基于灰色定性方法的主观不确定性知识表达与路径规划算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于客观环境的复杂性或智能系统认知能力的限制,智能系统从环境中获取的知识往往具有不确定性。模拟人类智能对不确定性知识进行表达和处理并形式化地表示不确定性知识,使机器具有不确定性智能,是人工智能领域的研究热点之一。在对环境的认知过程中,人类往往是从环境中逐步获得知识并选择性地记忆重要环境信息,这使得根源于知识不完备性的主观不确定性知识成为人类记忆中不确定性知识的主要类型之一。目前,移动机器人逐渐步入人类的日常生活,需要能够和人类进行交互,需要以类似于人类智能的模式来表达环境知识并完成导航任务,移动机器人具备表达并应用主观不确定性知识能力的需求日益迫切。因此主观不确定性知识的表达以及基于主观不确定性知识的推理、决策等理论和方法的研究对于移动机器人智能性的提高有着重要的意义。
     灰色系统理论致力于研究主观不确定性知识的表达,而定性理论中建立的系统建模、问题分析等方法侧重于人类智能特点的模拟,本文融合灰色系统理论和定性理论的特点,建立主观不确定性知识的灰色定性表达方法,目标是形成一套符合人类智能思维模式的知识表达体系,并在此基础上建立定性定量集成的智能推理和决策方法。再以灰色定性知识表达方法为基础,分析人类认知地图特点,构造综合人类认知地图与机器人导航地图优势的灰色定性地图,建立基于灰色定性地图的机器人路径规划算法。实验表明,在环境知识的复杂度、路径规划效果方面本文方法均有一定优势。
     本文的主要工作和贡献如下:
     (1)融合灰色系统理论和定性理论的特点,以灰色定性基本元、灰色定性基本元的关键点集,灰色定性量空间、灰色定性关系、灰色定性特征值以及广义白化函数为核心概念建立主观不确定性知识灰色定性表达方法体系。灰色定性基本元、灰色定性量空间、灰色定性关系分别对应定性理论中本体基元、量空间、因果性三个基本要素;灰色定性基本元、灰色定性基本元的关键点集和广义白化函数分别对应于灰色系统理论中的区间灰数、区间灰数的边界点和白化函数。以灰色定性基本元作为融合灰色系统理论和定性理论的桥梁。
     (2)指出客观不确定性系统和主观不确定性系统的区别,提出一种针对仅有少量已知主观不确定性规则的系统的灰色定性建模方法,模拟人类智能在未知环境中不断积累、融合以及应用主观不确定性规则的能力。
     (3)综合国内外对认知地图的现有研究成果以及灰色定性知识表达方法,提出既适合于人机交互又适合于机器人导航需求的灰色定性地图:以环境的剖分及剖分之间的邻接关系作为定性层,模拟人类智能的认知地图,便于人机交互;以剖分的顶点坐标及势场向量为定量信息,用于决定机器人在导航过程中的运动速率及方向。灰色定性地图的特点还在于其模拟了人类智能记忆环境知识的特点,可以用环境中少量关键信息支持机器人完成路径规划任务,降低了环境模型的复杂度。
     (4)提出一种基于灰色定性地图的无陷阱人工势场算法,利用灰色定性地图中剖分的顶点坐标及势场向量计算整个环境中的势场,解决了因仅用障碍物斥力和目标点吸引力计算的传统人工势场中存在陷阱而使目标点不可达的问题。再进一步对此算法进行了优化,通过调整灰色定性基本元的部分顶点坐标及势场向量,使得机器人可以在基于灰色定性地图的人工势场中获得平滑路径,便于实际应用。
Due to the complexity of the objective environment or the cognitive ability limit of the intelligent systems, the knowledge gained from the environment by the intelligent systems is uncertain. The research on how to simulate human intelligence to represent and process the uncertain knowledge and represent it formally, endowing the robot the ability to process uncertain knowledge, is one of the hot spot in AI. During the perception process for environment, human always gather environment knowledge step by step and select the most important information for storing. This fact makes the subjective uncertain knowledge which stems from the incompleteness of knowledge become one of the most important uncertain knowledge in human memory. At present, mobile robot gradually step into the daily life of human beings. So it needs the ability to interact with human, the ability to represent and use the subjective uncertain knowledge which similar to human intelligence. As a result, research on theory and methods of how to represent subjective uncertain knowledge and the corresponding reasoning, decision methods have an important significance for improvement of mobile intelligence.
