不同预处理工艺对稻壳纤维素酶酶解效果的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对纤维素酶酶解稻壳的预处理工艺进行了研究,广泛研究了温和条件下多种化学预处理方法,物理预处理方法,白腐菌的生物预处理方法以及多因子联合预处理方法对稻壳的纤维素酶酶解的效果的影响,结果如下:
     1.选用了稀酸,稀NaOH,Ca(OH)_2,氨水,H_2O_2等几个化学试剂在常温常压下对稻壳进行了酶解前的预处理,并对这几种试剂的预处理条件进行了优化。结果表明,这几种处理均能提高稻壳的酶解效率,其预处理的效果次序为NaOH>稀硫酸>稀盐酸>Ca(OH)_2>氨水>H_2O_2,最好的效果为稀NaOH,1.5%NaOH处理6h后,稻壳的酶解总糖得率可达29.6%。的虽然稀酸的预处理效果也较好,但其会带来大量的半纤维素组分损失。还进行了H_2O_2/NaOH联合碱氧化处理和酸碱联合处理(氨水/H_2SO_4)两种多化学因子的联合处理实验。结果表明,这种多因子的联合处理效果明显好于单因子处理。其中碱氧化预处理效果最好,在1.5%的NaOH与0.6%的H_2O_2碱氧化溶液配比,固液比为1/10,在30℃处理48h,处理后酶解总糖得率可达45.5%。并且进行了碱氧化处理的处理液循环利用实验,结果表明,经过3次滤液回用,可以节省大约28%的NaOH的用量。
     2.进行了超声波和微波两种物理方法对稻壳的酶解前预处理实验,结果表明,超声波和微波在不改变稻壳组分含量的情况下,能提高稻壳的酶解效率。其中微波的处理效率要高于超声波处理。700W的超声功率时,处理30min,处理后酶解可以获得28.3%的总糖得率。还进行了超声波和微波分别结合稀酸和稀碱的物理与化学因子联合预处理实验。从处理后酶解得糖率分析,这几种预处理的效果依次为微波稀酸>微波稀碱>超声波稀碱>超声波稀酸>微波处理>超声波处理。虽然微波稀酸处理后稻壳酶解总糖得率略高于微波稀碱处理,但由于其会降解较多的纤维素和半纤维素,因而总体比较,微波稀碱处理效果要好于微波稀酸处理。1%的NaOH结合700W功率的微波处理20min,处理后稻壳的酶解得糖率为38.7%。
     3.选取了糙皮侧耳AM-035和草菇AM-066两株白腐菌对进行稻壳的酶解预处理实验,结合处理过程中稻壳组分的变化,菌的木质素降解酶类的产酶情况和处理后稻壳的酶解情况,对预处理条件进行了优化。结果表明两株菌均能有效的提高稻壳的酶解效果,糙皮侧耳的处理效果要好于草菇。用糙皮侧耳处理30d,稻壳酶解得糖率可以达到29.8%,但也会引起20%的纤维素组分和52%的半纤维素组分的损失。处理周期过长和纤维素和半纤维素组分的损失是制约白腐菌预处理进行广泛应用的主要瓶颈。还进行了双菌株联合处理实验,结果表明,这两株菌的联合处理效果要低于二者单独进行处理时的效果。
     4.选取了H_2O_2和超声波两种方法分别与糙皮侧耳进行了两步的联合预处理实验。这种联合预处理工艺可以有效地缩短糙皮侧耳的预处理时间,进而也可以减少稻壳纤维素与半纤维素组分的损失。常温常压下,2%的H_2O_2处理稻壳48h,再进行18d的糙皮侧耳处理,处理后酶解总糖得率可达39.8%,高于糙皮侧耳单独处理60d后稻壳的酶解得糖率(36.7%),纤维素与半纤维素的损失却比后者低(纤维素的降解率分别为15.7%和28.1%,半纤维素的降解率分别为44.2%和77.3%)。对联合处理过程中菌的木质素降解酶的产酶情况进行了考察,并对稻壳的结构变化进行了SEM观察。结果表明,联合处理对白腐菌的处理效果的提高的主要原因是第一步处理时对稻壳的结构产生的破坏,提高了木质素降解酶类对木质素的可及度,进而提高了木质素的降解效果。
In this study, we investigated some pretreatment methods of rice hull for enzymatic hydrolysis. Results were followed as:
     1. Some chemical pretreatment methods were investigated, dilute acid, dilute NaOH, Ca(OH)_2, ammonia liquor and H_2O_2 were used to pretreated rice hull in the normal temperature and pressure. Results shown that effects of these methods were as follow: NaOH > dilute acid > Ca(OH)_2 > ammonia liquor > H_2O_2. Pretreatment of NaOH (1.5%, 6 h) led to 29.6% of net yields of total sugar (TS) when enzymatic hydrolysis of the rice hull. Although dilute acid pretreatment led to high net yields of sugar, it could also bring greater losses of the holocellulose (cellulose and hemicellulose). Two combined pretreatment methods (H_2O_2/ NaOH and H_2SO_4/ NaOH) were investigated. These combined pretreatment were better than each of the single factor pretreatment .The highest net yields of TS (45.2%) when enzymatic hydrolysis of the rice hull was obtained after pretreated by H_2O_2/ NaOH (1.5% NaOH. 0.6% H_2O_2, 30°C, 48 h). We also studied the reuse of the H_2O_2/ NaOH, results shown that after 3 times reuse of the solution, consume of the NaOH could reduce 28%.
