多节履带式搜索机器人及其运动策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搜索机器人在水灾、火灾、地震等自然灾害以及各种人为灾害领域有着广泛的应用。当前,各种灾害频繁发生,人民的生命财产安全受到极大的威胁。灾难事故发生后,现场环境异常危险,救援人员很难在第一时间实施搜索。为准确获得被困或遇难人员的位置以及现场温度、氧气含量、有害气体含量、现场倒塌状况等,研究替代或部分替代救援人员进入灾难现场实施环境探测的搜索机器人具有重要的现实意义。
     在分析灾难现场环境的基础上,针对搜索机器人的功能要求,制定出机器人的设计准则,提出并研制了一种具有较强运动能力的多节串联多履带构型的搜索机器人机械系统。采用履带式移动机构提高机器人在复杂环境下的运动能力,每个单元四周均包覆履带,不仅提高了机器人的驱动力,还可以实现辅助转弯和防卡死。为实现四周履带的同步协调控制,由一个电机驱动,传动机构采用锥齿轮链式传动,不仅缩短了传动链,而且结构紧凑,四周履带均可对称布置;每个关节机构具有俯仰和偏航两个自由度,其运动范围均为±45o。针对存在大量易燃性气体的应用场合,采用整机壳体密封正压防爆技术对机器人进行可靠性设计。
     针对搜索机器人头部单元姿态调整运动,建立了机器人的正运动学方程,并重点研究了其逆运动学。提出了一种新的空间分割方法对机器人的关节空间和工作空间进行分割,并提出了基于空间分割和遗传算法相结合的混合算法解决机器人逆运动学无解析解的问题。该算法有效地缩小了遗传算法的搜索空间,提高了求解精度。基于牛顿欧拉法建立了机器人头部单元姿态调整运动的动力学方程,并针对机器人调整头部单元姿态时易发生倾覆的现象进行了静态和动态稳定性分析,给出了倾覆稳定性判据,为实现稳定的姿态调整提供了理论依据。针对搜索机器人的行走运动,分析了机器人履带地面的作用机理,并建立了基于牛顿欧拉法的动力学递推方程。
     针对灾难事故发生后的未知环境,提出了一种基于可视切线图的未知环境建模方法。定义和描述了相关术语,阐述了可视切线图的概念,并对可视切线图进行了扩展。提出了基于可视切线图的路径规划算法,该算法利用可视切线图进行环境建模,并将反应式路径规划和反射式路径规划两种方法有机地结合起来,针对不同的环境进行路径规划。仿真实验结果不仅证明了可视切线图是一种有效的路径规划工具,而且证明了基于可视切线图的路径规划算法是可行的,增强了机器人的环境适应能力,并且减少了所需运动时间,能够满足搜索机器人在未知环境下的运动要求。针对搜索机器人跟踪已确定的最优路径,建立了基于Follow-the-leader的跟踪运动学模型,并提出了两级遗传嵌套优化算法搜索机器人的最优动力学解。
     建立了搜索机器人自主越障运动方程,分析了搜索机器人逾越典型障碍的能力,并基于关键姿态运动学和动力学进行了越障动作分析。针对多节履带式搜索机器人的结构特性和环境障碍特征,提出了基于专家控制系统的自主越障分层规划策略。该策略将自主越障规划分为行为规划和动作规划,对每种越障行为和对应的行为动作进行离线规划形成规则库,并基于行为推理机和动作推理机进行实时的在线推理,实现了搜索机器人的自主越障功能。
     建立了搜索机器人实验系统,对机器人地面直线行走和转弯行走等基本运动进行实验研究,并对基于可视切线图的路径规划算法和基于专家控制系统的自主越障动作规划策略进行了实验研究。结果表明所研制的多节履带式搜索机器人具有较强的运动能力,同时验证了所提出的路径规划算法和自主越障规划策略的正确性。
Rescue robots have been applied broadly in nature disasters (such as flood, fire, and earthquake et al.) and various man-made catastrophes. At present, various disasters happen frequently and seriously endanger folks' life and safety. After an accident happens, it is difficult for rescuers to make salvation at the first time in the abominable site. To acquire exact information of the location of trapped or dead people, temperature, content of oxygen and deleterious gas and collapse status in the site, it has an important practical signification to develop a rescue robot who can substitute rescuers wholly or partially to go to the disaster field for environment detecting.