     Grey system theory is aimed at represent subjective knowledge. On the other hand, the methods of system modeling and problem analysis method in qualitative theory show the interest in imitating human intelligence. Aiming at establishing a knowledge representation method that complies with human intelligence, and then establishing a method which is both qualitative and quantitative to achieve intelligent reasoning and decision based on the knowledge representation system, the paper proposes a new method-grey qualitative knowledge representation method to represent subjective uncertain knowledge which makes a fusion of grey system theory and qualitative theory. And then, based on the proposed knowledge representation method and the features of human cognitive map, grey qualitative map which combine the superiorities of both cognitive map and navigation map is proposed. The path planning algorithm based on grey qualitative map is also proposed. The experiments results show the advantages in both knowledge complexity and path planning result.
     The main contributions are as follows:
     (1) We developed the grey qualitative representation method for representing subjective uncertain knowledge by integrating the features of the grey system theory and the qualitative theory. The method is composed of grey qualitative fundamental element, the set of key points of grey qualitative fundamental element, grey qualitative fundamental element space, grey qualitative relationship, grey qualitative characteristic values and generalized whitening function. Grey qualitative element, grey qualitative fundamental element space and grey qualitative relationship are respectively correspond to ontology primitive, quantity space and causality which are all basic elements in qualitative theory. The grey qualitative fundamental element, the set of key points of grey qualitative fundamental element and the generalized whitening function are correspond to interval grey number, the boundary points of interval grey number and whitening function in grey system theory respectively. We use grey qualitative element as the bridge for the integration of grey system theory and qualitative theory.
     (2) Show the difference between objective uncertain system and subjective uncertain system. Grey qualitative modeling method is proposed for modeling systems with a small amount of known subjective uncertain rules. The proposed method simulates human intelligence in gathering, fusion and using subjective uncertain knowledge in unknown environment.
     (3) By investigating the existing research on the cognitive map at home and abroad and the grey qualitative knowledge representation method, a grey qualitative map is proposed which suitable for both mobile robot navigation and inaction with human. We define the environment subdivisions and adjacent relationship between then as a qualitative layer of the map, which is used for simulating cognitive map of human intelligence. The quantitative layer including coordinates of vertices of subdivisions and the vector of potential field are used for deciding the robot speed and direction in the navigation process. Another superiority of grey qualitative map is that it can support robot complete path planning task based on a little of key information of environment, which reduce the complexity of environment model.
     (4) An artificial potential field without traps algorithm based on grey qualitative map is proposed. By calculating the potential field with the key message in grey qualitative map, we solve the local trap problem exists in the traditional artificial potential field which calculated only by repulsive force of obstales and attractive force of target. And further, by adjusting part of vertex coordinates of grey qualitative elements and the potential field vector, the algorithm is optimized. By this, the robot can obtain a smooth path in artificial potential field, which facilitating the practical application.
引文
[1]Alexander M. Meystel智能系统——结构、设计与控制[M].电子工业出版社,2005
    [2]李德毅,杜鹢.不确定性人工智能[M],北京:国防工业出版社,2005.
    [3]楚明瑞.人类大脑的工作模型[M].北京:中国科学技术出版社,2006.
    [4]Patrick Foil Beeson. Creating and Utilizing Symbolic Representations of Spatial Knowledge using Mobile Robots[D].USA:The University of Texas at Austin.2008.
    [5]黄元亮.灰色定性仿真基础的研究[D],中国科学技术大学博士学位论文,2006.
    [6]陈宗海,段家庆,桂旺盛.智能模拟之定性定量仿真的发展[J].自动化博览.2005 Sl,4-8.
    [7]李书杰,陈宗海.智能模拟中知识表达方法的综述与分析[C].系统仿真技术及其应用.合肥:中国科学技术大学,2009,12:1-6.
    [8]李书杰,陈宗海.不确定性知识的定性定量表达方法分析与展望[C].系统仿真技术及其应用.合肥:中国科学技术大学,2011,12:1095-1103.
    [9]Chunlin Chen, Daoyi Dong, Zonghai Chen, Haibo Wang. Grey Systems for Intelligent Sensors and Information. Processing. Journal of Systems Engineering and Electronics,2008, 19(4):659-665.
