移动操作机器人及其共享控制的力反馈遥操作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动操作机器人相比于固定操作机器人具有更大的操作空间和更强的操作灵活性,成为机器人领域研究的热点方向之一。机器人借助传感器完全自主的完成指定的作业任务,特别是极限环境下的作业任务是智能机器人研究的最终目标。限于目前的科技水平,机器人很难完全自主的完成所有作业任务。将机器人的局部自主与网络遥操作相结合,组成基于共享控制方式的遥操作系统,实现人机智能的结合能极大的提高机器人实现复杂、动态、极限作业任务的能力。基于共享控制方式的移动操作机器人遥操作系统研究的几个重要问题包括移动操作机器人研制、提高移动操作机器人自主能力的方法研究和辅助操作者提高操作效率的方法研究。本文针对这几个方面,首先研制一台移动操作机器人,然后从提高机器人自主性方面研究该机器人的自主运动规划方法,最后从辅助操作者提高操作能力方面研究了移动车和操作臂的时延力反馈遥操作控制问题。
     针对共享控制遥操作应用背景,研制了一台轮式全方位移动操作机器人。该移动操作机器人具有冗余的网络通信结构,能够可靠的与控制网络通信。移动车采用三轮全驱结构,能够实现全方位运动,车体设计成圆桶型结构,适合于狭窄的运动空间。车轮模块采用差动驱动结构,结构简单,布线方便,车轮的转向不受角度范围的限制。操作臂设计成串联六自由度结构,末端三个关节的轴线交于一点具有解析逆解,方便控制。移动操作机器人上配置了红外测距、超声测距、超声定位、数字罗盘、编码器、摄像头、温度、六维力/力矩等多种传感器,为实现机器人的局部自主提供了硬件条件。该全方位移动操作机器人具有9个自由度,属于冗余机器人,针对冗余机器人逆运动学求解问题提出了一种基于遗传信赖域算法的冗余机器人逆运动学求解方法,并利用关节局部优化及解析方法将遗传信赖域算法的求解简化为两维目标函数的最优化问题,提高了优化算法的搜索速度。
     移动操作机器人自主运动规划是其自主性的重要内容,运动规划包括路径规划和轨迹规划。传统人工势场法用于移动机器人路径规划容易出现局部极小点、目标不可达和规划路径抖动等问题,为了克服传统方法的缺点提出了一种基于信赖域算法优化的改进人工势场法的自主路径规划方法。首先建立改进的人工势场模型,然后在改进人工势场模型基础上将各种势场强度用代数和方式叠加,最后用信赖域算法搜索机器人在一个采样周期中移动范围内的势场强度之和最小的点,多个最小点构成全局优化路径。信赖域算法具有快速收敛特性,能够满足算法的实时性要求。对于操作臂的轨迹规划问题,为了保证控制的实时性,采用基于关节空间的轨迹规划方法实现操作臂的轨迹规划。
     操作臂体现移动操作机器人的操作能力,对其进行高效的遥操作控制能够提高移动操作机器人共享控制遥操作系统的操作性能。力反馈为操作者提供力觉临场感,能够大大提高操作者操作的效率。网络传输时延却影响了系统的作业性能,甚至引起系统的不稳定,必须对其进行时延控制。基于无源性理论的波变量法能够保证系统在任意时延下的稳定性,但是其透明性较差。本文针对具有多个自由度操作臂的力反馈遥操作控制问题,首先扩展了通用的多自由度遥操作系统的波变换公式。为了克服波变量方法透明性差的问题,将波预测方法用于变时延遥操作系统,并针对变时延和预测模型不精确等给遥操作系统主从端带来的稳态位置误差问题,提出了一种从端校正控制方法。该方法与主端校正控制方法相比,不但能消除由于变时延和数据丢包引起的稳态位置误差,而且能够修正由于预测模型不精确引起的稳态位置误差。针对从端机器人模型不断变化的遥操作任务,提出使用适应性波预测器的方法来应对模型的变化,并设计了适应性波预测器的运行策略。实验证明了方法的有效性。
     移动车体现了移动操作机器人的移动能力,对移动车的遥操作能够补充其自主运动的不足,并且移动车和操作臂的遥操作相结合能够充分发挥移动操作机器人遥操作系统的“移动”和“操作”特性。首先研究了移动车力反馈遥操作控制的策略,并针对移动车的力反馈遥操作问题,提出了将波预测方法用于三通道遥操作控制结构,充分利用波变量方法、预测技术和三通道结构丰富的通道参数,在保证时延遥操作系统稳定的基础上提高其透明性。
     建立了基于网络的遥操作实验系统,实现了移动操作机器人在较大范围内搬运放置物体的实验,将运动学求逆解方法、自主运动规划方法、移动车和操作臂的力反馈遥操作控制方法应用于实验中验证了所提方法的有效性,为实现移动操作机器人的共享控制遥操作奠定了理论和技术基础。
Mobile manipulator has both mobile and operational capacity, and has larger operating space and better operational flexibility. It is a hot research focus in the robot research area. It is the ultimate goal of intelligent robots research to make the robots with sensors complete the specified operation task autonomously. However, being confined to the current technological level, it is difficult for robots to complete all work tasks autonomously. The combination of part autonomy and network teleoperation of the robots to realize the integration of artificial intelligence can greatly improve its ability to fulfil complex and dynamic operational tasks. The important issues of shared control based mobile robot teleoperation system including mobile manipulator design, the method of improving robot autonomy and the method to support operator improve operational efficiency. In this paper, it developed a mobile robot firstly, and then studyed the self-autonomy motion planning, and finally researched the force-feedback time-delay compensation method for mobile platform teleoperation and manipulator teleoperation.
