气冷涡轮气热弹耦合有限差分算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空工业的迅速发展对航空发动机提出了更高的要求,即高的推重比和热效率,导致涡轮的进口温度不断提高,目前该温度已远远高于涡轮材料的耐热极限,这就需要采用复杂的冷却技术来保证涡轮叶片安全的工作和较长的工作寿命。准确预测叶片内热传导以及热应力的分布是提高涡轮冷却效率、保证叶片工作寿命的关键性问题,气热弹数值仿真技术是解决该问题的有效方法和工具之一。本文主要对应用有限差分方法进行气冷涡轮气热弹数值仿真的关键性问题进行研究,并对气冷涡轮内气热弹耦合现象进行初步探讨。
     首先通过深入分析气冷涡轮内复杂的多场耦合现象,研究了气热弹多场耦合的物理模型,给出了以柱坐标系下参数为不变量的任意曲线坐标系下的无量纲时间平均雷诺N-S方程,给出了直角坐标系中考虑热传导、热辐射以及热应变对能量耗散影响的温度场方程并将其在任意曲线坐标系中展开;推导了直角坐标系和任意曲线系中考虑热变形影响以及不考虑热变形影响的以位移为求解量的弹性固体应力场平衡微分方程的表达式;讨论了气热、气弹、热弹、气热弹等四类多场耦合边界条件的给定方式,从而建立了多场耦合的计算模型。由于采用了多块结构化网格离散气冷涡轮气热弹耦合的计算域,又给出了四类不同耦合计算网格块之间的数值传递方法,实现了多场耦合网格之间的数据传递。
     然后研究了流场、温度场、弹性固体应力场求解的差分格式及其数值方法,这是应用有限差分法进行涡轮气热弹多场耦合计算中的重要问题。三维粘性流场控制方程采用具有Godunov性质的三阶TVD格式离散,并采用AF方法求解。温度场采用了稳态和非稳态的两种求解方式:稳态温度场采用隐式ADI交替方向方法求解;对于非稳态温度场,构造紧致格式离散一次和二次交叉偏微分项,并应用高阶格式的ADI法求解离散后的方程,该方法具有时间方向一阶精度、空间方向四阶精度,经验证表明,该方法较显格式和C-N格式具有更高的求解精度。引入位移法求解二维弹性应力方程,为了验证该方法的可行性和可靠性,对具有解析解的悬臂梁进行受力分析,结果表明:第二类边界条件的求解精度对整个计算的结果有重大的影响,平衡方程二阶精度的计算值与解析解吻合程度好,而一阶精度的计算值偏离解析解较大。然后对三维弹性固体应力场控制方程进行了无量纲化。在Possion模型方程的基础上推导了交替方向求解方式,分别构造了空间方向三点(二阶精度)及五点(四阶精度)的差分格式,在求解中,有变量分离式以及耦合式两种方法供选择。计算表明:高阶格式具有较高的求解精度;变量分离式求解运算量小,收敛速度快,耦合式求解具有较好的稳定性,但计算耗时长。然后对应力场求解的稳定性问题进行了研究。计算表明,平衡方程求解的稳定性决定着整个应力场求解的稳定性。边界上的平衡方程和内部节点的平衡微分方程的耦合求解具有较好的稳定性,而两类方程分离计算的算法和编译程序相对容易实现,多块网格之间的数据传递也较易实现。为了提高迭代计算的稳定性,对微分方程离散后形成的线性方程组矩阵主对角线元素进行了修改,需要指出的是,这会导致迭代速度有所降低。经解析解算例对比表明:采用上述方法的数值结果与解析结果吻合较好,其中内部节点值较边界节点值吻合得更好。
     接着建立了应用有限差分方法的气冷涡轮气热弹耦合数值仿真平台,并对MARKII型叶片进行气热弹耦合计算分析。由CFX10多个湍流模型、转捩模型结果得知在MARKII型叶片整个前缘边界层内流动为层流状态,而在吸力面的中后部因为激波分离诱发转捩变为湍流,在靠近压力面的尾缘区域,边界层流动逐渐变为全湍流。使用HIT-3D (哈尔滨工业大学自行研发的三维流场计算程序)耦合求解器的气热耦合计算表明,采用各种湍流、转捩模型都能够得到与真实流动吻合较好的边界层外流场,但其对边界层内部的流动和传热过程的模拟能力差别很大,B-L代数模型将整个流场当作湍流来处理,不能辨认出来转捩,求解的壁面温度和换热系数均高于实验值;低雷诺数的q ?ω模型可以部分地模拟转捩的效果,预测的叶片温度以及热传导系数优于B-L代数模型;而考虑了转捩影响的B-L&AGS模型对壁面的温度预测较其它两种模型预测更为准确,但由于没有考虑间歇因子的沿壁面法向的输运效应,在局部预测的对流换热系数低于实验值。
     最后在气热耦合计算结果的基础上对MARKII型叶片进行气弹和热弹分析,结果表明:相对于温度载荷对叶片的作用力产生的形变及应力,气动力载荷对叶片的作用力产生的形变及应力在数量级相差较大,是一个小量;而叶片内的热变形、热应力与温度场、温度梯度、叶片形状以及叶片的约束有关,温度越高叶片形变越大,温度梯度越大叶片应力值越大。同时采用不同湍流、转捩模型的结果对比发现:以B-L湍流模型计算的温度场为载荷的叶片热应力要高于以B-L&AGS转捩模型以及q ?ω模型的相应结果,其中B-L&AGS模型的叶片表面温度值低、叶片内部温度梯度小,具有较小的热应力值。为了验证本文开发的有限差分程序的热弹分析能力,又采用了有限元法的ANSYS程序进行了相同条件下的热弹计算,对比表明,在同条件下这两个求解器的结果很接近,这就初步表明本程序已经具备了一定的热弹分析的能力。
To improve the thrust-weight ratio and thermal cycle efficiency, the gas temperature at turbine inlet has been increased, and it has greatly exceeded the yielding limit of the metal material. Thus an effect cooling system is required to maintain the blade operation. It is a key problem for improving the cooling efficiency that the thermal load and the thermal stress in the blade should be accurately predicted. And the thermal-flow-elastic coupling technique has shown its great potential in solving the problem mentioned above. The purpose of the paper is to investigate the key problems of applying finite difference method to thermal-flow-elastic coupling simulations, and to study the thermal-flow-elastic problems in the air-cooled turbines.