    [10]Chen Chunlin, Dong Daoyi, Chen Zonghai, Wang Haibo, Qualitative control for mobile robot navigation based on reinforcement learning and grey system, Mediterranean Journal of Measurement and Control,2008,4(1):1-7.
    [11]Huang Yuanliang, Chen Zonghai, Duan Jiaqing, Study on parameter estimation of GM(1,N) [J], The Journal of Grey System,Vol.15(3),2003:215-224.
    [12]段家庆,陈宗海,模糊定性仿真与灰色定性仿真[C],系统仿真技术及其应用,2006,8:775-779.
    [13]Dong Daoyi, Chen Chunlin, Zhang Chenbin, Chen Zonghai, Quantum robot:Structure, algorithms and applications [J], Robotica,2006,24(4):513-521.
    [14]Chunlin Chen, Daoyi Dong, Zonghai Chen, Grey Reinforcement Learning for Incomplete Information Processing[C], Conference Information:3rd International Conference on Theory and Applications of Models of Computation (TAMC2006), MAY 15-20, 2006,Lecture Notes in Computer Science,2006,3959:399-407.
    [15]Huang Yuanliang, Chen Zonghai, Gu Wangshen. Grey Qualitative Simulation[J], The Journal of Grey System,2004(1).16::5-20.
    [16]黄元亮,陈宗海,基于灰色定性仿真的故障诊断理论[c],系统仿真技术及其应用,Vol.5,2003:223-228
    [17]黄元亮,陈宗海,定性仿真中摆动变量的研究[J],系统仿真学报,Vol.16(4),2004:829-832.
    [18]Benjamin Kuipers. An Intellectual History of the Spatial Semantic Hierarchy. Robotics and Cognitive Approaches to Spatial Mapping[J].2008:243-264
    [19]王梓坤.概率论基础及其应用[M].北京:北京师范大学出版社,1995.
    [20]S.K. Park and K.W. Miller, Random Number Generators:Good Ones Are Hard To Find[J], Communications of the ACM,1988:1192-1201.
    [21]M.A. Salichs, L. Moreno. Navigation of mobile robots:open questions[J]. Robotica.2000, volume 18, pp.227-234.
    [22]Sebastian Thrun. Robotic mapping:a survey[J]. Exploring artificial intelligence in the new millennium.2003.1-35
    [23]Zadeh LA. Fuzzy Sets. Information and Control,1965(8):338-353.
    [24]Zadeh L A. The concept of a linguistic variable and its applications to approximate reasoning (Ⅰ) [J]. INFORM SCIENCES,1974,8:199-249.
    [25]Zadeh L A. The concept of a linguistic variable and its applications to approximate reasoning (Ⅱ) [J]. INFORM SCIENCES,1974,8:301-357.
    [26]Zadeh LA. The concept of a linguistic variable and its applications to approximate reasoning (Ⅲ) [J]. INFORM SCIENCES,1975,9:43-80.
    [27]Zadeh LA. Toward a generalized theory of uncertainty (GTU)-an outline. INFORM SCIENCES.2005,172:1-40
    [28]Zadeh LA. Is there a need for fuzzy logic? INFORM SCIENCES,2008,178:2751-2779.
    [29]Zadeh LA. Toward extended fuzzy logic—A first step. FUZZY SET SYST.2009,160: 3175-3181.
    [30]Richard Nock, Frank Nielsen. On Weighting Clustering. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2006,28(8):1-13.
    [31]Keller A, Klawonn F. Fuzzy clustering with weighting of data variables[J]. International Journal of Uncertainty Fuzziness and Knowledge-based Systems.2000,8(6):735-746.
    [32]Li DF, Cheng C T. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters.2002,23(1-3):221-225.
    [33]Pedrycz W. Fuzzy-Sets in Pattern Recognition-Methodology and Methods. Pattern Recognition.1990,23(1-2):121-146.
    [34]De SK, Biswas R, Roy AR. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems.2001,117(2):209-213.
    [35]Rotshtein AP, Rakytyanska HB. Diagnosis problem solving using fuzzy relations [J]. Fuzzy Systems, IEEE Transactions on,2008,16(3):664-75.
    [36]Driankov D, Hellendoorn H, Reinfrank M. An introduction to fuzzy control [M]. Springer Verlag,1996.