     In allusion to the application background of control-sharing teleoperation, we studied an omni-directional wheeled mobile manipulator. The mobile manipulator has redundant network communication structure, which can communicate with the control network reliably. The mobile platform employs three-wheel all driving structure, which can realize omni-directional motion and is suited to narrow movement space. The wheel module employs differential drive structure which is simple and easy wiring and the turning of the wheels is free of the restrictions of angle range.restrictions. The manipulator is designed as series of 6-dof structure, and the axis of the end’s three-axis intersect at one point with analytic inverse solution, so that it’s easy to control. Mobile Manipulator configured infrared ranging, ultrasonic ranging, encoders, ultrasonic positioning, digital compass, camera, temperature, six-axis force / force moment and many other sensors, which provide the conditions for the robot to realize local autonomy. Omni-directional Mobile Manipulator has nine freedom, and it belongs to redundant robot. In allusion to the IKP of redundant robot, this paper proposes a kinematic inversion method based on the combination of genetic trust reign algorithm and analytical solutions. It can calculate the inverse of the robot rapiddly.
     Real-time motion planning of mobile manipulator is an important part of its autonomy. Motion planning includes path planning and trajectory planning. Using the traditional artificial potential field for mobile robot path planning prone to raise problems of local minimum point and destination failure and so on. In order to overcome the shortcomings of traditional methods an improved artificial potential field method is proposed. We build up an improved artificial potential field model, and based on this we get the algebraic superposition of all kinds of potential field strength, and we use trust reign algorithm for searching for the minimum point of the sum of potential field strength within a sampling period of moving range, and a number of minimum points constitute the global optimal path. Trust reign algorithm has the character of rapid convergence, and the algorithm can satisfy the real-time requirements of arithmetic. For manipulator trajectory planning, in order to ensure the real-time control, we employ the trajectory planning method based on joint space to real-time plan the trajectory of Manipulator.
     Manipulator represents the operational of the mobile manipulator, and its efficient teleoperaton can improve the operating performance of shared control teleoperation system of the mobile manipulator. Force-feedback technology in teleoperation system provides the operator with a force telepresence, which can greatly enhance the efficient operation of the operator. However, network transmission delay has greatly affected the operational performance of the system, and even cause system’s instability. Wave variable method based on passivity can ensure system’s stability with arbitrary time delays, but with poor transparency. In allusion to the force feedback teleoperation of manipulator with multiple degrees of freedom controlling problem, firstly, a universal wavelet transform formula is established for teleoperation system with multi-degree of freedom, and in order to overcome the problem of poor transparency of wave variable method, the wave prediction method is used to time-delay teleoperation system, and in allusion to the steady-state error of the master and slave end of teleoperation system caused by variable time delay and inaccuracy of the prediction model, forward correction controlling method is proposed which can effectively decreace the steady-state position error. For the changing teleoperation system’s task for the robot model, the method of using adaptive wave predictor to deal with the changes of the model is proposed, and the work strategies of the adaptive wave predictor is designed.