     Firstly the physical model of the thermal-flow-elastic coupling problems is studied, and the controlling equations are deduced. Such equations consist of three parts: (1) the dimensionless time-averaged N-S equation systems in both the cylindrical coordinates and body-fitted coordinates, (2) the thermal transport controlling equation taking account of the effects of thermal conduction, thermal radiation and thermal deformation on the thermal dissipation in the Cartesian coordinates and its expanded form in the arbitrary curvilinear coordinates, (3) elastic stress equilibrium differential equations with displacement the solving variable both considering and not considering the effects of thermal deformation in the Cartesian coordinates and their expansion in the arbitrary curvilinear coordinates. Then the posing methods of coupling boundary conditions, including coupled heat transfer, flow-elastic, thermal-elastic, and thermal-flow-elastic coupling conditions, are analyzed. The numerical models for the multi-field coupling problems are constructed based on the controlling equations and the coupling boundary conditions. Since the multi-block structured grids are employed to discretize the computational field, the data transfer methods for such four kinds of coupling simulations are also provided.
     Secondly the discretizing schemes and numerical methods for solving the flow, thermal and elastic controlling equations are studied because of quite the importance of such problem for the thermal-flow-elastic simulations employing finite difference method. For the 3-D viscous flow controlling equations the third-order accurate TVD difference scheme with Godunov characteristic is employed. For the thermal field controlling equation there are two kinds of numerical methods, viz. an implicit ADI method for the steady thermal controlling equation and another kind of ADI method combining a kind of high-order accurate scheme for the unsteady one. The latter method uses a compact scheme to discretize the first- and the second-order cross partial differential terms, and the method is with first-order accuracy in time and forth-order accuracy in space, which is higher than those of the explicit method and the C-N method. For the 2-D elastic stress controlling equations the displacement method is utilized, since the Dirichlet problem is easier constructed with the displacement method than that with the stress method. And projecting beam is selected as the validation case. The comparison between the predicted stress distribution and the analytic one show that the accuracy of the Neumann problems greatly affects the final numerical results, and that there are slight deviation between the numerical result and the analytic one with a second-order scheme for the equilibrium equation but large deviation with a first-order scheme. The dimensionless 3-D solid elastic stress controlling equations are deduced, and the orders of magnitude of the variables and their coefficients are obtained. For the sake of convenience in constructing solving method, the elliptic elastostatics equations are selected as the controlling equations. And ADI method is deduced on the basis of Possion modeling equation, and two kinds of difference scheme, a three-node one and a five-node one, are constructed. The variable-separating solving method and the coupling solving method are utilized in the simulations separately, and the results show that the former one is with less computational load and converging speed than the latter one, but the latter one is with quite nice stability. For the equilibrium equation containing Neumann problem, its computational stability is crucial to that of the whole iteration. For the equilibrium equation at the boundary nodes and the equilibrium differential equation at the inner nodes, the coupling method is with fairly good computational stability, but the separating method is with simpler algorithm. In addition the latter one could be easily programmed, and it is also with simple formula for the data transfer between multi-block grids. To improve the stability of computation, the principle diagonal elements of discretized linear equations system matrixes are modified, which unfortunately reduces the computational speed. The simulation with the methods mentioned above is carried out. And the numerical results, especially those at the inner nodes, agree rather well with the analytic ones.