    [37]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007
    [38]席爱民,模糊控制技术[M],西安:西安电子科技大学出版社,2008
    [39]李德毅,史雪梅,孟海军,隶属云和隶属云发生器,计算机研究和发展,1995,32(6),15-20.
    [40]Li Deyi, Liu Changyu, Gan Wenyan. A New Cognitive Model:Cloud Model[J]. International Journal of Entelligent Systems,2009,24,357-375.
    [41]An L, Fan W. A Novel MPPT Control Technology Based on Cloud Model for Photovoltaic Power Generation, F,2011 [C]. IEEE Fourth International Symposium on Computational Intelligence and Design (ISCID),2011,3-6.
    [42]Gao J, Zhou HL, Li Z. Application of One-dimension Cloud Model Controller in the Wheeled Robot [J]. Zidonghuayu Yibiao/Automation & Instrumentation,2011,26(2): 28-32.
    [43]Chang J, Zhang W, Zhang J, et al. Design of cloud model controller based on multi-objective optimization [C]. IEEE Control and Decision Conference (CCDC),2011, 19-24.
    [44]Luo Z, Cao P, Ma S, et al. A Cloud Model Approach to the Modification of the Exponential Function Model for Software Reliability[C]. IEEE 2011 Seventh International Conference on Computational Intelligence and Security,2011,168-170.
    [45]Luo Z, Cao P, Tang G, et al. A Modification to the Jelinski-Moranda Software Reliability Growth Model Based on Cloud Model Theory, F,2011 [C]. IEEE 2011 Seventh International Conference on Computational Intelligence and Security,195-198.
    [46]董丽丽,龚光红,李妮,et al基于云模型的自适应并行模拟退火遗传算法[J].北京航空航天大学学报,2011,37(9):1132-1136.
    [47]黄景春,肖建.基于小波神经网络的云模型[J].控制理论与应用,2011,28(1):53-57.
    [48]蔡自兴,邹小兵.移动机器人环境认知理论与技术的研究[J].机器人,2004,28(1):87-91.
    [49]Zhang XZ, Rad AB, Wong YK, et al. A Comparative Study of Three Mapping Methodologies [J]. Journal of Intelligent and Robotic Systems,2007,49(4):385-395.
    [50]Thrun S. Robotic mapping:A survey [J]. Exploring artificial intelligence in the new millennium,2002,1-35.
    [51]Elfes A. Using Occupancy Grids for Mobile Robot Perception and Navigation [J]. Computer, 1989,22(6):46-57.
    [52]Moravec H P, Elfes A. High Resolution Maps for Wide Angles Sonar[C]. In:Proceedings of IEEE International Conference on Robotics and Automation,1985,116-121
    [53]Latombe J C. Robot Motion Planning[M]. Kluwer Academic,1991.
    [54]Ribo M, Pinz A. Comparison of Three Uncertainty Calculi for Building Sonar-based Occupancy grids [J]. Robotics and Autonomous Systems 2001,35:201-209.
    [55]Ali A K H, Abidi M A. A 2-D and 3-D Robot Path Planning Algorithm Based on Quadtree and Octree Representation of Workspace[C]. Southeastcon'88., IEEE Conference In: Proceedings 1988,391-396.
    [56]Chen, D Z, Szczerba, R J, Uhran, J J.Planning Conditional Shortest Paths Through an Unknown Environment:a Framed-quadtree Approach[C]. In:Proceedings of IEEE International Conference on Intelligent Robots and Systems,1995,33-38
    [57]Arleo A, Millan J D R, Floreano D. Efficient learning of variable-resolution cognitive maps for autonomous indoor navigation[J]. IEEE Transactions on Robotics and Automation,1999, 15(6):990-1000.
    [58]Yap P. Grid-based path-finding[M]. Lecture Notes in Computer Science, vol.2338. Berlin, Germany:Springer,2002:44-55.
    [59]李天成,孙树栋,高扬.基于扇形栅格地图的移动机器人全局路径规划[J].机器人,2010,32(7):547-552.
    [60]Poncela A, Perez E J, Bandera A, Urdiales C, Sandoval F. Efficient Integration of Metric and Topological Maps for Directed Exploration of Unknown Environment[J]. Robotics and Autonomous Systems,2002,41:21-39
    [61]Chatila R, Laumond J P. Position Referencing and Consistent World Modeling for Mobile Robots[C]. In:Proceedings of IEEE International Conference on Robotics and Automation, 1985,138-145.