     Based on an analysis for the surroundings in the disaster site, according to the function requirement of a rescue robot, a design rule is made. In addition, the mechanism of a multi-linked rescue robot with tracks is presented and developed, which has stronger motion ability. A tracked moving mechanism is used to improve the motion capacity of the robot in complex environment. Each link is enwrapped by tracks, which not only increases the drive force, but also improves the ability of turning and avoiding being locked. A motor is used to drive the ambient tracks. Transmission mechanism uses a bevel gear chain mechanism, so not only the transmission chain is short, but also the structure is compact and the tracks lay symmetrically. Each joint mechanism has a pitch and a yaw degree of freedom, whose motion ranges are±45o. The positive pressure anti-explosion technology is adopted to design the reliability of the rescue robot when there is a lot of flammable gas in the disaster site.
     A forward kinematics model of the rescue robot is built for the posture adjustment motion of the head unit. Meanwhile, its inverse kinematics is mainly studied. A new space decomposition method is presented to decompose the joint space and working space, and a hybrid algorithm based on the combination of space decomposition and genetic algorithm is presented to resolve the problem that the inverse kinematics has not analytic solutions. This algorithm effectively reduces the searching space of genetic algorithm and improves the solution precision. A dynamics model of the rescue robot based on Newton-Euler method is built for its posture adjustment motion of the head unit. Furthermore, the static and dynamic stability is analyzed. The stability criterion presented supplies a theory foundation for realizing stable posture adjustment. The action theory between the robot and a terrain is analyzed and a dynamics model by iterative Newton-Euler method is built for the rescue robot’s movement.
     An unknown environment modeling method based on a visual tangent graph is presented and its relative terms are defined and described too. The visual tangent graph notion is expatiated and extended. A path-planning algorithm is proposed based on the visual tangent graph. The algorithm uses the visual tangent graph to describe the unknown environment and combines the reactive path planning and the reflective path planning to plan a path from an original point to a destination. The simulation analysis indicates not only the visual tangent graph is an effective path planning tool, but also the path planning algorithm based on the visual tangent graph is feasible, which increases the environment adaptability of the rescue robot, reduces the motion time and satisfies the motion requirement of the rescue robot in unknown environment. To follow the certain optimum path for the rescue robot, a following kinematical model based on Follow-the-leader strategy is built and the two grate nested optimization of genetic algorithm is presented to search the optimum dynamical solutions.
     The autonomous obstacle negotiating motion function of the rescue robot is built. The typical obstacle negotiating ability of the rescue robot is analysed and the obstacle negotiating motion is discussed based on the key posture kinematics and dynamics. According to the rescue robot’s mechanism and the character of environment, an autonomous obstacle negotiating layered planning algorithm based on an expert control system is proposed. The autonomous obstacle negotiating algorithm is divided into behavior planning and motion planning. An off-line planning of each obstacle negotiating behavior and relative motion is made to form a rule base. A real-time on-line reasoning based on behavior inference engine and motion inference engine is carried to realize the antonomous obstacle negotiating function of the rescue robot.
     An experiment system of the rescue robot is established. The experiment on the basic motion such as linear and turning movement is made. Meanwhile, the experiments on the path planning algorithm based on the visual tangent graph and autonomous obstacle negotiating planning strategy based on the expert control system are done. The results show that the rescue robot proposed has stronger motion ability and the path planning algorithm and autonomous obstacle negotiating planning strategy proposed are correct.