     2. Two physical factors (ultrasound and microwave) were used to pretreat the rice hull. These factors couldn't change the compositions of the rice hull, but it could propose the enzymatic hydrolysis of the rice hull. This probably could attribute to the structure change during the pretreatment. Microwave method was better than ultrasound method. And it could lead to 28.3% net yields of TS (microwave, 700 W, 30 min). The effects of some physico-chemical methods were studied, and the results were shown as follow: microwave/dilute acid > microwave/dilute NaOH > ultrasound/dilute NaOH > ultrasound/dilute acid > microwave > ultrasound. Although the net yields of TS was obtained after microwave/dilute acid pretreatment was slighely higher than that of microwave/dilute NaOH, it could bring greater losses of the holocellulose. There are 38.7% net yields of TS when enzymatic hydrolysis of the rice hull after pretreatment of microwave/dilute NaOH (1% NaOH, microwave 700 W. 20 min).
     3. Pleurotus ostreatus AM-035 and Voluariella voluacea AM-066 were used for biological pretreatment of rice hull. The processes of the pretreatment were optimized. All these fungus could pomote the enzymatic hydrolysis of the rice hull. Effects of the Pleurotus ostreatus were better than that of Voluariella voluacea. Pleurotus ostreatus pretreatment for 60 d led to 29.8% of net yields of TS when enzymatic hydrolysis of rice hull, but 20% of cellulose and 52% of hemicellulose were lost during the pretreatment. Long pretreatment time and loss of the holocellulose were the two fible side of the fungal pretreatment. Effects of combined pretreatment of these two fungi were not as good as each single fungi pretreatment.
     4. Two novel two-step pretreatments for enzymatic hydrolysis of rice hull (RH) were proposed to lower the severity requirement of fungal pretreatment time. They consisted of a mild physical or chemical step (ultrasonic or H_2O_2) and a subsequent fungal treatment (Pleurotus ostreatus). The combined pretreatments led to significant increases of the lignin degradation than those of one step pretreatments. After enzymatic hydrolysis of the pretreated RH, the net yields of TS and G increased greatly. The combined pretreatment of H_2O_2 (2%, 48 h) and P. ostreatus (18 d) was more effective than sole pretreatment of P. ostreatus for 60 d. It could remarkably shorten the residence time and reduce the losses of carbohydrates. Ligninase analyses and SEM observations indicated that the enhancing of the efficiency could possibly attribute to the structure disruption of the RH during the first pretreatment step. So, the combined pretreatment could be recommended to different lignocellulosic materials for enzyme based conversions.