    [62]Lu F, Milios E. Globally Consistent Range Scan Alignment for Environment Mapping[J]. Autonomous Robots,1997,4:333-349.
    [63]Kortenkamp D, Huber E, Bonassi, et al. The 1996 AAAI Mobile Robot Competition and Exhibition[J]. AI Magazine,1997,18(1):25-32.
    [64]Kuc R, Siegel M W. Physically Based Simulation Model for Acoustic Sensor Robot Navigation[J]. IEEE Transaction on Pattern analysis and Machine Intelligence,1987, 9(6):766-778.
    [65]Ohya A, Nagashima Y,Yuta S. Explore Unknown Environment and Map Construction Using Ultrasonic Sensing of Normal Direction of Walls[C]. In:Proceedings of IEEE International Conference on Robotics and Automation,1994,485-492.
    [66]K.O. Arras, Feature-based robot navigation in known and unknown environments, Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thesis number 2765, 2003.
    [67]R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. Autonomous robot vehicles. Springer-Verlag New York,Inc,1990:167-193
    [68]R. C. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty. Technical Report TR 4760 & 7239, SRI,1985.
    [69]G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally efficient solution to the simultaneous localization and map building (SLAM) problem. Working notes of ICRA'2000 Workshop W4:Mobile Robot Navigation and Mapping, April 2000.
    [70]H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista, and S. Scheding. A Bayesian algorithm for simultaneous localization and map building. In Proceedings of the 10th International Symposium of Robotics Research (ISRR'01), Lorne, Australia,2001.
    [71]S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning,1998,31:29-53.
    [72]Pedraza L, Rodriguez-Losada D, Matia F, et al. Extending the limits of feature-based slam with b-splines [J]. Robotics, IEEE Transactions on,2009,25(2):353-366
    [73]Kang JG, Choi WS, An SY, et al. Augmented EKF based SLAM method for Improving the Accuracy of the Feature Map, F,2010 [C]. Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on 3725-3731.
    [74]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M].科学出版社,2009.
    [75]M. J. Matari'c. A distributed model for mobile robot environment-learning and navigation[D]. Master's thesis, MIT, Cambridge, MA, January 1990.
    [76]H. Choset. Sensor Based Motion Planning:The Hierarchical Generalized Voronoi Graph[D]. PhD thesis, California Institute of Technology,1996.
    [77]Marinakis D, Dudek G. Pure topological mapping in mobile robotics [J]. Robotics, IEEE Transactions on,2010,26(6):1051-1064.
    [78]Margaret E. Jefferies. Using Absolute Metric Maps to Close Cycles in a Topological Map. Journal of Intelligent Manufacturing,2005,16(6):693-702.
    [79]Margaret E. Jefferies. The Correspondence Problem in Topological Metric Mapping- Using Absolute Metric Maps to Close Cycles. Knowledge-Based Intelligent Information and Engineering Systems.2004,32(13):232-239.
    [80]Thrun S, Gutmann JS, Fox D, et al. Integrating topological and metric maps for mobile robot navigation:A statistical approach [C]. JOHN WILEY & SONS LTD.1998.
    [81]Thrun S. Learning metric-topological maps for indoor mobile robot navigation [J]. Artificial Intelligence,1998,99(1):21-71.
    [82]Lisien B, Morales D, Silver D, et al. The hierarchical atlas [J]. Robotics, IEEE Transactions on,2005,21(3):473-481.
    [83]Tully S, Moon H, Morales D, et al. Hybrid localization using the hierarchical atlas[C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems San Diego, CA, USA, Oct 29-Nov 2,2007:2857-2864.
    [84]A. Tapus, Topological SLAM-Simultaneous localization and mapping with fingerprints of places, Ph.D. Thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thesis Number 3357,2005.
    [85]Choset H, Nagatani K. Topological simultaneous localization and mapping (SLAM):toward exact localization without explicit localization [J]. Robotics and Automation, IEEE Transactions on,2001,17(2):125-137.
    [86]Vasudevan S, Gachter S, Nguyen V, et al. Cognitive maps for mobile robots--an object based approach [J]. Robotics and Autonomous Systems,2007,55(5):359-371.