     Mobile platform represents the mobility of the mobile manipulator, teleoperation of mobile platform can complement its lack of autonomous movement, and combining the teleoperaton of the mobile platform and manipulator can give full play of "mobile" and "operation" feature. The force feedback controlling strategy of mobile vehicle is studied, and for the problem of the force feedback teleoperation of mobile vehicle the combination of wave variable method and prediction technology and multi-channel teleoperation control is proposed, which can improve its transparency while ensuring the system’s stability.
     We established a web-based teleoperation experimental system, and achieved the experiment of making the robot carry and place objects in large region, and applied dynamic programming method、mobile vehicles and manipulator’s force feedback teleoperation controlling method into experiments to verify the effectiveness of the proposed method, and this lays the foundation for the realization of shared remote controlling.
引文
1高永生.基于Internet多机器人遥操作系统安全机制的研究.哈尔滨工业大学博士学位论文. 2007: 7-10
    2 B. Hannaford. Stability and performance tradeoffs in bilateral telemanipulation. IEEE International Conference on Robotics and Automation. 1989, Scottsdale: 1764-1767
    3 M. Yamakita, M. Negi, K. Ito. Experimental study of tele-bilateral impedance control using bilinear model. IEEE International Conference on Robotics and Automation. 1995, Nagoya: 634-64
    4 G. Witus, R. D. Ellis, R. Karlsen et al. Comparison of teleoperation and supervisory control for navigation and driving with degraded communications. Proceedings of Unmanned Systems Technology XII, Orlando, FL, United states, April. 2010: 1-6
    5 T. B. Sheridan. Telerobotic, Automantion, and Human Supervisory Control. Cambridge, MA: The MIT Press, 1992
    6 H. Yasuhisa, K. Youhei, Z. D. Wang. Handling of a Single Object by Multiple Mobile Manipulators in Cooperation with Human Based on Virtual 3-D Caster Dynamic. JSME International Journal Series C. 2005, 48(4): 613-619
    7 Y. P. Li, T. Zielinska, M. H. Jrang, W. Lin. Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels. Proceedings of the Sixteenth CISM_IFTOMM Symposium, Robot Design, Dynamics and Control. 2006, Romansy: 221-228
    8 B. Oliver, K. Oussama. Elastic Strips: a Framework for Motion Generation in Human Enviroments. The International Journal of Robotics Research. 2002, 21(12): 1-22
    9 C. Luiz, S. Thomas, K. Vijar. An Architecture for Tightly Coupled Multi-Robbot Cooperation. IEEE International Conference on Robotics & Automation. 2001, 5: 2992-2997
    10李瑞峰,孙笛生,阎国荣等.移动式作业型智能服务机器人的研制.机器人技术与应用. 2003, (1): 27-29
    11李新春,赵东斌,易建强.一种全方位移动机械手的可操作度分析.中国机械工程. 2006, 17(14): 1442-1447
    12季婷,孙汉旭.关于一种模块化机器人的简化运动学反解.北京邮电大学学报. 2004, 27 (增刊2): 89-93
    13张秋豪,孙汉旭,魏世民.改善冗余度机器人灵活性的研究.北京邮电大学学报. 2004, 27(4): 74-77
    14贾庆轩,褚明,孙汉旭等. 9-DOF超冗余机器人轨迹规划优化算法.北京邮电大学学报. 2008, 31(2): 20-25
    15 Mark Steven Tisius Jr. An approach to performance criteria and redundancy resolution. The University of Texas at Austin, Ph.D dissertation. 2004: 86-102
    16 Huang Leiguang. An extended form of damped pseudoinverse control of kinematically redundant manipulators. IEEE International Conference on Systems, Man, and Cybernetics. 1997, Orlando: 3791-3796