引文
1 J. L. Casper, R. R. Murphy. Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man, and Cybernetics, 2003, Part B, 33:367- 385
    2董晓坡,王绪本.搜索机器人的发展及其在灾害搜索中的应用.防灾减灾工程学报. 2007, 27(1):112-117
    3王忠民.灾难搜救机器人研究现状与发展趋势.现代电子技术. 2007, (17):152-155
    4刘金国,王越超,李斌,马书根.灾难搜索机器人研究现状,关键性能及展望.机械工程学报. 2006, 42(12):1-12
    5王勇,朱华,王永胜,程刚,李允旺.煤矿救灾机器人研究现状及需要重点解决的技术问题.煤矿机械, 2007, 28(4):107-109
    6朱华.矿井救灾机器人研究现状及需要重点解决的技术问题.徐州工程学院学报, 2007, 22(6):5-8
    7王忠民,刘军,窦智,杜占灵.矿难搜索机器人的研究应用现状与开发.煤矿机械, 2007, 28(11):6-8
    8 A. Meghdari, H. N. Pishkenari, A. L. Gaskarimahalle, S. H. Mahboobi, R. Karimi. Optimal design and fabrication of CEDRA rescue robot using genetic algorithm. Proceedings of International Design Engineering Technical Conferences, Salt Lake City, Utah, 2004:1-8
    9 H. N. Pishkenari, S. H. Mahboobi, A. Meghdari. On the optimum design of fuzzy logic controller for trajectory tracking using evolutionary algorithms. Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 2004:660-665
    10 D. P. Stormont. Autonomous rescue robot swarms for first responders. IEEE Conference on Computational Intelligence for Homeland Security and Personal Safety, Orlando, FL, USA, 2005:151– 157
    11 D. P. Stormont, A. Bhatt, B. Boldt, S. Skousen, M. D. Berkemeier. Building better swarms through competition: lessons learned from the AAAIIRoboCup rescue robot competition. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003:2870-2015
    12 N. Sato, F. Matsuno, N. Shiroma. FUMA: platform development and system integration for rescue missions. Proceedings of the 2007 IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy, 2007:1-6
    13 Y. H. Chiu, N. Shiroma, H. Igarashi, N. Sato, M. Inami, et al. FUMA: environment information gathering wheeled rescue robot with one-DOF arm. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan, 2005:81-86
    14 Y. Yokokohji, T. Tubouchi, A. Tanaka, T. Yoshida, E. Koyanagi, et al. Guidelines for human interface design of rescue robots. SICE-ICASE International Joint Conference 2006, Bexco, Busan, Korea, 2006:3455-3460
    15 S. Thrun, D. Hahnel, D. Ferguson, M. Montemerlo, R. Triebel, et al. A system for volumetric robotic mapping of abandoned mines. Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003:4270-4275
    16 A. Nuchter, H. Surmann, K. Lingermann, J. Hertzberg, S. Thrun. 6D SLAM with an application in autonomous mine mapping. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004:1998-2003
    17 C. Baker, A. Morris, D. Ferguson, S. Thayer, C.Whittaker, et al. A campaign in autonomous mine mapping. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004:2004-2009
    18 S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, et al. Autonomous exploration and mapping of abandoned mines. Robotics and Automation Magazine, IEEE, 2004, 11(4):79-91
    19 A. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver, et al. Recent developments in subterranean robotics. Journal of Field Robotics, 2006, 23(1):35-57
    20 D. Silver, D. Ferguson, A. Morris, S. Thayer. Feature extraction for topological mine maps. 2004 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Sendal, Japan, 2004:773-779
    21 C. Pepper, S. Balakirsky, C. Scrapper. Robot simulation physics validation. 2007 Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD, United states, 2007:97-104
    22 B. A. Jones, W. McMahan, I. D. Walker. Practical kinematics for real-time implementation of continuum robots. Proceedings of the 2006 International Conference on Robotics and Automation, Orlando, Florida, 2006:1840-1847
    23 P. K. Pal, K. Jayarajan, D. D. Ray, M. Singh, V. Mahadev, et al. A mobile robotthat removed and disposed ammunition boxes. CURRENT SCIENCE, 2007, 92(12):1673-1677