     Thirdly the thermal-flow-elastic coupling solver employing finite difference method is developed, and the thermal-flow-elastic coupling simulations by the solver are carried out, with the test case as MARKII guide vane. The simulations by use of CFX10 with several turbulence models andγ?θtransition model show that the laminar flow exists at the whole leading edge of the vane, and that because of the strong shock wave at the suction midst and the strengthened instable flow at the pressure trailing edge the turbulent flow occurs at the aft suction side and the pressure trailing edge. Coupled heat transfer simulation utilizing HIT-3D (a CHT solver developed by Harbin Institute of Technology) with B-L and q ?ωturbulence models and B-L&AGS transition model are accomplished. The predicted flow fields in the main flow field agree well with the measured one, otherwise the predicted boundary layer flows and vane thermal loads differ from the employed models. The B-L algebraic turbulence model, not able to model transition process, over-predicts the temperature and heat transfer coefficient (HTC). q ?ωlow-Re turbulence model, able to model the effects of transition on the flow and heat transfer, predicts temperature and HTC distributions with less deviations from the measured ones than the B-L model does. And the B-L&AGS transition model, able to model the transition process, predicts thermal load agreeing best to the measured one, otherwise it under-predicts the HTC at several part of the vane surface since such model neglects the transport of the intermittency along the outer normal direction of the wall.
     Finally the flow-elastic coupling and thermal-elastic coupling simulations of the MARKII vane, on the basis of CHT results, are carried out. Compared to the strain and stress caused by thermal load induced acting force, those caused by aerodynamic load induced acting force is rather small. The thermal-elastic results reveal that the thermal deformation and thermal stress of the vane are influenced by the thermal field, temperature gradient, vane geometry and the constraint on the vane, high temperature and temperature gradient leading to large vane deformation and vane stress separately. The results also reveal that the thermal stress cause by the thermal load predicted by different turbulence and transition models differ from the model selected. That with B-L model is higher than those with the other models, and that with B-L&AGS transition model is with the smallest value. For the sake of comparison, there is thermal-elastic simulation utilizing ANSYS, a finite element solver. And the differences of the predicted thermal-elastic results by the different solvers are quite slight, which proves the ability of the developed solver in thermal-elastic analysis.
引文
1 D. K. Hennecke. Turbine Cooling in Aeroengines. Von Karman Inst. LS 1982-02
    2韩介秦等.燃气轮机传热和冷却技术.西安交通大学出版社. 2005, 1~15
    3 R. A. Rudey, R. W. Graham. A review of NASA combustor and turbine heat transfer research. ASME 84-GT-113
    4 Takashi Yamane, Toyoaki Yoshida, Shunji Enomoto, et al. Conjugate simulation of flow and heat conduction with a new method for faster calculation, ASME-GT2004-53680
    5 Homayoon Kanani, Mehrzad Shams, Reza Ebrahimi. Numerical modelling of film cooling with and without mist injection. Heat Mass Transfer. 2009, 45: 727~741
    6 W. Koop. Integrated High Performance Turbine Engine Technology(IHPTET)Program. ISABE 97-7175
    7 Dieter Sporera, Arno Refkea, Marian Dratwinskia, et al. New high-temperature seal system for increased efficiency of gas turbines. sealing techonlogy. 2008, 10: 9~11
    8袁焕源. M701F型燃气轮机透平叶片冷却技术浅析.西北水力发电. 2007, 32(4): 13~15
    9 M. W. Lesley, Yao-Hsien Liu, Je-Chin Han, et al. Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels under High Rotation Numbers, ASME-GT2007-27093
    10 D. H. James, J. K. Alain, A. D. Eduardo, et al. Conjugate heat transfer effects on a realistic film-cooled turbine vane, ASME-GT2003-38553
    11 Diganta P Narzary, Zhihong Gao, Shantanu Mhetras, et al. Effect of unsteady wake on film-cooling effectiveness distribution on a gas turbine blade with compound shaped holes, ASME-GT2007-27070
    12 Yao-Hsien Liu, Michael Huh, Je-Chin Han, et al. Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) Under High Rotation Numbers, ASME-GT2007-27067
    13 Shantanu Mhetras, Je-Chin Han, Ron Rudolph. Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade, ASME-GT2007-27071
    14 Ching-Pang Lee, O. H. Cincinnati. Bell shaped fan cooling holes for turbin. US. US7374401 B2[P]. May 20,2008
    15 Pascal Deschamps, Bagneux, et al. Hollow rotor blade for the turbine of a gas turbine engine the blade fitted with a bathtub. US. US7351035 B2[P]. Apr.1,2008
    16 Frank Cunha, Om Parkash Sharma, Edward F. et al. Manufacturable and inspectable microcircuit cooling for blades. US. US7371049 B2[P]. May 13,2008
    17 George Liang. Turbine airfoil cooling system with elbowed diffusion film cooling hole. US. US7351036 B2[P]. Apr.1,2008
    18 George Liang. Turbine blade tip cooling system. US. US7334991 B2[P]. Feb.26,2008
    19 C. Nakamata, Y. Okita, Y. Fukuyama, et al. Recent Progress in the Research on Advanced Cooling Technologies for a Next-Generation Aero-Engine, ISABE-2007-1161
    20张效伟,朱惠人.大型燃气涡轮叶片冷却技术. 2008, 23(1): 1~6
    21 H. J. Gladden, R. J. Simoneau.“Review and Assessment of the Database and Numerical Modeling for Turbine Heat Transfer.”In Toward Improved Durability in Advanced Aircraft Engine Hot Sections, edited by D.E. Sokoloeski. IGTI. 1998, 2: 39~55
    22刘大响,金捷. 21世纪世界航空动力技术发展趋势与展望.中国工程科学. 2004, 6(9): 1~8
    23曾军,程信华.涡轮叶栅尾缘冷气喷射的数值模拟.燃气涡轮试验与研究. 2000, 13(1): 40~44.