引文
1.陈立祥,章怀云.木质纤维素降解及其应用研究进展.中南林学院学报.2003,23(1):79-85
    2.陈育如,夏黎明,吴绵斌,岑沛霖.植物纤维原料预处理技术的研究进展.化工进展,1999,4:24-26
    3.崔凤珍,崔少东.膨化稻壳可以作为蛋白饲料填充料.饲料与畜牧,1992,2:7-9
    4.杜甫佑,张晓昱,王宏勋.木质纤维素的定量测定及降解规律的初步研究.生物技术,2004,14(5):46-48
    5.杜甫佑,张晓昱,王宏勋,尹艳丽.白腐菌降解木质纤维素顺序规律的研究.纤维素科学与技术,2005,13(1):17-25
    6.杜华英.用稻壳生产单细胞蛋白饲料.饲料研究,1991,8:15-17
    7.韩晓芳,郑连爽,杜予民,谢益民.蒸汽爆破棉秆的微生物降解研究.中国造纸学报,2003,18(2):27-29
    8.杭怡琼,薛惠琴,郁怀丹,陈谊.白腐真菌对稻草秸秆的降解及其有关酶活性的变化.菌物系统,2001,20(3):403-407
    9.何源禄.苏联植物纤维原料辐射水解研究进展.核技术,1987,2:1-5
    10.胡文阁.稻壳的综合利用工艺.沈阳化工,1994,1:27-31
    11.黄祖新,陈由强,陈如凯.甘蔗渣的酶降解研究进展.甘蔗,2004,11(4):52-56
    12.金欣汉.微波化学.科学出版社,1999
    13.李步海,孙小梅,郝文颖等.酶解蔗渣蒸汽预处理研究.中南民族学院学报(自然科学版),1995,14(1):37-39
    14.李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展.酿酒,2005,32(2):13-16
    15.李玥.稻壳综合利用研究.[硕士学位论文]江南大学,2004
    16.李松晔,刘晓非,庄旭品等.棉浆粕纤维素的超声波处理.应用化学,2003,20(11):1030-1034
    17.廖双泉,马凤国,邵自强等.椰衣纤维的蒸汽爆破处理技术.热带作物学报,2003,45(6):17-20
    18.刘远洋,申德超,徐冲.关于纤维素原料生产燃料酒精预处理工艺的一些探讨.酿酒,2005,32(3):41-42
    19.鲁杰,石淑兰,邢效功,杨汝男.NaOH预处理对植物纤维素酶解特性的影响. 纤维素科学与技术,2004,12(1):1-6
    20.苏茂尧,由利丽.纤维素经液氨预处理对其结构和晶型的影响.纤维素科学与技术,1997,5(1):7-12
    21.潘亚杰,张雷,郭军,张大雷.农作物秸秆生物法降解的研究.可再生能源,2005,(3):33-35
    22.钱俊青,谢祥貌.稻壳吸附剂提高啤酒稳定性研究.离子交换与吸附,2001,2:145-151
    23.申德超,李宏军.玉米挤压膨化系统参数优化实验.农业机械学报,2003,34(3):42-48
    24.宋安东.生物质(秸秆)纤维燃料乙醇生产工艺试验研究.[博士学位论文].郑州:河南农业大学,2003
    25.宋向阳,余世袁.玉米秸秆酶水解正交实验研究.生物学杂志,2000,17(5):32-34
    26.唐爱民,梁文芷.超声波预处理对速生材木浆纤维结构的影响.声学技术,2000,19(2):78-85
    27.汪丹妤,王海燕,薛国新.麦草浆臭氧漂白中戊聚糖含量的变化.纸和造纸,2004,(5):58-59
    28.王双飞,高扬,许开绍等.膨化预处理甘蔗渣的生物制浆研究.中国造纸学报,1998,13(2):4-8
    29.辛芬,陈汉平,王贤华等.木质纤维素生物质生产乙醇的预处理技术.新能源及工艺,2006,3:24-28
    30.熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定.粮食与饲料工业,2005,8:40-41
    31.熊健,叶君,梁文芷等.微波对纤维素Ⅰ超分子结构影响.华南理工大学学报,2000,28(3):84-89
    32.徐春燕,王宏勋,张晓昱,付时雨,吴疆鄂.白腐菌选择性降解竹基质中木质纤维素的研究.微生物学杂志,2006,6(2):14-18
    33.徐勇强,单谷,余世袁.汽喷玉米秸秆纤维素酶水解的研究.林产化工通讯.1999,33(6):15-18
    34.徐忠,汪群慧,姜兆华.氨预处理对大豆秸秆纤维素酶解产糖影响的研究.高校化学工程学报,2004,18(6):773-776
    35.许宗运,邱宣城.棉籽壳,稻壳不同微贮方法效果比较.中国饲料,2000,6:25-26
    36.杨雪霞,陈洪章,李佐虎.玉米秸秆氨化气爆处理及其固态发酵.过程工程学报,2001,1(1):86-89
    37.伊晓路,孙立,郭东彦,李铁,彭亮,张卫东.生物质秸秆预处理技术.可再生能源,2005,(2):31-33
    38.于红,秦梦华,卢雪梅等.微生物预处理对麦草微观结构和化学成分的影响.中国造纸学报,2004,(19):19-23
    39.张德强,黄镇亚,张志毅.木质纤维生物量一步法(SSF)转化成乙醇的研究进展.北京林业大学学报,2000,22(6):43-46
    40.赵志刚,程可可,张建安,高峰.木质纤维素可再生生物资源预处理技术的研究进展.现代化工,2006,26(10):39-43
    41.朱圣东,吴元欣,喻子牛等.植物纤维原料生产燃料酒精研究进展.化学与生物工程,2003,(5):32-37
    42.朱圣东.微波技术用于植物纤维原料生产酒精的研究.[博士学位论文]武汉:华中农业大学,2005
    43.朱圣东,吴元欣,喻子牛等.微波预处理稻草糖化工艺研究.林产化学与工业,2005,25(1):112-114
    44.朱显峰,杨生玉,沈永红,刘宇鹏,于成德等.漆酶检测方法比较研究.河南大学学报(自然科学版),2002,3:9-13
    45.朱跃钊,卢定强,万红贵,贾红华.木质纤维素预处理技术研究进展.生物加工过程,2004,2(11):11-16
    46. 庄新姝.生物质超低酸水解制取燃料乙醇的研究.[博士学位论文].浙江:浙江大学, 2005
    47. Alain M B, Shinya K, Jacqueline G P. Lignin and lignocellulosics: a better control of synthesis for new and improve uses. Trends Plant Sci, 2003, 8(12): 576-581
    48. Allen S G, Kam, L C, Zemann, A J, Antal Jr, M J. Fractionation of sugar cane with hot, compressed, liquid water. Ind Eng Chem Res, 1996, 35: 2709-2715
    49. Baggie I. Ameliorating acid infertile rice soil with organic residue from nitrogen fixing trees. Nutr Cycling Agroecosyst, 2000, (6): 183-190