    [87]E.C. Tolman. Cognitive maps in rats and men. Psychological Review.1948:55(4): 189-208.
    [88]Benjamin Kuipers. An Intellectual History of the Spatial Semantic Hierarchy[J]. Robotics and Cognitive Approaches to Spatial Mapping,2008:243-264
    [89]Kuipers B. The Spatial Semantic Hierarchy. Artificial Intelligence,2000(119),191-233
    [90]Chown, E., Kaplan, S.,Kortenkamp, D.. Prototypes, Location and associative networks: Towards a unified theory of cognitive mapping. Cognitive Science 19,1-52.
    [91]W.-K. Yeap, M.E. Jefferies, On early cognitive mapping, Spatial Cognition and Computation 2001,2 (2),85-116.
    [92]Schmidt J, Wong C, Yeap W. Spatial information extraction for cognitive mapping with a mobile robot [J]. Spatial Information Theory,2007,186-202.
    [93]Galindo, C., Fernandez-madrigal, J., Gonzalez, J., Saffiotti, A.Robot task planning using semantic maps. Robotics and Autonomous Systems.56(11),2008,955-966
    [94]C. Galindo, Fernandez-madrigal, J., Gonzalez, J. Multi-Hierarchical Semantic Maps for Mobile Robotics.2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,2005. (IROS 2005).2278-2283.
    [95]J.L. Blanco, J. Gonzalez, Feranadez-Madrigal. Subjective local maps for hybrid metric-topological SLAM[J]. Robotics and Autonomous Systems 57(2009),64-74.
    [96]Salichs M, Moreno L. Navigation of mobile robots:open questions [J]. Robotica,2000, 18(3):227-234.
    [97]朱大奇,颜明重.移动机器人路径规划综述[J].控制与决策,2010,25(7):961-966.
    [98]Koenig S, Likhachev M, Furcy D. Lifelong planning A* [J]. Artificial Intelligence,2004, 155(1-2):93-146.
    [99]Koenig S, Likhachev M. Fast replanning for navigation in unknown terrain [J]. Robotics, IEEE Transactions on,2005,21(3):354-363.
    [100]A. Stentz. The focussed D* algorithm for real-time replanning[C]. In Proc. Int. Joint Conf. Artificial Intell.,1995, pp.1652-1659.
    [101]Jarvis RA. Collision-free trajectory planning using distance transforms [J]. Transactions of the Institution of Engineers, Australia Mechanical engineering,1985,10(3):187-191
    [102]Pei S C, Lai C L, Shih F Y. A Morphological Approach to Shortest Path Planning for Rotating Objects. Pattern Recognition,1998,31(8):1127-1138
    [103]Stentz A. Optimal and efficient path planning for partially known environments [J]. Intelligent Unmanned Ground Vehicles,1997,203-220.
    [104]Pere. Automatic Planning of Manipulator Movements[J]. IEEE Transaction on System, Man and Cybernetics,1981,11:681-698.
    [105]Dudek G, Jenkin M. Computational Principles of Mobile Robotics[M]. Cambridge University Press.2000:132-145.
    [106]Liu Y H, Arimoto S. Computation of the Tangent Graph of Polygonal Obstacles by Moving-line Processing. IEEE Transaction on Robotics and Automation,10(6):823-830
    [107]Diaz J. L, Leon S D, Sossa J.H. Automatic Path Planning for a Mobile Robot among Obstacles of Arbitrary Shape. IEEE Transactions on System, Man and Cybernetics,1998, 28(3):467-472.
    [108]Hoff K, Culver T, Keyser J. Interactive Motion Planning Using Hardware-accelerated Computation of Generalized Voronoi Diagrams. In:Proceedings of IEEE International Conference on Robotics and Automation,2002.
    [109]Brooks R A. Solving the Find-path problem by Good Representation of Free Space. IEEE Transaction on System Man and Cybernetics,1983,13 (3):190-197.
    [110]Khatib O. Real time Obstacle Avoidance for Manipulators and Mobile Robots. International Journal of Robotics Research,1986,5 (1):90-98
    [111]Dennis B, Jeroen H, Renvan M. Real-time motion path generation using sub-targets in a rapidly changing Environment[J]. Robotics and Autonomous Systems,2007,55(3): 470-479.