    24 C. L. Cawley. The Enhancement of a Multi-Terrain Mechatron for Autonomous Outdoor Applications. [MS thesis]. University of Waikato, 2006
    25 E. B. Pacis, H. R. Everett, N. Farrington, D. J. Bruemme. Enhancing functionality and autonomy in man-portable robots. Proceedings of the society of Photo-optical Instrumentation Engineers, Orlando, FL, 2004, 5422:355-366
    26 W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, et al. Field trials and testing of the OctArm continuum manipulator. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006:2336-2341
    27 W. Lee, S. Kang, M. Kim, K. Shin. Rough terrain negotiable mobile platform with passively adaptive double-tracks and its application to rescue missions. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005:1591-1596
    28 F. Matsuno, S. Hirose, I. Akiyama, T. Inoh, M. Guarnieri, et al. Introduction of mission unit on information collection by on-rubble mobile platforms of development of rescue robot systems (DDT) project in Japan. SICE-ICASE International Joint Conference 2006, Bexco, Busan, Korea, 2006:4186-4191
    29 Fuel Cell Powered Mobile Robots [EB/OL]. http://www.sandia.gov/isrc/fuelcellrat.html, 2008
    30国内第一台煤矿搜救机器人在中国矿大诞生. [EB/OL]. http://www.cnxz.com.cn/newscenter/xznews/xzrd/2006/2006062253925.htm, 2006
    31 B. Yamauchi. The Wayfarer modular navigation payload for intelligent robot. Conference on Unmanned Ground Vehicle Technology VII, Orlando, FL, 2005:85-96
    32 B. Yamauchi. Autonomous urban reconnaissance using man-portable UGVs. Conference on Unmanned Ground Vehicle Technology VIII, Kissimmee, FL, 2006:S2300-S2300
    33 P. Ogren, P. Svenmarck. A new control mode for teleoperated differential drive UGVs. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007:5794-5799
    34 B. Yamauchi. Daredevil: Ultra-wideband radar sensing for small UGVs. Conference on Unmanned Ground Vehicle Technology IX, Orlando, FL, 2007:B5610-B5610
    35 J. Folkesson, H. Christensen. SIFT Based Graphical SLAM on a Packbot. 6thInternational Conference on Field and Service Robotics, Chamonix, France, 2008:317-328
    36 E. Mihankhah, A. Kalantari, E. Aboosaeedan, H. D. Taghirad, S.Ali.A. Moosavian. Autonomous staircase detection and stair climbing for a tracked mobile robot using fuzzy controller. Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 2009:1980-1985
    37 S.Ali.A. Moosavian, H. Semsarilar, A. Kalantari. Design and manufacturing of a mobile rescue robot. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Beijing, China, 2006:3982-3987
    38 S.Ali.A. Moosavian, A. Kalantari. Experimental slip estimation for exact kinematics modeling and control of a tracked mobile robot. 2008 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Nice, France, 2008:95-100
    39 W. D. Wang, Z. J. Du, L. N. Sun. Obstacle performance analysis of mine research robot based on terramechanics. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin China, 2007:1382-1387
    40魏娟,贾广利,马宏伟.煤矿搜索机器人虚拟样机仿真分析.机械科学与技术, 2008, 27(11):1369-1373
    41候宪伦,葛兆斌,李向东,孙洁,张东.井下探险搜索机器人的设计.煤矿机械, 2009, 30(8):18-20
    42李斌.蛇形机器人的研究及在灾难搜索中的应用.机器人技术与应用, 2003, (3):22-26
    43陈丽,王越超,李斌.蛇形机器人研究现况与进展.机器人, 2002, 24(6):559-563
    44 H. Kimura, S. Hirose, K. Shimizu. Stuck evasion control for active-wheel passive-joint snake-like mobile robot Genbu. Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, 2004:5087-5092
    45 B. Li, D. L. Tan, Y. H. Wang, L. Chen, S. G. Ma. Study on a snake-like robot adapting to the ground. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004:4877-4880
    46 F. Matauno, S. Tadokoro. Rescue robots and systems in Japan. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:12-20