    24 R. J. Moffat. Turbine Blade Cooling. Heat Transfer and Fluid Flow in Rotating Machinery. Hemlsphere Publishing Corp, 1987: 1~5
    25 L. Porreca, A. I. Kalfas, R. S. Abhari. Aero-thermal analysis of a partially shrouded axial turbine, isabe-2007-1299
    26 H.W. Forsching.气动弹性力学原理.上海科学技术文献出版社, 1982: 1~7
    27姜贵庆,杨希霓.气动防热理论的某些发展与应用.空气动力学发展论文集国防工业出版社, 1997: 267~287
    28 T. L. Perelman. On Conjugated Problems of Heat Transfer. Int. J. Heat Mass Transfer. 1961, 3: 293~303
    29 C. Boivin, C. Ollivier Gooch. A Toolkit for Numcrical Simalation of PDFs II. Solving Generic Multiphysics Problcms Computer Mcthods in Applied Mechanics Engineering. 2004, 193(36~38): 3891~3918
    30宋少云.多场耦合问题的建模与耦合关系的研究.武汉工业学院学报. 2005, 24(4): 21~24
    31 Kays, Crawford. Convective Heat and Mass Transfer 2nded McGraw-Hill, New York, 1980: 21~217
    32 Bohn, C. Tümmers. Numerical 3-D conjugate flow and heat transfer investigation of a transonic convection-cooled thermal barrier coated turbine guide vane with reduced cooling fluid mass flow. ASME Paper, GT2003-38431.
    33 Bohn, Bonhoff. Combined Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vane, IGTC Paper 95-108
    34 Bohn, Becker. 3-D Conjugate Flow and Heat Transfer Calculations of Film-Cooled Turbine Guide Vane at Different Operation Conditions, ASME Paper 97-GT-23
    35 Bohn, Becker. Experimental and Numerical Conjugate Flow and Heat Transfer Investigation of a Shower-Head Cooled Turbine Guide Vane, ASME Paper 97-GT-15
    36 Bohn, Becker. 3-D Internal Flow and Conjugate Calculations of a Convective Cooled Turbine Blade with Serpentine-Shaped and Ribbed Channels, ASME Paper 99-GT-220
    37 Han, Dennis. Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material, ASME Paper 2000-GT-253
    38 Rigby, Lepicovsky. Conjugate Heat Transfer Analysis of Internally Cooled Configurations, ASME Paper 2001-GT-0405
    39 Takahashi. Thermal Conjugate Analysis of a First Stage Blade in a Gas Turbine, ASME Paper 2000-GT-251
    40 William, James. Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane, ASME Paper GT2003-38551
    41 Hylton, Mihelc. Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vane. 2001, NASA-CR-168015
    42 James, Kassab. Conjugate Heat Transfer Effects on Realistic Film-Cooled Turbine Vane, ASME Paper GT2003-38553
    43 Dieter, Bohn. Numerical 3-D Conjugate Flow and Heat Transfer Investigation of a Transonic Convection-Cooled Thermal Barrier Coated Turbine Guide Vane With Reduced Cooling Fluid Mass Flow, ASME Paper GT2003-38431
    44 Tadeusz, Wlodzimierz. Coupled Analysis of Cooled Gas Turbine Blades, ASME Paper GT2003-38657
    45过增元.热流体学.清华大学出版社, 1992: 178~188
    46冯国泰,黄家骅,李海滨等.涡轮发动机三维多流场耦合数值仿真的数学模型.上海理工大学学报. 2001, 23(3): 189~192
    47李海滨,冯国泰.叶轮机械中的多场耦合分析技术.航空发动机. 2002, 2: 51~56
    48周驰,冯国泰,王松涛等.涡轮叶栅气热耦合数值模拟.工程热物理学报.2003, 24(2): 224~227
    49李海滨,冯国泰,王松涛等.涡轮三维叶栅气热耦合数值模拟.工程热物理学报. 2003, 24(5): 770~772
    50姜澎,黄洪雁,冯国泰.空气冷却涡轮叶片气热耦合数值计算.哈尔滨工业大学学报. 2006, 38(12): 2036~2038
    51金琰.叶轮机械中若干气流激振问题的流固耦合数值研究.清华大学博士论文, 2002: 1~20
    52于化楠,褚福磊,刘莹.风力机气动弹性稳定性问题综述.机械设计. 2008, 25(6): 1~3
    53傅程,王延荣.风力发电机叶片气动弹性响应分析.机械设计与研究. 2009, 25(1): 68~70
    54 Todd O'Neil, W. S. Thomas. Aeroelastic Reponse of a Rigid Wing supported by Nonlinear Springs, Jouranl of Aircraft. 1998, 35(4): 616~622.