    17 Chen Jinliang, Liu Jing-si. Avoidance of obstacles and joint limits for end-effector tracking in redundant manipulators. Proceedings of Seventh International Conference on Control, Automation, Robotics and Vision. 2002, Singapore: 839-844
    18刘宇.七自由度冗余手臂多性能准则优化及运动控制的研究.哈尔滨工业大学博士学位论文. 2004: 33-45
    19 R. V. Dubey. Real-time implementation of an optimization scheme for seven-degree-of-freedom redundant manipulators. IEEE Tr. On Robotics and Automation. 1991, 7(5): 579-588
    20 M. Galicki. Control-based solution to inverse kinematics for mobile manipulators using penalty functions. Journal of Intelligent and Robotic Systems. 2005, 42(3): 213-238
    21 M. Abou-Samah, V. Krovi. Decentralized kinematic control of a cooperating system of mobile manipulators. Proceedings of 2002 ASME International Mechanical Engineering Congress & Exposition. 2002, Louisiana: 949-956
    22 B. Honzik. Inverse kinematics and control of the assistive robot for disabled. Proceeding of 2003 IFAC. 2003, Shanghai: 845-850
    23 Xu D, Hul H, Calderon C, et al. Motion planning for a mobile manipulator with redundant DOFs. Proceedings of International Conference on Intelligent Computing. 2005, Hefei: 1-10
    24 Ma Bojun, Fang Yongchun, Zhang Xuebo. Inverse Kinematics Analysis for a Mobile Manipulator with Redundant DOFs. Proceedings of the 26th Chinese Control Conference. 2007, Piscataway: 118-122
    25刘达,王田苗.一种解析与数值相结合的机器人逆解算法.北京航空航天大学学报. 2007, 33(6): 727-730
    26张智,朱齐丹,刘海,等.蒸汽发生器检修机械手运动学逆解.哈尔滨工程大学学报. 2007, 28(1): 65-70
    27马化一,张艾群,张竺英.一种基于优化算法的机械手运动学逆解.机器人. 2001, 23(2): 137-141
    28租迪,吴镇炜,谈大龙.一种冗余机器人逆运动学求解的有效方法.机械工程学报. 2005, 41(6): 71-75
    29蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策. 2002, 17(4): 385-390
    30 J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991, Norwell, Massachusetts, USA: 48-60
    31陈春林.基于强化学习的移动机器人自主学习及导航控制.中国科学技术大学博士学位论文. 2006: 6-12
    32沈猛.轮式移动机器人导航控制与路径规划研究.西北工业大学博士学位论文. 2006: 42-44
    33 K. Hoff, T. Culver, J. Keyser, et al. Interactive Motion Planning Using Hardware-Accelerated Computation of Generalized Voronoi Diagarms. Procedings of IEEE International Conference on Robotics and Automation. 2000, San Francisco: 2931-2937
    34 A. Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer. 1989, 22(6): 46-57
    35 E. Rimon, D. E. Koditschek. Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 1992, 8(5): 501-518
    36 C. W. Warren. Multiple robot path coordination using artificial potential fields. Proc. IEEE Int. Conf. Robot. Autom. 1990, Cincinnati: 500-505
    37 S. S. Ge, Y. J. Cui. Dynamic motion planning for mobile robots using potential field method. Autom. Robots. 2002, 13(3): 207–222
    38周浦城,洪柄炳,杨敬辉.基于混沌遗传算法的移动机器人路径规划算法.哈尔滨工业大学学报. 2004, 36(7): 880-883
    39 H. Ju, H. M. Niu, J. X. Zhang. A method of path planning for home security robots based on genetic algorithm. High Technology Letters. 2007, 17(9): 924-928
    40 Y. J. Zhu, S. G. Wang, J. Chang. A kind of path planning algorithm for mobile robot based on neural network. High Technology Letters. 2002, 12(9): 42-45
    41 J. Barraquand, J. C. Latombe. A Monte-Carlo algorithm for path planning with many degrees of freedom. Proceedings of the IEEE International Conference on Robotics and Automation. 1990, Cincinnati: 1712-1717