    47 B. M. Hudock, B. E. Bishop, F. L. Crabbe. On the development of a novel urban search and rescue robot. Proceedings of the Thirty-Sixth Southeastern Symposium on system Theory, United States Naval Acad., Annapolis, MD, USA, 2004:451-455
    48 S. Hirose. Snake, walking and group robots for super mechano-system. 1999 IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, 1999:129-133
    49 S. Hirose. Super mechano-system: New perspective for versatile robotic system. Proceedings of the 7th International Symposium on Experimental Robotics, Waikiki, Hawaii, 2000:249-258
    50 S. Hirose, E. F. Fukushima. Snakes and strings: new robotic components for rescue operations. Proceedings of the 41th Annual conference of the Society of Instrument and Control Engineers, Osaka, Japan, 2002:338-343
    51 S. Hirose, E. F. Fukushima, S. Tsukagoshi. Basic steering control methods for the articulated body mobile robot. IEEE Control Systems Magazine, 1995, 15(1):5-14
    52 K. Togawa, M. Mori, S. Hirose. Study on three-dimensional active cord mechanism: development of ACM-R2. 2000 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Takamatsu, 2000:2242-2247
    53 M. Mori, S. Hirose. Development of active cord mechanism ACM-R3 with agile 3D mobility. 2001 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Maui, Hawaii, USA, 2001:1552-1557
    54 M. Mori, S. Hirose. Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. 2002 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Lausanne, Switzerland, 2002:829-834
    55 T. Takayama, S. Hirose. Development of Souryu-I connected crawler vehicle for inspection of narrow and winding space. 26th Annual Conference of the IEEE Industrial Electronics Society, Nagoya, Japan, 2000:143-148
    56 K. Osuka. On development of snake-like robots to search a victim left inside debris. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:65-69
    57 A. Masayuki, T. Takayama, S. Hirose. Development of Souryu-III- connected crawler vehicle for inspection inside narrow and winding spaces. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robos and Systems, Sendai, Japan, 2004:52-57
    58 N. Midorikawa, K. Ohno, H. Kuwahara. Development of small-size multi camera system for snake-like robot, and display of wide view-angle image.Proceedings of the 2007 IEEE International Workshop on Safy, Security and Rescue Robotics, Rome, Italy, 2007:1-6
    59 M. Kurisu, H. Muroi, Y. Yokokohji, H. Kuwahara. Development of a laser range finder for 3D map-building in rubble. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007:2054-2059
    60 K. Osuka, H. Kitajima. Development of mobile inspection robot for rescue activities MOIRA. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robos and Systems, Las Vegas, Nevada, 2003:3373-3377
    61 R. Haraguchi, K. Osuka, S. Makita, S. Tadokoro. The development of the mobile inspection robot for rescue activity MOIRA2, 12th International Conference on Advanced Robotics, Seattle, WA, 2005:498-505
    62 T. Kamegawa, T. Yamasaki, H. Igarashi, F. Matsuno. Development of the snake-like rescue robot“KOHGA”. Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, 2004:5081–5086
    63 T. Kamegawa, T. Yamasaki, F. Matsuno. Evaluation of snake-like rescue robot“KOHGA”for usability of remote control. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan, 2005:25–30
    64 H. Miyanaka, N. Wada, T. Kamegawa, N. Sato, S. Tsukui, et al. Development of an unit type robot“KOHGA2”with stuck avoidance ability. 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007:3877–3882
    65 S. G. Ma, G. P. Lan, Y. Tanabe, R. Sasaki, K. Inoue. A serpentine robot based on 3 DOF coupled-driven joint. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:70-75
    66 B. Li, S. G. Ma, Y. C. Wang, Y. Lv, L. Chen. Environment-adaptable locomotion of a snake-like robot. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:584-588
