~(87)Rb-~(40)K玻色费米混和气体量子简并的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从单组份玻色气体的玻色爱因斯坦凝聚和双组份自旋极化费米气体的费米简并实现以后,超冷量子气体领域迅速扩展到具有不同统计规律,不同俘获性质、质量和相互作用不同的玻色费米混合气体的研究。这一领域为多体物理、长程相互作用、强关联位相以及量子模拟等的研究提供了一个理想的平台,尤其当操控原子的强有力的技术手段周期性的强束缚光晶格,以及通过Feshbach共振产生的强共振相互作用应用于这一领域时,玻色费米混合气体的实验研究展现了美好的前景。
     我们的工作是建立一套冷却~(40)K和~(87)Rb原子的实验装置,并在实现玻色爱因斯坦凝聚(BEC)和费米量子简并(DFG)的基础上进行相关研究工作。本论文的工作主要是在原先建立的~(40)K和~(87)Rb两级磁光阱实验装置的基础上构建了一套实现量子气体简并的实验装置,并在此装置上实现了~(87)Rb原子的玻色爱因斯坦凝聚和~(40)K原子的简并费米气体。这是国内首次完成的费米量子简并的实验。实验方案是:采用了水平放置的双磁光阱装置;采用玻色子~(87)Rb和费米子~(40)K作为工作原子。首先在第一级真空气室(Collection Cell)中对~(87)Rb和~(40)K进行激光冷却与俘获,得到两种原子的磁光阱(MOT)。然后使用推送光把冷原子推到第二级真空气室(ScienceCell)中再一次进行MOT的冷却与俘获,最后把冷原子样品装入QUIC磁阱中进行蒸发冷却,实现~(87)Rb原子的BEC,并通过~(87)Rb原子和~(40)K原子之间的弹性碰撞,将~(40)K原子同步冷却实现DFG。
     本论文的主要工作有以下几个部分:
     1,在原先建立的冷却~(87)Rb和~(40)K原子的激光器系统上进行改进,首先,将原先TA1和TA2分别由三束光耦合注入放大(~(87)Rb原子的冷却光,~(40)K原子的冷却光以及再抽运光)输出用作MOT1和MOT2的冷却,改为TA1由~(87)Rb原子的冷却光注入放大和TA2由~(40)K原子的冷却光和再抽运光的耦合光注入放大,然后TA1和TA2放大输出耦合再分成两束分别用作MOT1和MOT2的冷却。这样可以避免在放大器中由于两个模式之间的放大竞争造成的~(87)Rb和~(40)K原子冷却光的功率输出不稳定;~(87)Rb原子的冷却光全部用于注入,由于耦合而造成的功率损失被避免,~(40)K原子的冷却光和再泵浦光耦合时漏掉的光被用于光泵浦阶段的泵浦光,提高了光束的利用率;其次,在实验中我们将两级MOT由光纤滤波改为使用pinhole进行滤波,由于放大器输出光对光纤的耦合效率比较低,最高只能60%左右,这样用于冷却的光功率会比较低,且存在保偏问题,严重影响了原子的俘获和冷却,改用pinhole进行滤波,光斑模式得到改善的情况下,衍射效率也比较高,大约为90%左右,而且,不存在保偏的问题;采用脉冲光推送的方式,提高了从MOT1到MOT2原子的传输效率;建立了实现简并费米气体所需要的各种光束,包括探测光,抽运光,再抽运光等;搭建了实验中所需的吸收成像探测系统。
     2,设计并且制作了实验系统中所需的各类电路。在实现量子简并气体的过程中,需要很精确的时序控制,而时序控制的实现需要很多外围的电路,因此在实验中自制了一些外围的电路,主要包括信号隔离电路,机械开关驱动电路,电流源电源开关电路,电流开关电路等,通过这些电路实现了对光场和磁场的计算机控制。
     3,实现了~(40)K原子的DFG和~(87)Rb原子的BEC。在MOT2中重新俘获~(40)K原子和~(87)Rb原子,通过压缩阱,偏振梯度冷却,光抽运阶段之后,将两种原子装载到四级阱中,然后将原子转移到QUIC阱中进行蒸发冷却得到了~(40)K原子的DFG和~(87)Rb原子的BEC。在实验中理论分析了BEC和DFG的空间密度分布并对实验结果进行了拟合,得到了BEC凝聚体的相变温度为500nK,凝聚体的原子数目为10~5,~(40)K原子达到量子简并时的粒子数为7.59×10~5,系统的费米温度为T_F=961 nK,且T/T_F=0.28。
     4,将~(87)Rb原子的BEC非绝热地装载到一维的光学晶格中,通过Kapitza-Dirac散射测量了一维光学晶格势阱的深度,而且将一维光晶格形成的脉冲相位光栅应用于~(87)Rb原子的BEC,观测到了物质波的Talbot效应。
Starting with the observation of Bose-Einstein condensation in single-component bosonic gases and Fermi degeneracy in spin-polarized Fermi gases,the field of ultra-cold quantum gases is rapidly expanding to studies of mixed systems of different atomic species with different statistics, different trapping properties,masses and interaction.The studies of the mixed systems open up the new avenue for the many-body physics,long-range interacting systems,strongly correlated phases and quantum simulation. Especially,when the means of strong,periodic confinement as demonstrated in experiments with optical lattices and the strong resonant interactions which can be produced by Feshbach resonances are applied into this regime,the researches of the Bose-Fermi mixed gases show the beautiful perspective.
     The goal of our work is to establish the experimental apparatus for ~(87)Rb BEC and ~(40)K DFG and perform the associated scientific researches.The contribution of this thesis is doing a series of work to realize the quantum degeneracy of ~(40)K and ~(87)Rb,based on the established double-MOT cooling experimental setup,and achieving the BEC of ~(87)Rb and the DFG of ~(40)K.This is the first time to achieve the DFG at home.The experimental protocol:the double-MOT structure is adopted by our lab and the mixtures of ~(40)K and ~(87)Rb are selected as the workhorse.Firstly,fermionic ~(40)K and bosonic ~(87)Rb atoms is simultaneously magneto-optical trapped in collection cell,and then the precooled atoms is pushed into the science cell in which the MOT is performed again.Finally,the cold atoms are loaded into the QUIC trap and the evaporative cooling is performed.Through the above process,the BEC of ~(87)Rb can be achieved,and the DFG of ~(40)K can also be realized by sympathetic cooling with the evaporated Rb.
     The thesis mainly includes the following parts:
     1,some improvement has been made about the semiconductor laser system used in the experiment.Firstly,the injection configuration is changed from the three beams of ~(87)Rb cooling,~(40)K cooling and repumping injected into TA1(TA:Tapered amplifier) and TA2 respectively to ~(87)Rb cooling light injected into TA1 and ~(40)K cooling coupled with ~(40)K repumping light injected into TA2,to avoid the instability of the output power;Secondly,the pinhole possessing the coupling efficiency 90%is used for the filter of the beam mode instead of the optical fiber possessing the coupling efficiency 60%,this method increases the power for cooling atoms and polarization-maintaining problem do not exist.Thirdly,the transport efficiency from MOT1 to MOT2 is improved through the way of pulse-loading,and the required beams in the experiment including the probe beam,the pump beam,and repumping beam are set up.Finally,the detection system of absorption image is established.
     2,Designing and making all kinds of circuits required for the experiment.The exact experimental sequence is needed in the experiment and the realization of the sequence needs many circuits containing the opto-coupler circuits,driver circuits for the mechanical shutter,and the switch circuits for the current etc.These circuits are self-made and used to the control of the optical field and magnetic field.
     3,The BEC of ~(87)Rb and the DFG of ~(40)K are achieved in the experiment. After the magneto-optical trapping of the two species of atoms,the process of compressed MOT,molasses,and optical pump is performed,and then the cold atoms is compressed in the quadrupole magnetic trap and transferred into the QUIC trap.Through the evaporation cooling in the QUIC trap,the quantum degeneracy of Bose-Fermi mixed gases is achieved.The density distributions gained from the absorption images are theoretically analyzed and the experimental date is fitted.The critical temperature for BEC is about 500nK with the atom number 10~5,and the quantum behavior in the case of ~(40)K is also analyzed.
     4,We study ~(87)Rb BEC loading into the pulse of the one-dimensional optical lattice experimentally,in which the lattice is turn on abruptly,held constant for a variable time and then turn off abruptly.The measurement of the depth of the optical lattice is obtained by Kapitza-Dirac scattering.The temporal matter-wave-dispersion Talbot effect with Rubidium BEC is observed by applying a pair of pulsed standing wave(as phase gratings) with the separation of a variable delay.
引文
[1] S. Chu, L. Hollberg, J. Bjorkholm, A. Cable, and A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55,48(1985)
    