    50. Ballesteros I, Oliva J M, Negro M J, et al. Enzymatic hydrolysis of steam exploded herbaceous agriculture waste (Brassica carinata) at different particule size. Process Biochem, 2002, 38(2): 187-192
    51. Baugh K D, Levy J A, McCarty P L. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I.Monosaccharide and furfurals hydrothermal decomposition and product formation Rates. Biotechnol Bioeng, 1988a, 31:50-61
    52. Baugh K D, Levy J A, McCarty P L. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: II Evaluation and application of pretreatment model. Biotechnol Bioeng, 1988b, 31: 62-70
    53. Bienkowski P, Ladisch M R, Voloch M, Tsao G T. Acid hydrolysis of pretreated lignocellulose from corn residue. Biotechnol Bioeng Symposium Series, 1984, 14: 512-524
    54. Biomass Program: Energy Efficiency and Renewable Energy. U.S. Department of Energy, 2007. 2
    55. Biermann C J, Schultz T P, McGinnis G D. Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. Wood Chem Technol, 1984, 4 (1): 111-128
    56. Borneman W S, Hartley R D, Morrison W H, et al. Feruloyl and p2coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol, 1990, 33 : 345-351
    57. Brownell H H, Saddler J N. Steam explosion pretreatment for enzymatic hydrolysis. Biotechnol Bioeng Symposium, 1984, 14: 55-68
    58. Brownell H H, Yu E K C, Saddler J N. Steam explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng. 1986,28:792-801
    59. Carpita N, Gibeaut D M. Structural models of primary cell walls in lowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 1993, 3 (1): 1-30
    60. Cahela D R, Lee Y Y, Chambers R P. Modeling of percolation processes in hemicellulose hydrolysis. Biotechnol Bioeng, 1983, 25: 3-17
    61. Chang V S, Nagwani M, Holtzapple M T. Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol, 1998, 74: 135-159
    62. Chang V S, Nagwani M, Kim C H, Holtzapple M T. Xidative lime pretreatment of high-lignin biomass. Appl Biochem Biotechnol, 2001, 94: 1-28
    63. Chen R, Lee Y Y, Torget R. Kinetic and modeling investigation on two-stage reverse-How reactor as applied to dilute-acid pretreatment of agricultural residues. Biochem Biotechnol, 1996,57/58: 133-146
    64. Chen H Z, et al. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol, 2007, 98(3): 666-676
    65. Chong J Y. Antimicrobial activity of 4-hydroxybenzoic acid and tras 4-hydroxybenzoic acid isolated and identified from rice hull. Biosci Biotechnol Biochem, 1998, (11): 2273-2276
    66. Converse A O, Kwarteng L K, Grethlein H E, Ooshima H. Kinetics of thermochemical pretreatment of lignocellulosic materials. Appl Biochem Biotechnol, 1989, 20/21: 63-94
    67. Dale B E, Leong C K, Pham T K, Esquivel V M, Rios I, Latimer V M. Hydrolysis of lignocellulosics at low enzyme levels: application of the APEX process. Bioresour Technol, 1996, 56 (1): 111 — 116
    68. Delgenes J P, Moletta R, Navarro J M. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehhatae. Enzyme Microb Technol, 1996, 19: 220-225