    67 C. L. Ye, S. G. Ma, B. Li, Y. C. Wang. Head-raising motion of snake-like robots. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:595-600
    68 C. L. Ye, S. G. Ma, B. Li, Y. C. Wang. Locomotion control of a novel snake-like robot. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robos and Systems, Sendai, Japan, 2004:925-930
    69 K. Tabata, A. Inaba, Q. Zhang, H. Amano. Development of a transformational mobile robot to search victims under debris and rubble. Proceedings of the 2004IEEE/RSJ International Conference on Intelligent Robos and Systems, Sendai, Japan, 2004:46-51
    70 K. Tabata, A. Inaba, H. Amano. Development of a transformational mobile robot to search victims under debris and rubble-2nd report: Improvement of Mechanism and Interface-. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan, 2005:19-24
    71 J. G. Liu, Y. C. Wang, S. G. Ma, B. Li. Analysis of stairs-climbing ability for a tracked reconfigurable modular robot. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan, 2005:36-41
    72 J. G. Liu, S. G. Ma, Z. L. Lu, Y. C. Wang, B. Li. Design and experiment of a novel link-type shape shifting modular robot series. Proceedings of the 2005 IEEE International Conference on Robotics and Biomimetics, Hong Kong, China, 2005:318-323
    73 B. Li, J. Wang, J. G. Liu, S. G. Ma. Study on a novel link-type shape shifting robot. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006:9012-9016
    74 J. G. Liu, Y. C. Wang, B. Li, S. G. Ma, J. Wang, et al. Transformation technique research of the improved link-type shape shifting modular robot. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006:295-300
    75 C. L. Ye, S. G. Ma, B. Li. Research on urban search and rescue robot- development of Amoeba II. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006:9183-9187
    76 C. L. Ye, S. G. Ma, B. Li. Design and basic experiments of a shape-shifting mobile robot for urban search and rescue. 2006 IEEE/RSJ International Conference on Intelligent Robotics and Systems, Beijing, China, 2006:3994-3999
    77 B. Li, S. G. Ma, J. Liu, Y. C. Wang. Development of a shape shifting robot for search and rescue. Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, Kobe, Japan, 2005: 31-35
    78 R. R. Murphy, M. ausmus, M. Bugajska, T. Ellis, T. Johnson, et al. Marsupial-like Mobile Robot Societies. Proceedings of the International Conference on Autonomous Agents, Seattle, WA, USA, 1999:364-365
    79 R. R. Murphy. Marsupial and shape-shifting robots for urban search and rescue. Intelligent Systems and Their Applications, IEEE, 2000, 15(2):14-19
    80 E. J. Chung, Y. S. Kwon, J. T. Seo, J. J. Jeon, H. Y. Lee, et al. Development of amultiple mobile robotic system for team work. SICE-ICASE International Joint Conference 2006, Busan, Korea, 2006:4291-4296
    81 E. Watari, H. Tsukagoshi, A. Kitagawa. development of a throw & collect type rescue inspector. SICE-ICASE International Joint Conference 2006, Busan, Korea, 2006:4663-4667
    82王军,苏剑波,席裕庚.多传感器集成与融合概述.机器人, 2001, 23(2):183-192
    83石鸿雁,孙昌志,陈冬阳等.动态环境下自主移动机器人的导航复杂性.沈阳工业大学学报, 2006, 28(5):534-537
    84张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望.系统仿真学报, 2005, 17(2):439-443
    85 B. Oommen, S. Iyengar, N. Rao, et al. Robot navigation in unknown terrains using learned visibility graphs. part I: the disjoint convex obstacle case. IEEE Journal of Robotics and Automation, 1987, RA-3(6): 672-681
    86 Y. H. Liu, S. Arimoto. Computation of the tangent graph of polygonal obstacles by moving-line processing. IEEE Transactions on Robotics and Automation, 1994, 10(6): 823-830
    87刘华军,杨静宇,陆建峰等.移动机器人运动规划研究综述.中国工程科学, 2006, 8(1):85-94