    [112]Erdinc S C. Path planning using potential fields for highly redundant manipulators [J]. Robotics and Autonomous Systems,2005,52(2):209-228.
    [113]Jaradat M, Garibeh M H, Feilat E A. Dynamic motion planning for autonomous mobile robot using fuzzy potential field[C].6th International Symposium on Mechatronics and Its Applications. Sharjah,2009:24-26.
    [114]Jaradat M, Garibeh M H, Feilat E A. Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field[J]. Soft Computing,2011,16(1):153-164.
    [115]于振中,闫继宏,赵杰.改进人工势场法的移动机器人路径规划[J].哈尔滨工业大学学报,2011,43(1):50-55.
    [116]Elkan CP. The paradoxical success of fuzzy logic [M]. Dept. of Computer Science and Engineering, University of California, San Diego,1992.
    [117]S. Haack, Deviant Logic Fuzzy Logic-Beyond the Formalism, The University of Chigaco Press, Chicago,1974.
    [118]李洪兴.模糊控制的数学本质与一类高精度模糊控制器的设计.控制理论与应用,1997,14(6):868-876
    [119]李洪兴.模糊控制的插值机理,中国科学E辑,1998,28(3),259-267.
    [120]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2004.
    [121]Trave Massuyes L, Piera N. The Orders of Magnitude Models as Qualitative Algebra[C]. Proc.of IJCAI.89.1989:1261-1266.
    [122]Bousson K, Trave Massuyes L. Putting More Numbers in the Qualitative Simulator CA-EN[C]. Proc. of 2nd Int. Conf. On Intelligent. Systems Engineering(ISE 94), Hamburg-Harburg, Germany,1994:62-69.
    [123]Murthy S S. Qualitative Reasoning at Multiple Resolutions[C]. Proc. of AAAI-88,1988, 296-300.
    [124]朱六璋.不确定性系统的定性建模与控制研究[D].中国科学技术大学博士学位论文, 2002.
    [125]De Kleer J, Brow J S. A Qualitative Physics Based On Confluences. Artificial Intelligence. 1984,24:7-83.
    [126]Li H X, Yuan X H, Wang J Y, et al. The normal numbers of the fuzzy systems and their classes. Sci China Ser F-Inf Sci,2010,40:1596-1610
    [127]Li H X. Probability representations of fuzzy systems. Sci China Ser E-Inf Sci,2006,49: 339-363
    [128]Helton J C. Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty, J STAT COMPUT SIM,1997,57:3-76
    [129]刘兴堂,梁炳成,刘力等.复杂系统建模理论、方法与技术[M].北京:科学出版社.2008.
    [130]Jablonski J, Posey J. Robotics Terminology. In:Handbook of Industrial Robotics, ed. S. Nof. J. Wilev, New York,1985,1271-1303.
    [131]Arkin R C. Behavior-based Robotics[M], Cambridge, Massachusetts:MIT Press,1998.
    [132]刘娟.基于时空信息与认知模型的移动机器人导航机制研究[D].中南大学博士学位论文.2003.
    [133]Kuipers B. The cognitive map:Could it have been any other way [J]. Spatial orientation: Theory, research, and application,1983,345-359.
    [134]Golledge RG. Environmental cognition [J]. In D. Stokols, & I. Altman, (Eds.), Handbook of environmental psychology (Vol. I). New York:Wiley.1987:131-174.
    [135]Choi J, Choi M, Nam S Y, et al. Autonomous topological modeling of a home environment and topological localization using a sonar grid map[J]. Autonomous Robots.2011,30: 351-368.
    [136]Zhou P D. An algorithm for partitioning polygons into convex parts[J]. Journal Beijing Institute of Technology,1997,6(4):363-368.
    [137]曲道奎,杜振军,徐殿国,徐方.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101.
    [138]仲朝亮,刘士荣.基于虚拟子目标的移动机器人主动寻径导航[J].机器人,2009,31(6):548-555.
    [139]Ghita N, Kloetzer M. Trajectory planning for a car-like robot by environment abstraction [J]. Robotics and Autonomous Systems,2012,60(4):609-619.
    [140]Belta C, Isler V, Pappas G. Discrete abstractions for robot motion planning and control in polygonal environments[J]. IEEE Transactions on Robotics.2005,21(5):864-874.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700