完井液,1997,14(4):20-22.
    [36]王佳,怡宝安,杨文等.压裂液用硼交联剂作用机理分析[J].精细石油化工进展,2009,10(8):23-26.
    [37]任占春,张文胜,秦利平.SB-1有机硼交联剂研究及应用[J].断块油气田,1997,4(1):60-62.
    [38]刘洪升,王俊英,王稳桃等.高温延缓型有机硼交联剂OB-200合成研究[J].油田化学,2003,20(2):121-124.
    [39] Brannon H D.New Delayed Borate-Crosslinked Fluid Provides ImprovedFracture Conductivity in High-Temperature Applications[J].SPE22838,1991.
    [40]罗彤彤,卢亚平,潘英民.高温交联剂合成工艺研究[J].矿冶,2006,15(3):56-58.
    [41]卿鹏程.有机钛PC-500交联羟丙基瓜尔胶压裂液[J].油田化学,1999,16(3):224-227.
    [42]岳志强.柠檬酸铝交联剂的制备及其缓交联体系研究[J].特种油气藏,2008,15(1):74-76.
    [43]陈馥,阎醒,钟林等.有机硼交联HPG压裂液超低温破胶剂室内研究[[J].西南石油大庆石油学院学报,1999,21(2):7476.
    [44]赵忠扬,卢拥军,崔明月.优质植物胶水基压裂液系列研究与应用[J].石油与天然气化工,1997,26(3):185-187.
    [45]张文胜.新型压裂液破胶剂的研究与应用[J].钻井液与完井液,2002,19(4):10-12.
    [46]王栋,王俊英,王稳桃等.ZYEB胶囊破胶剂的研制[[J].油田化学,2003,20(3):220-223.
    [47] SandraE.Baranet.RichardM.Hodge Stabilized fluid and crosslinkertherefor[P].US, US,4686052,1987.
    [48] Kenneth H.Nimerick.Metali on crosslinked fracturing fluid and method[P].US, US5972850,1999.
    [49] DennisA.WilIiams.Crosslinker composition for high temperature Hydraulicfracturing fluids[P].US, US4534870,1985.
    [50] KathrynL.Payne.Control of crosslinking reaction rate using organnozircnatechelate crosslinking agent and aldehyde retarding agent[P].US,US4702848,1987.
    [51] RichardM.Hodge.Method of fracturing a subterranean formation usingdelayed crosslinker compositions containing organic titaniumcomplex[P].LS, US4749040,1988.
    [52] Richard M.Hodge.Delayed crosslinker composition containing organictitanium complexes and Hydroxyearboxylic [P].US, US4861500,1989.
    [53]关中原.硼交联水基凝胶压裂液的研究发展现状况.西安石油学院学报[J].1997,12(1):53-56.
    [54] S.N. Shah, D.L. Lord. Borate-Crosslinked fluid rheology under various pH,temperature and shear history conditions [J]. SPE37487,1997.
    [55] Naval Goel, Subhash N. Shah. A new empirical correlation to predict apparentviscosity of borate-crosslinked guar gel in hydraulic fractures [J]. SPE39816,1998.
    [56] Richard M. Hodge. Hydraulic fracturing method using delayed crosslinkercomposition[P]. US,US4749041,1988.
    [57] Gino Di Lu11o,PhiI Rae et al. Toward Zero Damage: New Fluid Points theWay [J]. SPE69453,2001.
    [58] Xiaolan Wang, Qi Qu,Scott McCarkhy et al. Successful application of boratecrosslinked fracturing fluids at high temperature[J]. SPE73789,2002.
    [59] R.J. Powll, M.A. Mccabe et al. Applicatiions of a new, effcient hydraulicfracturing fluid system[3].SPE38956,1997.
    [60] Roger John Card, Kenneth H.Nimerick et al. On-the-fly contro of delayedborate-crosslinking of fracturing fluids[PJ. US, US5877127,1999.
    [61] Travis C.Snyder, DustinL. Free et al. Delayed borate crosslinked fracturingfluid[P]. US, US6060436,2000.
    [62]张国宝,赵根锁,曹健.有机钛耐高温交联剂的合成及性能评价[J].河南科学,1997,15(4):405-409.
    [63]任占春,张文胜,秦利平.有机锆交联剂OZ-1应用研究[[J].油田化学,1997,14(3):274-276.
    [64]张文玉,孙永毅,冯兴武等.有机钛交联剂的合成工艺及应用[[J].河南石油,1998,12(6):40-42.
    [65]卿鹏程.有机钛PC-500交联羟丙基胍胶压裂液[J].油田化学,1999,1(63):225-227.
    [66]崔凌飞,路殡,沙纯.压裂液用有机钛鳌合物交联剂[J].继续教育,1996(2):25-26.
    [67]崔明月,陈彦东,杨振周.制备延迟交联耐高温硼压裂液的途径[J].油田化学,1994,11(3):214-219.
    [68]程运甫,何志勇,张胜传.延迟释放无机硼压裂液[J].钻井液与完井液,1998,15(2):20-22.
    [69]赵忠扬,卢拥军,杜长虹.优质植物胶水基压裂液系列研究与应用[J].石油与天然气化工,1997,26(3):185-187.
    [70]钱志富,王玉华译.新型高效水力压裂液系统的应用[J].新疆石油科技信息,2000,21(2):54-57.
    [71]宋兴福,宋道云,江体乾.香豆胶与有机硼交联过程流变性研究[J].石油与天然气化工,1999,28(3):205-207.
    [72]任占春,张文胜,秦利平.SB-1有机硼交联剂研究及应用[J].断块油气田,1997,4(1):60-62.
    [73]宋兴福,江体乾.香豆胶有机硼BCL-61交联反应动力学研究[J].石油与天然气化工,1999,28(4):292-296.
    [74]李爱山,孟祥和,秦利平等.新型有机硼交联剂SL-BOC-2的研制和应用[J].油田化学,1999,16(2):125-127.
    [75]王佳,怡安宝,杨文等.高压裂液用硼交联剂作用机理分析[J].精细石油化工进展,2009,10(8):23-26.
    [76]赵福麟.采油化学[M].山东:石油大学出版社,1989:176-177.
    [77]刘洪升,王俊英,王稳桃等.高温延缓型有机硼OB-200交联剂合成研究[J].油田化学,2003,20(2):121-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700