    88 T. Lozano-Perez, M. A. Wesley. An algorithm for planning collision-free paths among polyhedral obstacles. Commun, ACM, 1979, 22(10): 560-570
    89 D. Wooden, M. Egerstedt. Oriented visibility graphs: low-complexity planning in real-time environments. 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006:2354-2359
    90 Y. H. Liu, S. Arimoto. A flexible algorithm for planning local shortest path of mobile robots based on reachability graph. Proc. IEEE Int. Workshop on Intelligent Robots Syst., Tokyo Univ., Japan, 1990:749-756
    91 Y. H. Liu, S. Arimoto. Proposal of tangent graph and extended tangent graph for path planning of mobile robots. Proc. IEEE Int. Conf. Robotics Automat., Sacramento, California, 1991:312-317
    92 Y. H. Liu, S. Arimoto. Computation of the tangent graph of polygonal obstacles by moving-line processing. IEEE Transactions on Robotics and Automation, 1994, 10(6): 823-830
    93吴峰光,奚宏生.一种新的基于切线的路径规划方法.机器人, 2004, 26(3):193-197
    94 J. F. Canny. A voronoi method for the piano-movers problem. IEEE InternationalConference on Robotics and Automation, MIT AI Lab Cambridge, 1985:530-535
    95 M. Tomono. Planning a path for finding targets under spatial uncertainties using a weighted voronoi graph and visibility measure. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003: 124-129
    96 N. Huyn, R. Dechter, J. Pearl. Probalilistic analysis of the complexity of A*. Artificial Intelligence, 1980,15(3): 241-254
    97 S. S. Ge, Y. J. Cui. Dynamic motion planning for mobile robots using potential field method[J]. Autonomous Robots, 2002, 13(3): 207-222
    98 L. Yin, Y. X. Yin. An Improved Potential Field Method for Mobile Robot Path Planning in Dynamic Environments. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008: 4847-4852
    99张颖,吴成东,原宝龙.机器人路径规划方法综述.控制工程, 2003, 10(1):152-155
    100韩永,刘国栋.动态环境下基于人工势场的移动机器人运动规划.机器人, 2006, 28(1):45-49
    101 I. Hassanzadeh, S. M. Sadigh. Path Planning for a mobile robot using fuzzy logic controller tuned by GA. Proceedings of the 6th International Symposium on Mechatronics and its Applications (ISMA09), Sharjah, UAE, 2009: 1-5
    102 B. Lei, W. F. Li. A Fuzzy Behaviours Fusion Algorithm for Mobile Robot Real-time Path Planning in Unknown Environment. Proceedings of the 2007 IEEE International Conference on Integration Technology, 2007, Shenzhen, China: 173-178
    103单建华.未知环境下移动机器人实时模糊路径规划.机电工程, 2009, 10(1):152-155
    104 A. Bagchi, H. Hatwal. Fuzzy logic based techniques for motion planning of a robot manipulator amongst unknown moving obstacles. Robotica, 1992, 10(6):563-573
    105 A. Howard, H. Seraji. An intelligent terrain-based navigation system for planetary rovers. IEEE Robotics and Automation Magazine, 2001, 8(4): 9-17
    106 D. Janglova. Neural networks in mobile robot motion. International Journal of Advanced Robotic Systems, 2004, 1(1): 15-22
    107禹建丽, V. Kroumov,孙增圻等.一种快速神经网络路径规划算法.机器人, 2001, 23(3):201-205
    108 A. C. Nearchou. Path planning of a mobile robot usinggenetic heuristics.ROBOTICA, 1998, 16: 575-588
    109孙树栋,林茂.基于遗传算法的多移动机器人协调路径规划.自动化学报, 2000, 26(5): 673-676
    110景兴建,王越超.一种基于理性遗传算法(RGA)的协调运动行为合成算法.机器人, 2002, 24(1): 49-54
    111信建国,李小凡,王忠等.履带腿式非结构环境移动机器人特性分析.机器人, 2004, 26(1): 35-39
    112徐正飞,杨汝清,王韬.关节式移动机器人的越障运动.中国机械工程, 2003, 14(12): 1052-1055
    113 X. G. Duan, Q. Huang, N. Rahman, et al. Kinematics modeling of a small mobile robot with multi-locomotion models. In: 2006 IEEE International Conference on Intelligent Robots and System, Beijing, 2006:5582-5587
    114王伟东,孔民秀,杜志江,孙立宁.腿履复合机器人自主越障分析与动作规划.哈尔滨工业大学学报, 2009, 41(5): 30-33
    115李恩,梁自泽,谭民.基于规则库的巡线机器人自主越障动作规划.机器人, 2005, 27(5):400-405.
    116王韬,杨汝清,顿向明,张志伟.自主越障时关节轮式移动机器人的姿态设定.上海交通大学学报, 2001,35(1):59-63
    117徐正飞,杨汝清,陆际联,杨华.移动机器人自主越障反应控制行为组合方法.上海交通大学学报, 2006, (3).