    55吴文权,西斯托.叶栅气动弹性离散涡数值仿真I:方法与验证.工程热物理学报. 1984, 13(2): 142-149
    56吴文权.叶栅气动弹性离散涡数值仿真II:数值试验.工程热物理学报. 1984,
    15(4): 372-376
    57陈佐一,吴晓峰.确定颤振叶片动应力的数值方法.航空动力学报. 1998, 13(4): 431~434
    58陈佐一,刘红,王继宏.汽轮机末级叶片失速颤振的全三维粘性流数值分析.中国电机工程学报. 1999, 19(3): 18~30
    59蒋莉,沈孟台.求解流体与结构相互作用问题的ALE有限体积方法.水动力学研究与进展A辑. 2000, 2: 149~155
    60王建立,沈孟台.有界域轴向流动中棒束流致振动和稳定性研究.原子能科学技术. 2000, 34(1): 59~64
    61 K. Mer, B. Nkonga. Implicit calculations of an aeroelasticity problem. International Journal of Computational Fluid Dynamics. 1998, 9(2): 165~178
    62 D. H. Kim, I. Lee. Transonic and low-supersonic aeroelastic analysis of a two-degree-of-freedom airfoil with a freeplay non-linearity. Journal of Sound And Vibration. 2000, 234(5): 859~880
    63 K. C. Hall, J. P. Thomas, E. H. Dowell. Proper orthogonal decomposition technique for transonic unsteady aerodynamic plows. AIAA JOURNAL. 2000, 38(10): 1853~1862
    64 R. E. Bartels. Mesh strategies for accurate computation of unsteady spoiler andaeroelastic problems. Journal Of Aircraft. 2000, 37(3): 521~525
    65 R. E. Gordnier, R. B. Melville. Transonic flutter simulations using an implicit aeroelastic solver. Journal of Aircraft. 2000, 37(5): 872~879
    66 Schuster, D. M. Vadyak. Static Aeroelastic Analysis of Flighter Aircraft Using a Three-Dimensional Navier-Stokes Algorithm. Journal ofAiircraft. 2000, 27(9): 820~825.
    67 R. B. Melville, S. A. Morton. Implementation of a Fully Implicit Aeroelastic Navier-Stokes Solver. AIAA Paper, 97-2039,
    68 K. C. Hall, J. P. Thomas. Orthogonal Decomposition Technique For Transonic Unsteady Aerodynamic Plows. AIAA Journal. 2000, 38(10): 1853~1862.
    69方平治,顾明.基于松耦合法的求解气动弹性问题的数值模拟方法.同济大学学报(自然科学版). 2007, 35(7):888~892
    70 D. Filsinger, J. Szwedowicz, O. Sch?fer. Approach to unidirectional coupled cfd fem analysis of axial turbocharger turbine blades. ASME-2001-GT0288
    71 J. L. Nowinski. Theory of Thermoelasticity with Applications. Sijthoff & Noordhoff Intcrnational Publishers B. V., 1978: 1~20
    72 Y. M. Kalyano, E. I. Shter. Themoelasticity of Non homogeneous Media. J EngPhys, 1980:1~24
    73 T. Inoue, S. Nagaki. A Constitutive Modeling of Thermoviscoelastic-plastic Materials. J Thermal Stresses. 1978, 1(1): 53~62
    74 T. J. Chung, J. L. Prate. A Constitutive Theory For Anlsotropic Hygrothemoelasticity with Finite Element Applications. J Thermal Stresses. 1980, 3(3): 435~452
    75 Y. Takenti, R. Isida, Y. Tanigawa. On an Axisymmetric Coupled Thermal Stress Problem in a Finite Circular Cylinder. J Appl Mech. 1983, 50: 116~122
    76 C. G. Speziale, Boston, Massachusetts. On the coupled heat equation of linear thermoelasticity. Acta Mechanica, 2001: 121~126
    77范绪箕,陈国光.关于热弹性力学的耦合理论.力学进展. 1982, 12(4): 339~345
    78江宁,曹祖庆.塑性变形造成的预应力对汽机转子热应力的影响.东南大学学报. 1999, 29(Sup.): 51~56
    79 Y. Takeuti, T. Furukawa. Some Considerations on Thermal Shock Problems in a Plate. J Appl Mech. 1981, 48: 133~188
    80 E. M. Shipitsina. Dynamic Behavior of a Hollow Sphere in Thermomechanical Shock.Sov Appl Mech. 1980, 16: 1041~1046
    81 J. C. Misra, S. C. Samanta. Thermal Shock in a Viscoelastic Half-Space. J.Thermal Stresses. 1982, 5(3): 365~376
    82董本涵,邱大明,高鹏飞.锯齿冠叶片瞬态热应力模拟试验.航空发动机. 2003, 29(4): 11~16
    83王洪刚.热弹性力学概论.清华大学出版社, 1989: 1~37
    84 Z. Mazur, A. Hernandez-Rossette, R. Garcia-Illescas, et al. Failure analysis of a gas turbine nozzle. Engineering Failure Analysis. 2008,15:913~921
    85树学峰,张晓晴,张晋香.周边固支圆板非线性热弹耦合振动分析.应用数学和力学. 2000, 21(6): 647~654.