    42 X. P. Yun, K. C. Tan. A wall-following method for escaping local minima in potential field based motion planning. Proceedings of the 8th International Conference on Advanced Robotics. 1997, Monterey: 421-426
    43 J. Y. Zhang, Z. P. Zhao, T. Liu. A path planning method for mobile robot based on artificial potential field. Journal of Harbin Institute of Technology. 2006, 38(8): 1306-1309
    44陈立彬,尤波.基于改进人工势场法的机器人动态追踪与避障.控制理论与应用. 2007, 26(4): 8-10
    45 T. O. Ashitey, D. Hari. Mars Rover Pair Cooperatively Transporting a Long Payload. IEEE International Conference on Robotics& Automation. 2002, Washington: 3136-3141
    46 T. Imaida, Y. Yokokohji, T. Doi, M. Oda, T. Yoshikawa. Ground-Space Bilateral Teleoperation of ETS-VII Robot Arm by Direct Bilateral Coupling Under 7-s Time Delay Condition. IEEE Transactions on Robotics and Automation. 2004, 20(3): 499-51
    47 D. J. Lee, M. Oscar, M. W. Spong. Bilateral teleoperation of multiple cooperative robots with delayed communication:theory. IEEE International Conference on Robotics and Automation. 2005, Barcelona: 362-367
    48 D. M. Lee, W. Spong. Passive bilateral control of teleoperations under constant time-delay. IEEE Transactions on Robotics. 2006, 22(2): 269-281
    49 M. I. C. Dede, S. Tosunoglu, D. W. Repperger. Effects of time delay on force-feedback teleoperation system. IEEE International Conference on Control Automation. 2004, Aydin: 476-481
    50 D. J. Lee, M. Oscar, M. W. Spong. Bilateral teleoperation of multiple cooperative robots over delayed communication networks: Application. IEEE International Conference on Robotics and Automation. 2005, Barcelona: 368-373
    51 B. Hannaford. A design framework for teleoperators with kinesthetic feedback. IEEE Trans. Rubotics Automat. 1989, 5(4): 426-434
    52 G. J. Raju, G. C. Verghese, T. B. Sheridan. Design issues in 2-port network models of bilateral remote teleoperation. Proceedings of IEEE International Conference on Robotics Automation. 1989: 1317-1321
    53 D. A. Lawrence. Stability and transparency in bilateral teleoperation. IEEE Transactions on Robotics and Automation. 1993, 9 (5): 624-637
    54 Y. Yokokohji, T. Yoshikawa. Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment. IEEE Trans. Robot. Autom. 1994, 10(5): 605-619
    55 M. Tavakoli, R. V. Patel, M. Moallem. Bilateral control of a teleoperator for soft tissue palpation: Design and experiments. Proceedings of IEEE International Conference on Robotics and Automation. 2006, New York: 3280–3285
    56 Y. Yokokohji, T. Yoshikawa. Bilateral control of master-slave manipulators for ideal kinesthetic coupling. IEEE Trans. Robot. Automat. 1994, 10(5): 605–620
    57 B. Hannaford. A design framework for teleoperators with kinesthetic feedback. IEEE Trans. Robot. Automat. 1989, 5(4): 426–434
    58 W. S. Kim, B. Hannaford, A. K. Bejczy. Force-reflecting and shared compliantcontrol in operating telemanipulators with time delay. IEEE Trans. Robot. Automat. 1992, 8(2): 176–185
    59 H. Z. Keynan, E. S. Septimiu. Transparency in time-delayed systems and the dffect of local force feedback for transparent teleoperation. IEEE Transcations on Robotics and Automation. 2002, 18(1): 108-114
    60陈惠开,吴新余,吴叔美.现代网络分析.人民邮电出版社. 1992: 113-126
    61 G. Niemeyer. Using wave variables in time delayed force reflecting teleoperation. Ph.D. dissertation. 1996: 33-56