    118 K. C. Gupta, K. Kazerounian. Improved Numerical Solutions of Inverse Kinematics of Robots. 1985 IEEE International Conference on Robotics and Automation, Chicago, 1985:743-748
    119 T. Takahashi, A. Kawamura. The High-speed Numerical Calculation Method for the On-line Inverse Kinematics of Redundant Degree of Freedom Manipulators. 6th International Workshop on Advanced Motion Control, Nagoya, Japan, 2000:618-623
    120 Y. Q. Dai, A. A. Loukianov, M. Uchiyama. A Hybrid Numerical Method for Solving the Inverse Kinematics of a Class of Spatial Flexible Manipulators. Proceedings of the 1997 IEEE International Conference on Robotics and Auomation, Albuquerque, New Mexico, 1997:3449-3454
    121 K. Tchon. Optimal Extended Jacobian Inverse Kinematics Algorithms for Robotic Manipulators. IEEE Transactions on Robotics, 2008, 24(6):1440-1445
    122 K. Tchon, J. Jakubiak. An Extended Jacobian Inverse Kinematics Algorithm for Doubly Nonholonomic Mobile Manipulators. Proceedings of the 2005 IEEEInternational Conference on Robotics and Automation, Spain, 2005:1548-1553
    123谢宗武,孙奎,刘宏.扩展雅可比方法的冗余度机器人逆运动学应用.哈尔滨工业大学学报, 2009, 41(5):34-36, 85
    124马化一,张艾群,张竺英.一种基于优化算法的机械手运动学逆解.机器人, 2001, 23(2): 137-141
    125于振中,闫继宏,赵杰,等.超冗余移动机械臂逆运动学快速求解.北京邮电大学学报(自然科学版), 2009, 32(5): 55-59
    126阳小涛,杨克俭. CCD算法及其在逆运动学中的应用与实现.重庆工学院学报(自然科学), 2008, 22(5): 65-68
    127 Y. G. Yang, G. Z. Peng, Y. F. Wang, et al. A New Solution for Inverse Kinematics of 7-DOF Manipulator Based on Genetic algorithm. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, 2007: 1947-1951
    128 Y. G. Zhang, L. M. Xie, H. Shen, et al. Simulation on Whole Inverse Kinematics of a 5R Robot Based on Hybrid Genetic Algorithm. Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, 2009: 1840-1845
    129 Y. H. Zhou, W. Z. Tang, J. X. Zhang. Algorithm for Multi-joint Redundant Robot Inverse Kinematics Based on the Bayesian-BP Neural Network. 2008 International Conference on Intelligent Computation Technology and Automation, Xiangtan, Hunan, 2008: 173-178
    130 Z. Bingul, H. M. Ertunc, C. Oysu. Comparison of inverse kinematics solutions using neural network for 6R robot manipulator with offset. 2005 ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, 2005: 1-5
    131 M. Tarokh, M. Kim. Inverse Kinematics of 7-DOF Robots and Limbs by Decomposition and Approximation. IEEE Transaction on Robotics, 2007, 23(3): 595-600
    132孙奎,谢宗武,王建宇等.舱外航天服手臂的逆运动学解法.哈尔滨工业大学学报, 2010, 42(1): 60-63,68.
    133杨红旗.履带式工程机械履带与地面水平作用的有关系数(上) [J].机械工程,1982,(2):22-27,30.
    134杨红旗.履带式工程机械履带与地面水平作用的有关系数(下) [J].机械工程,1982,(3):9-13.
    135 J. Y. Wong. Terranechanics and off Road Vehicles. Elsevier, 1989: 117
    136 M. G. Bekker. Theory of Land locomotion(The Mechanics of Vehicle Mobility).University of Michigan Press, Ann Arbor, 1965: 233-273
    137 H. Choset, J. Burdick. Sensor Based Planning, Part I: The Generalized Voronoi Graph. IEEE International Conference on Robotics and Automation, Nagoya, 1995: 1649-1655
    138 H. Choset, I. Konukseven, A. Rizzi. Sensor Based Planning: A Control Law for Generating the Generalized Voronoi Graph. 8th International Conference on Advanced Robotics, Monterey, CA , 1997: 333-338
    139 S. Ahn, N. L. Doh, K. Lee, et al. Incremental and robust construction of generalized voronoi graph (GVG) for mobile guide robot. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003:3757-3762
    140 H. P. Huang, S. Y. Chung. Dynamic visibility graph for path planning. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, 2004:2813-2818
    141 H. Choset, J. Burdick. sensor based planning for a planar rod robot. 1996 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 1996:3584-3591.
    142 H. Choset, W. Henning. A Follow-the-Leader Approach to Serpentine Robot Motion Planning. Journal of Aerospace Engineering, 1999, 12(2): 65-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700