    86兰姣霞,张晓晴,树学峰.轴对称圆柱壳非线性热弹耦合振动基本方程.华北工学院学报. 2000, 21(6): 36~38
    87于文芳,兰姣霞,树学峰.热弹耦合温度场中短圆柱壳动力响应分析.太原理工大学学报. 2003, 34(2): 119~121
    88李志刚,树学峰.一类变厚度圆板非线性热弹耦合的振动分析.太原理工大学学报. 2004, 35(1): 9~12
    89 Zdzislaw Mazur, Alejandro Hernandez-Rossette, Rafael Garcia-illescas, et al. Analysis of conjugate heat transfer of a gas turbine first stage nozzle, ASME-GT2005-68004
    90 G. K. Ventzislav, W. M. Danny, K. C. Minking, et al. Slaughter.three-dimensional modeling of creep damage in airfoils for advanced turbine systems, ASME-GT2008-51278
    91 D. Frank, A. Kleinefeldt, U. Orth, et al. Investigation of Blade and Disc Vibrations on the Upgraded Power Turbine for the THM 1304 Gas Turbine, ASME-GT2004-53802
    92 K.Vijay. Heat Transfer Research on Gas Turbine Airfoils at NASA GRC Garg. International Journal of Heat and Fluid Flow. 2002, 23(2): 109~136
    93 J. B. Young, R. C. Wilcock. Modeling the Air-Cooled Gas Turbine: Part 1 - General Thermodynamics. Journal of Turbomachinery. 2002, 124(2): 207~213
    94 M. G. Dunn. 2001 International Gas Turbine Institute Gas Turbine Scholar Lecture: Convective Heat Transfer and Aerodynamics in Axial Flow Turbines. Journal of Turbomachinery. 2001, 123(4): 637~686
    95 M. Nicklas. Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II - Heat Transfer and Film-Cooling Effectiveness. Journal of Turbomachinery. 2001, 123(4): 720~729
    96 S. Sarkar, K. Das, D. Basu. Film Cooling on a Turbine Guide Vane: a Numerical Analysis with a Multigrid Technique. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2001, 215(1): 39~54
    97 S. Sarkar, K. Das, D. Basu. Two-Dimensional Navier-Stokes Analysis of anInternally Cooled Turbine Blade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2000, 214(6): 585~598
    98 S. S. Talya, A. Chattopadhyay, J. N. Rajadas. Integrated Multidisciplinary Design Optimization Procedure for Cooled Gas Turbine Blades. Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. AIAA, 2000: 1714~1726
    99 S. S. Talya, N. J. Rajadas, Chattopadhyay Aditi. Multidisciplinary Design Optimization of Film-Cooled Gas Turbine Blades. American Society of Mechanical Engineers, Heat Transfer Division, HTD. 1998, 357(4): 59~68
    100 M. R. Seven, M. F. Robert. The Role of Multiphysics Simulation Multidisciplinary Analysis, AIAA-98-4863
    101 Charles Lawrence. Visual Computing Environment Workshop. NASA, Cp-1998-208525
    102 E. Steinthorson, A. A. Ameri. Computations of viscous Flows in Complex Geometries Using Multiblock Grid Systems, AIAA-95-0177
    103 E. Steinthorson, A. A. Ameri, L. D. Rigby. Simulation of Turbine Cooling Flows Using Multiblock-Multigrid Scheme, AIAA-96-0621
    104 ZhenXue Han, H. D. Brian, S. D. George. Simultaneous Prediction of External Flow-Filed and Temperature in Internally Cooled 3-D Turbine Blade Material, ASME 2000-GT-253
    105 Wolfgang Ganzert, Thomas Hildebrandt, Leonhard Fottner. Systematic Experimental and Numerical Investigations on The Aerothermodynamics of a Film Cooled Turbine Cascade With Variation of The Cooling Hole Shape. ASME 2000-GT-295
    106邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展. 1997, 27(1): 19~37
    107黄典贵.透平叶片与流场系统的稳定性分析——非定常欧拉解法.中国电机工程学报. 1999, 19(5): 24~27
    108黄典贵.振动叶栅中振荡欧拉流场求解的一种简化方法.振动工程学报. 1999. 12(4): 457~480
    109黄唐,毛国良,姜贵庆等.二维流场、热、结构一体化数值模拟.空气动力学学报. 2000, 18(1):115~119
    110吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科设计优化.航空动力学报. 2005, 20(5): 795~801.
    111舒彪,韩前鹏,邓家褆.基于多学科涡轮叶片气动设计优化.南京航空航天大学学报. 2005, 37(6): 714~719.