    69. Dominguez J M, Cao N J, Krishnan M S, Gong C S, Tsao G T. Xylitol production from hybrid poplar wood chips pretreated by the ammonia steeping process. Appl Biochem Biotechnol, 1997, 11(5): 339-341
    70. Dunlap C E, Thomson J, Chiang L C. Treatment processes to increase cellulose microbial digestibility. Biotechnol Bioeng Symposium Series, 1976, 72 (158): 58
    71. Duff S J B, Murray W D. Bioeonversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresour Technol, 1996, 55(1): 1-33
    72. Esteghlalian A, Hashimoto A G, Fenske J J, Penner M H. Modeling and optimization of the dilute-sulfurio-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol, 1997,59: 129-136
    73. Farook A, Supramaniam R. Saturated fatty acid abosorption by acidified rice hull ash. J Am Oil Chem Soc, 2000, 4: 437-440
    74. Forsberg C W, Schellhorn H E, Gibbons L N, Maine F, Mason E. The release of fermentable carbohydrate from peat by steam explosion and its use in the microbial-production of solvents. Biotechnol Bioeng, 1986, 28: 176-184
    75. Foster B L, Dale B E, Doran-Peterson J B. Enzymatic hydrolysis of ammonia-treated sugar beet pulp. Appl Biochem Biotechnol, 2001, 91 (3): 269-282
    76. Fox D J, Gray P P, Dunn N W, Warwick L M. Comparison of alkali and steam (acid) pretreatments of lignocellulosic materials to increase enzymic susceptibility: evaluation under optimized pretreatment conditions. J Chem Technol Biotechnol, 1989,44: 135-146
    77. Garotte G, Dominguez H, Parajo J C. Generation of xylose solutions from eucalyptus globules wood by autohydrolysis-post-hydrolysis processes: posthydrolysis kinetics. Bioresour Technol, 2001, 79: 155-164
    78. Glasser W G, Wright R S. Steam-assisted biomass fractionalion II: fractionationbehavior of various biomass resources. Biomass Bioenergy, 1998, 14 (3): 219-235
    79. Ho N W Y, Chen Z, Brainard A P, Sedlak M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol, 1999, 65: 163-192
    80. Holtzapple M T, Joseph E L, Sturgis R, Lewis J E, Dale B E. Pretreatment of lignocallulosic municipal solid waste by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 2008, 34-35(1): 5-12
    81. Ingram L O, Gomez P F, Lai X, Moniruzzaman M, Wood B E, Yomano L P York S W. Metabolic engineering of bacteria for ethanol production. Biotechnol and Bioeng, 1998, 58: 204-214
    82. Ingram L O, Aldrich H C, Borges A C C, Causey T B, Martinez A, Morales F. Saleh A, Underwood S A, Yomano L P, York S W, Zaldivar J, Zhou S D. Enteric bacterial catalysts for fuel ethanol production. Biotechnol Progr, 1999, 15: 855-866
    83. Jacobsen S E, Wyman C E. Hemicellulose and cellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol, 1999,84-86:81-96
    84. Kalapathy U. A. New method for free fatty acid reduction in flying oil using silicate films produced from rice hull ash. J Am Oil Chem Soc, 2000, 6: 593-598
    85. Kalapathy U. A, Proctor A, Shultz J. Simple method for production of pure silica from rice hull ash. Biresour Technol. 2000, 7: 257-262
    86. Kamath S R, Proctor A. Silica gel from hull ash: Preparation and characterization. Cereal Chem, 1998, 4: 484-487