    62 G. Niemeyer. Using wave variables for system analysis and robot control. IEEE Conference on Robotics and Automation. 1997, Albuquerque: 1619-1625
    63 G. Niemeyer. Toward force-reflecting teleoperation over the internet. Proceeding of IEEE Conferece on Robotics and Automation. 1998, Leuven: 1909-1915
    64 H. Ching, W. J. Book. Internet-Based Bilateral Teleoperation Based on Wave Variable With Adaptive Predictor and Direct Drift Control. Journal of Dynamic System, Measurement, and Control. 2006, 128(3): 86-93
    65 N. A. Tanner, G. Niemeyer. Practical Limitations of Wave Variable Controllers in Teleoperation. IEEE International Conference on Robotics, Automation, and Mechatronics. 2004,Singapore : 25-30
    66 I. Hassanzadeh, S. S. Moosapour, A. S. Mansouri. Implementation and investigation of internet-based teleoperation of a mobile robot using wave variable approach. Journal of Systems and Control Engineering, 2010, 224(4): 471-477
    67于振中,闫继宏,赵杰等.利用波预测的四通道时延双边遥操作.华中科技大学学报(自然科学版), 2010, 38(5): 32-36
    68 N. A. Tanner, G. Niemeyer. Online Tuning of Wave Impedance in Telerobotics. IEEE International Conference on Robotics, Automation, and Mechatronics. 2004, Singapore: 7-12
    69 P. Arcara, C. Melchiorri. Control schemes for teleoperation with time delay: a comparative study. Robotics and Autonomous Systems. 2002, 38: 49-64
    70 J. Funda, T. Lindsay, R. Paul. Teleprogramming: Toward Delay-Invariant Remote Manipulation. 1992
    71 S. Ganjefar, H. Momeni. Behavior of Smith Predictor in Teleoperation Systems With Modeling and Delay Time Errors. IEEE Intl. Conf. 2003, Istanbul: 1176-1180
    72 H. C. Wood, M. R. Olson. Time-delayed remote control systems using Smith controllers. Proceedings of the IASTED International Conference on Intelligent Systems and Control. 1998, Halifax: 36-39
    73 M. R. Matausek, A. D. Micic. On the Modified Smith Predictor for Controlling a Process With an Integrator and Long Dead-Time. IEEE Transactions on AutomaticControl. 1999, 44(8): 1603-1606
    74 J. E. Normey-Rico, E. F. Carnacho. Robust Tuning of Dead-Time Compensators for Processes with an Integrator and Long Dead Time. IEEE Transactions on Automatic Control. 1999, 44(8): 1597-1603
    75 Huang Jinquan, Xu Liang. Neural Network Smith Predictive Control for Telerobotics with Time Delay. Transactions of Nanjing University of Aeronautics & Astronautics. 2001, 18(1): 35-40
    76谢小辉.远程医疗机器人遥操作关键技术的研究.哈尔滨工业大学博士学位论文. 2005: 12-15
    77 Xi Ning, Liu Yun-Hui. Real-Time Control of Internet-Based Teleoperation with Force Reflection. IEEE International Conference on Robotics & Automation. 2000, San Francisco: 3284-3289
    78 W. T. Antony. Ho, Imad Elhajj, etc. A Bone Reaming System Using Micro Sensors For Internet Force-feedback Control. Proceedings of the 2001 IEEE International Conference on Robotics &Automation. 2001, Seoul Korea: 956-961
    79 Xi Ning, T. J. Tarn. Stability Analysis of Non-time Referenced Internet-Based Telerobotic Systems. Robotics and Autonomous Systems. 2000, 32: 173-178
    80 Xi Ning, T. J. Tarn. Action Synchronization and Control of Internet-Based Telerobotic Systems. IEEE International Conference on Robotics & Automation. 1998, LEUVEN: 219-244