    112田文正,王荣桥.基于MDO体系的涡轮叶片热-结构耦合分析.航空发动机.2008, 34(2): 5~12
    113孙杰,宋迎东,孙志刚.涡轮冷却叶片热-固耦合分析与优化设计.航空动力学报. 2008, 23(12): 2162~2169
    114李立州,王婧超,吕震宙,岳珠峰.学科间载荷参数空间插值传递方法.航空动力学报. 2007, 22(7): 1050~1054
    115 J. A. Samareh. Aerodynamic shape optimization based onfree-form deformation. 10th AIAA/ISSMO Multidis-ciplinary Analyses and Optimization Conference. NewYork. 2004, AIAA-2004-4630
    116 J. A.Samareh. Multidisciplinary aerodynamic-structuralshape optimization using deformation(MASSOUD). 8th AIAA/NASA/USAF/ISSMO Symposium on Multi-disciplinary Analyses and Optimization. Long Beach. 2000, AIAA-2000-4911
    117 J. Hur. Parametric mesh deformation for sensitivity analysis and design of a joined-wing aircraft. 42nd AIAAA erospace Sciences Meething and Exhibit. Reno, AIAA-2004-116
    118 S S. Talya, J. N. Rajadas. Multidisciplinary optimization of gas turbine blade design. 2000, AIAA-2000-4864
    119 S S. Talya, A. Chattopadhyay. Multidisciplinary analysis and design optimization procedure for cooled gas turbine blades. 2000, AIAA-2000-4877
    120 S S. Talya, A. Chattopadhyay. An integrated multidisciplinary design optimization procedure for cooled gas turbine blades. 2000, AIAA-2000-1664
    121 Gregorz Nowak, Wlodzimierz Wroblewski,Tadeusz Chmielniak. Optimization of Cooling Passages within a Turbine Vane, Asme paper GT2005-68552
    122 Gregorz Nowak, Wlodzimierz Wroblewski. Thermo-mechanical optimization of cooled turbine vane, Asme paper GT2007-28196
    123 Grzegorz Nowak, Wlodzimierz Wroblewski. Cooling system optimisation of turbine guide vane. Applied Thermal Engineering. 2009, 29: 567~562
    124 Brian H. Dennis, N. E. Igor, S.George. Dulikravich, Shinobu Yoshimura. Optimization of a large number of coolant passages located close to the surface of a turbine blade, ASME-GT2003-38051
    125 J. M. Conley. Modification of the MML Turbulence Model for Adverse Pressure Gradient Flows. 1994, AIAA Paper 94-2715.
    126 B. J. Abu-Gharmam, R. Shaw. Natural Trnasitioin of Boundary Layers: The Effects of Turbulence, Pressure Gradient and Flow History. Journal of Mechanical Engineering Science. 1980, 22(5):213~228
    127 Je-chin Han, Sandi Dutta, V. E. Srinath. Gas Turbine Heat Transfer and Cooling Technology. Taylor & Francis, 2000: 1~19
    128谈和平,夏新林,刘林华.红外线辐射特性与传输的数值计算.哈尔滨工业大学出版社, 2006: 218~224
    129 T. H. Pulliam, D. S. Chaussee. A Diagonal Form of an Implicit Approximate Factorization Algorithm. Journal of Computational Physics. 1981, 39: 371~390
    130 Bram Van Leer. Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme. Journal of Computational Physics. 1974, 14: 361~370
    131 Bram Van Leer. Towards the Conservative Difference Scheme. III. Upstream-Centered Finite Difference Scheme for Ideal Compressible Flow. Journal of Computational Physics. 1977, 23: 263~275
    132 Bram Van Leer. Towards the Conservative Difference Scheme. IV. A New Approach to Numerical Convection. Journal of Computational Physics. 1977, 23: 276~299,
    133 Bram Van Leer. Towards the Ultimate Conserative Difference Scheme. A Second-Order Sequel to Godunov’s Method. Journal of Computational Physics. 1979, 32: 101~136
    134 D. Wright, T. Babrauckas. Affordable High Performance Computing (AHPC) Proect. Computational Aerosciences Worksshop: 1996 Conference Proceeding. NASA CP-20011, 1996: 123~128.
    135 Ami Harten. High Resolution Scheme for Hyperbolic Conservation Laws. Journal of Computational Physics. 1983, 49: 357~393
    136 Jameson, P. D. Lax. Conditions for the Construction of Multi-Point Total Variation Diminishing Difference Schemes. ICASE Report, 1986: 6~18,
    137 S. Osher, S. R. Chakravathy. Very High Order Accurate TVD Scheme. The IMA Volumes in Mathematics and Its Applications. 1986, 2: 229~274
    138 S. R. Chakravathy, S. Osher. Numerical Experiments With the Osher Upwind Scheme for the Euler Equations. AIAA Journal. 1983, 21(9): 1241~1243
    139吴子牛.计算流体力学基本原理.科学出版社, 2001
    140 L. H. Smith. The Radial Equilibrium Equation of Turbomachinery. ASME Journal of Engineering and Power. 1966, 88(1): 1~22
    141 Han Jechin, Dutta Sandi, V. Ekkad Srinath. Gas Turbine Heat Transfer and Cooling Technology. Taylor & Francis, 2000: 1~19
    142马明书,申培萍,张利霞.二维抛物型方程的一个新的高精度分支稳定显格式.工程数学学报. 1999, 16(3): 139~142.
    143刘继军.二维热传导方程的三层显式差分格式.应用数学和力学. 2003, 24(5): 537~544
    144任宗修,马明书.三维抛物型方程的一族两层显格式.工程数学学报. 2002,19(1): 139~142.
    145葛永斌,田振夫,吴文权.高维热传导方程的高精度交替方向隐式方法.上海理工大学学报. 2007, 29(1): 55~58
    146 S. K. Lele. Compact finite difference schemes with spectral-like resolution. J of computation physics. 1992, 10(3): 16~42.