    87. Karr W E, Holtzapple M T. The multiple benefits of adding non-ionic surfactant during the enzymatic hydrolysis of corn stover. Biotechnol Bioeng, 1998, 59: 419-427
    88. Karr W E, Holtzapple T. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy, 2000, 18: 189-199
    89. Kim S B, Lee Y Y. Fractionation of herbaceous biomass bynammonia-hydrogen peroxide percolation treatment. Appl Biochem Biotechnol, 1996, 57/58: 147-156
    90. Kim J S, Lee Y Y, Park S C. Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Appl Biochem Biotechnol, 2000, 84/86: 129-139
    91. Kim S, Holtzapple M T. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol, 2005, 96: 1994-2006
    92. Kim T H, Kim J S, Sunwoo C, Lee Y Y. Delignification aspect of enzymatic hydrolysis in the ARP process. In: 24th Symposium on Biotechnology for Fuels and Chemicals, 2002
    93. Kim T H, Kim J S, Sunwoo C. Pretreatment of corn stover by aqueous ammonia. Bioresour Technol, 2003, 90 (I): 39-47
    94. Krishna S H, Chowdary G V, Reddy D S, Ayyanna C. Simultaneous saccharification and fermentation of pretreated Antigonum leptopus (Linn) leaves to ethanol. J Chem Technol Biotechnol, 1999, 74: 1055-1066
    95. Kuhad R C, Singh A, Eriksson K E L. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol, 1997, 57(45): 21-25
    96. Lee C K, Low K S, Liew S C, Choo C S. Removal of arsenic (V) from aqueous solution by quaternized rice husk. Environ Technol, 1999, 20(9): 971-978
    97. Lee D, Yu A H C, Wong K K Y, Saddler J R. Evaluation of the enzymatic susceptibility of cellulosic substrates using specific hydrolysis rates and enzyme adsorption. Appl Biochem Biotechnol, 1994, 45/45: 407-415
    98. Lee Y Y, lyer P, Torget R W. Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol, 1999, 65: 93
    99. Lyer P V, Wu Z W, Kim S B, et al. Ammonia recycled percolation process for pretreatment of herbeceous biomass. Appl Biochem Biotechnol. 1996, 57/58: 121-132
    100. Lynd L R, Elander R T, Wyman C E. Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol, 1996 ,57/58, 741-761
    101. Mansilla H D, Baeza J, Urzua S, Maturana G, Villasenor J, Duran N. Acid catalysed hydrlysis of rice hull: evaluation of furfural production. Biresour Technol, 1998, 12: 189-193
    102. MCkay G, Porter J F, Prasad G R. The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air and Soil Pollut, 1999, 9: 423-438
    103. Mooney C A, Mansfield S D, Touhy M G, Saddler J N. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwood. Bioresour Technol, 1998,64: 113-119
    104. Mosier N S, Hall P, Ladisch C M, Ladisch M R. Reactionkinetics, molecular action, and mechanisms of cellulolytic proteins. Adv Biochem Eng, 1999, 65: 24-40
    105. Mosier N S, Ladisch C M, Ladisch M R. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng, 2002,79, (6): 610-618
    106. Mosier N S. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Techrol, 2005, 96 (6): 673 - 686
    107. Nguyen Q A, Tucker M P, Keller F A, Eddy F P. Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol, 2000, 84-86: 561 - 57
    108. Nicoletta C, Mario A, Brunella P, et al. Complete and efficient enzymatic hydrolysis of pretreated wheat straw. Process Biochem. 2002, 37(9): 937-941