    81 Imad Elhajj, Henning Hummert, etc. Real-Time Bilateral Control of Internet-Based Teleoperation. Proceedings of the 3rd World Congress on Intelligent Control and Automation. 2000, Hefei: 3761-3766
    82 Imad Elhajj, Ning Xi, etc. Haptic Information in Internet-Based Teleoperation. IEEE/ASME Transaction on Mechatronics. 2001, 6(3): 295-304
    83陈丹,席宁,王越超等.网络遥操作系统中基于事件的预测控制策略.控制理论与应用, 2010, 27(5): 623-626
    84 Imad Elhajj, Ning Xi, etc. Supermedia-Enhanced Internet-Based Telerobotics. Proceedings of the IEEE. 2003, 91(3): 396-421
    85 Ning Xi. Event-Based Planning and Control for Robotic Systems. Ph.d Dissertation, Washington University. 1993: 21-45
    86 Xiao Xiao-hui, Sun Li-ning, etc. Event Synchronization Communication Driven Real-Time Internet-Based Telerobotics. System Engineering and Electronic Technology. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS. 2005, 16(2): 341-345
    87 W. R. Ferrel, T. B. Sheridan. Supervisory Control of Remote Manipulation. IEEESpectrum. 1967, 4(10): 81-88
    88 T. B. Sheridan. Space Teleoperation Through Time delay: Review & Prognosis. IEEE Transactions on Robotics & Automation. 1993, 9(5): 592-606
    89 T. S. Lindsay. Teleprogramming: Remote Site Robot Task Execution. Ph.D Dissertation, University of Pennssylvania. 1992: 38-46
    90 Zhang Wei, M. S. Branicky, S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine. 2001, 16(2): 84-99
    91 G. C. Walsh, Ye Hong. Scheduling of networked control systems. IEEE Control Systems Magazine. 2001, 16(2): 101-105
    92 C. M. H. Leung, B. A. Francis, J. Apharian. Bilateral controller for teleoperators with time delay viaμ-Synthesis. IEEE Transactions on Robotics and Automation. 1997, 11(1): 105-116
    93 Mrdjan Jankovic. Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Transactions on Automatic Control, 2001, 46(7): 1048-1060
    94 P. I. A. Corke. Robotics Toolbox for MATLAB. IEEE Robotics and Automation Magazine, 1996, 3(1): 24-32
    95王卫忠.可重构模块化机器人系统关键技术研究.哈尔滨工业大学博士学位论文. 2007: 61-73
    96 R. P. Paul. Robot manipulators: mathematics, programming, and control. Cambridge: MIT Press, 1981
    97熊有伦.机器人技术基础.华中科技大学出版社. 1996: 43-45
    98刘培培,陈兰平.一类拟牛顿非单调信赖域算法及其收敛性.数学进展. 2008, 37(1): 92-100
    99柯小伍,韩继业.一类新的信赖域算法的全局收敛性.应用数学学报. 1995, 18(4): 608-615
    100孙小军,焦建民,何俊红.解优化问题的遗传加速信赖域搜索算法.安徽大学学报(自然科学版). 2008, 32(3): 22-25
    101张晓伟,刘三阳.一种信赖域遗传算法.系统工程与电子技术. 2007, 29(8): 1377-1384
    102钟守楠,高飞,纪昌明.遗传信赖域方法.数学杂志. 2001, 21(4): 468-472
    103蒋林.全方位移动操作机器人及其运动规划与导航研究.哈尔滨工业大学博士学位论文. 2008: 83-97
    104 Jiang Lin, Yan Jihong, Zang Xizhe, Zhao Jie. Localization research based on special fusion method for redundancy ultrasonic information. Proceedings of Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation. 2007,Harbin: 700-704
    105 N. Y. Ko, B. H. Lee. Avoidability measure in moving obstacle avoidance problem and its use for robot motion planning. IEEE International Conference on Intelligent Robots and Systems. 1996, Piscataway: 1296-1303
    106 Y. Han, G. D. Liu. Mobile robot motion planning based on potential field in dynamic environment. Robot. 2006, 28(1): 45-49
    107祖迪,韩建达,谈大龙.动态多障碍物环境下目标追踪的路径规划方法.高技术通讯. 2006, 16(2): 136-142
    108 L. Yin, Y. X. Yin, C. J. Lin. A new potential field method for mobile robot path planning in the dynamic environments. Asian Journal of Control. 2009,11(2): 214-225