    147王书强,杨顶辉,杨宽德.弹性波方程的紧致差分方法.清华大学学报(自然科学版). 2002, 42(4): 1128~1131
    148杨振雄.解二维和三维椭圆和抛物线方程的一种交替方向隐式法.吉林师大学学报. 1963, 12(1): 47~58
    149 M. G. Turner. The Use of Orthogonal Grid in Turbine CFD Computation. 1993, ASME Paper 93-GT-38, 1993
    150 K. V. Rao. Van-blade Interaction in a Transonic Turbine Part 1–Aerodynamics. 1992, AIAA Paper 92-3041
    151王松涛.叶轮机械三维粘性流场数值方法与弯叶栅内涡系结构的研究.哈尔滨工业大学博士学位论文, 1999: 47~69
    152 P. G. Buning. Flow Field Simulation of Space Shuttle is Ascent. Forth International Conference on Supercomputing, 1989
    153 Ming Sing liu. Computational of Internal Rotating Flows Using Recent CFD Techniques. 1996, ASME Paper 96-GT-30
    154陶文铨.数值传热学.西安交通大学出版社. 2001: 263~294
    155史忠军,徐敏,陈士橹.动网格生成技术.空军工程大学学报. 2003, 4(1): 61~64
    156 Wong, H. Tsai, J. Cai, et al. Unsteady Flow Calculations With A Multi-Block Moving Mesh Algorithm. AIAA Paper 2000-1002.
    157刘学强,李青,柴建忠等.一种新的动网格方法及其应用.航空学报. 2008, 29(4): 817~822
    158 Wong, H. Tsai, J. Cai, et al. Unsteady Flow Calculations With A Multi-Block Moving Mesh Algorithm.2000, AIAA Paper 2000-1002.
    159 P. Mark, C. Eloret, et al. A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications. 2001, AIAA-2001-0716.
    160 J. J. Reuther. Aerodynamics shape optimization of complex aircraft configurations via an adjoint formulation.1996, AIAA 96-0094
    161 V. Venkatakrishnan. Implicit met hod for t he computation of unsteady flows on unstructured grids. Journal of Computational Physics. 1996, 127(2): 380~397.
    162 W. T. Jones, J. A. Samareh. A grid generation system for multi-disciplinary design optimization. 1995, AIAA 95-1689
    163 D. Farhat. Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput Methods Appl Mech Engrg. 1998, 163: 231~245.
    164 F. J. Blom. Considerations on t he spring analogy. Int JNumer Met h Fluids. 2000, 32: 647~668.
    165 M. Murayama, K. Nakahashi, S. K. Mat. Unstructured dynamic mesh for large movement and deformation. AIAA 2002-0122
    166吕涛,石济民.区域分解算法.科学出版社, 1992: 200~208
    167 T. L. Perelman. On Conjugated Problems of Heat Transfer. Int. J Heat Mass Transfer. 1961, 3: 293~303
    168 H. Schatz, L. B. Wahlbin. Maximum norm estimates in the finite element method on plane polygonal domains I. Math Comp. 1979, 32:73~109
    169 Kwi-Hyon Yoon, A. M. George. 3D Eighth-Order Elastic Finite-Difference Modeling of Refraction and Strong-Motion Data from the Coyote Lake Region California. Bulletin of the Seismological Society of America. 1996, 86(3): 616~626
    170 Arben Pitarka. 3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing,Bulletin of the Seismological Society of America. 1999, 89(1): 54~68
    171 Bayliss, K. E. Jordan, B. J. Lemesurier, et al. A Fourth-Order Accurate Finite-Difference Scheme For The Computation OF Elastic Waves, Bulletin of the Seismological Society of America. 1986, 76(4): 1115~1132
    172 G. Fairweather, A. R. Gourlay, A. R. Mitchell. Some high accuracy difference schemes with a splitting operator for equations of parabolic and elliptic type, Numerische Mathematik. 1967, 10: 56~66
    173陶文铨.计算传热学的近代进展.科学出版社, 2005: 264~330
    174吴建平,王正华,李晓梅.系数线性方程组的高效求解与并行计算.湖南科学技术出版社, 2004: 43~59
    175杨振雄.解二维和三维椭圆和抛物线方程的一种交替方向隐式法.吉林师大学报. 1963, 12(1): 47~58
    176 S. K. Lele. Compact finite difference schemes with spectral-like resolution. J of computation physics. 1992, 10(3): 16~42.
    177徐芝纶.弹性力学.第四版上册.高等教育出版社, 2007: 1~6
    178吴家龙等.弹性力学.高等教育出版社, 2001: 157~160
    179李维特,黄保海,毕仲波.热应力理论分析及应用.中国电力出版社, 2004: 90~93
    180 J. S. Robert, A. H. Dale. CFD in the context of IHPTET—the integrated highperformance turbine technology program. NASA-TM-102132, 1989
    181孙杨,鲁建,郑严等.某涡喷发动机涡轮导向器的热应力分析.推进技术. 2004, 25(4): 358~359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700