    109. Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysatesc. II: inhibitors and mechanisms of inhibition. Bioresour Technol, 2000, 74 (1): 25-33
    110. Rahayu C R, Nazly H E, Erlinda T B, Abbas B. Radiation and chemical pretreatment of cellulosic waste. Radiat Phys Chem, 1993, 42: 695-701
    111. Rebecca A S. A Comparison of chemical pretreatment methods for converting cotton stalks to ethano. Bioresour Technol, 2007, 98(16): 3000-3011
    112. Sharmas S K, Kalra K L, Grewal H S. Enzymatic saccharification of pretreated sunflower stalks. Biomass Bioenergy, 2002, 23(3): 237-243
    113. Shevchenko S M, Chang K, Robinson J, Saddler J N. Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Bioresour Technol, 2000, 72 (3): 207-211
    114. Sreenath H K, Jeffries T W. Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol, 2000, 72: 253-260
    115. Stuart E D. Treatment of fibrous lignocellulosic biomass by high sheer forces in a turbulent couette flow to make the biomass more susceptible to hydrolysis. 1994, US Patent, 5370999
    116. Sun Y, Cheng J Y. Hydrolysis of lignocelluosic materials for ethanol production: A review. Bioresour Technol, 2002, 83(1): 1 -11
    117. Szczodrak J, Fiedurek J. Technology for conversion of lignocellulosic biomass to ethanol. Fuel and Enegy Abstracts, 1996, 10(5-6): 367-375
    118. Taherzadeh M J, Niklasson C, Liden G. Conversion of dilute-acid hydrolyzates of spruce and birch to ethanol by fedbatch fermentation. Bioresour Technol, 1999, 69: 59-66
    119. Tantrakulsiri J, Jeyashoke N, Krisanangkura K. Utilization of rice hull ash as a support material for immobilization of Canadian cylindracea lipase. J Am Oil Chem Soc, 1997,2: 173-175
    120. Tim Eggeman, Richard T Elander. Process and economic analysis of pretreatment technologies. Bioresour Technol, 2005, 96: 2019-2025
    121. Van Walsum G P, Alien S G, Spencer M J, Laser M S, Antal Jr M J, Lynd L R. Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Appl Biochem Biotechnol, 1996,57/58: 157-170
    122. Vlasenko, E Y. Ding H. Labavitch, J M. Shoemaker S P. Enzymatic hydrolysis of pretreated rice straw. Bioresour Technol, 1997, 59: 109-119
    123. Walch E, Zemann A, Schinner F, Bonn G, Bobleter O. Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar bagasse and beech bark. Biosour Technol, 1992, 39: 173-177
    124. Weil J R, Sarikaya A, Rau S L, Goetz J, Ladisch C M, Brewer M, Hendrickson R, Ladisch M R. Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol, 1998,73: 1-17
    125. Wooley R, Ruth M, Glassner D, Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Progr, 1999, 15: 794-803
    126. Wright J D. Ethanol from biomss by enzymatic hydrolysis. Chem Eng, 1998, 84(4): 62-74
    127. Wyman C E. Ethanol from lignocellulosic biomass technology, economics and opportunities. Bioresour Technol, 1995, 50: 3-15
    128. Wyman C E. Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Env, 1999, 24: 189-226
    129. Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol, 2001, 56 (1/2): 17-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700