    109 S. S. Ge, Y. J. Cui. Dynamic Motion Planning for Mobile Robots Using Potential Field Method. Autonomous Robots. 2002, 13(3): 207–222
    110况菲,王耀南,张辉.动态环境下基于改进人工势场的机器人实时路径规划仿真研究.计算机应用. 2005, 25(10): 2415-2417
    111赵杰,蒋林,闫继宏等.基于超声波绝对定位的ODMM导航研究.西安交通大学学报. 2008, 42(3): 337-341
    112徐慧娜.全方位移动操作臂定位导航及路径规划研究.哈尔滨工业大学硕士学位论文. 2009: 37-50
    113熊春山,彭刚,黄心汉等.基于超声测距的三维精确定位系统与设计.自动化仪表. 2001, 22(3): 7-10
    114 L. G. Valdovinos, V. Parra-Vegab, M. A. Arteagac. Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay. Robotics and Autonomous Systems. 2007, 55(8): 609-617
    115 S. M. Sha, H. R. Momeni, R. Amirifar. Control of a teleoperation system via LMIs. Applied Mathematics and Computation. 2008, 206(2): 669-667
    116 G. Niemeyer, J-J. E. Slotine. Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering. 1991, 16 (1): 152-162
    117 R. J. Anderson, M. W. Spong. Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control. 1989, 34 (5): 494-501
    118 S. Stramigioli, A. van der Schaft, B. Maschke, and C. Melchiorri. Geometric scattering in robotic telemanipulation. IEEE Trans. Robot. Autom. 2002, 18(4): 588–596
    119 S. Munir, W. J. Book. Wave-based teleoperation with prediction. Proceeding of American Control Conference. 2001, Arlington: 4605-4611
    120 S. Munir, W. J. Book. Internet-based teleoperation using wave variables withprediction. IEEE/ASME Trans. Mechatron. 2002, 7(2): 124-133
    121 S. Munir, W. J. Book. Control techniques and programming issues for time delayed Internet based teleoperation. ASME J. Dyn. Syst., Meas., Control. 2003, 125(2): 205-214
    122 S. Ganjetar, H. Momeni, F. Janabi-sharill. Teleoperation Systems Design Using Augmented Wave-Variables and Smith Predictor Method for Reducing Time-Delay Effects. Proceedings of 2002 IEEE International Symposium on Intelligent Control. 2002, New York: 333-338
    123 H. Arioui, A. Kheddar, S. Mammar. A predictive wave-based approach for time delayed virtual environments haptics systems. Proceedings of IEEE International Workshop on Robot and Human Interactive Communication. 2002, Berlin: 134-139
    124董辉平,庄严霞,王晨光.圆柱体质量、质心和质偏测试方法及误差分析.机械工程与自动化. 2008, 151(6):105-107
    125 N. Diolaiti, C. Melchiorri. Haptic tele-operation of a mobile robot. In Proceedings of the 7th IFAC Symposium of Robot Control. 2003, Wroclaw: 2798-2805
    126 S. Lee, G. Sukhatme, G. J. Kim, and C. Park. Haptic teleoperation of a mobile robot: A user study. In Proceedings of the IEEE/RSJ Int’l Conference on Intelligent Robots and Systems. 2002, Cambridge: 2867–2874
    127 D. J. Lee, P. Y. Li. Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators. IEEE Transactions on Robotics. 2005, 21(5): 936–951
    128 D. J. Lee, M. W. Spong. Passive bilateral teleoperation with constant time-delay. IEEE Transactions on Robotics. 2006, 22(2): 269-281
    129 O. J. M. Smith. Closer Control of Loops with Dead Time. Chemical Engineering Progress. 1957, 53(5): 217-219
    130 Z. Palmor. Stability Properties of Smith Dead-Time Compensator Controllers. International Journal of Control. 1980, 32(6): 937-949
    131 Brown Robert G. Introduction to random signals and applied kalman filtering. John Wiley & Sons Inc. 1997
    132 Franklin, Gene F. Digital control of dynamic systems. Addison-Wesley Publishing Company Inc, 1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700