    [2] D. Sesco, C. Fan, and C. Wieman. Production of a cold atomic vapor using diode-laser cooling. J. Opt. Soc. Am. B, 5, 1225 (1988)
    
    [3] Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, and William D. Phillips, Phillip L. Gould, and Harold J. Metcalf. Observation of Atoms Laser Cooled below the Doppler Limit. Phys. Rev. Lett., 61, 169 (1988)
    
    [4] H. J. Metcalf, P. van der Straten, Laser Cooling and Trapping. Springer 1999
    
    [5] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59, 2631 (1987)
    
    [6] C. Monroe, W. Swann, H. Robinson, and C. Wieman. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 65, 1571 (1990)
    
    [7] S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F. Pereira dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon. Cold atom clocks and applications. J. Phys. B 38, S449 (2005)
    
    [8] L. Hollberg, C. Oates, G. Wilpers, C. Hoyt, Z. Barber, S. Diddams, W. Oskay, and J. Bergquist. Optical frequency/wavelength references. J. Phys. B 38, S469 (2005)
    
    [9] W. Ketterle and N. J. van Druten. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 96, 181(1997)
    
    [10] M.H.Anderson, J.R.Ensher, M.R.Matthews, et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269, 198 (1995)
    
    [11] C.C. Bradley, C.A. Sackett, J.J. Toilet, et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett., 75, 1687 (1995)
    
    [12] K.B. Davis, M.-O. Mewes, M.R. Andrews, et al. Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett., 75, 3969, (1995)
    
    [13] B. DeMarco and D. S. Jin. Onset of Fermi Degeneracy in a Trapped Atomic Gas. Science, 285, 1703 (1999)
    
    [14] 浦晗. Fundamentals of Quantum Gases. 冷原子物理与精密测量暑期研讨班 武汉, July 8th, 2008
    
    [15] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. Making, probing and understanding Bose-Einstein condensates. In Proceedings of the International School of Physics - Enrico Fermi, edited by M. Inguscio, S. Stringari, and C. E. Wieman, volume 67, 1999
    
    [16] E. A. Cornell and C. E. Wieman. Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys., 74, 875 (2002)
    
    [17] W. Ketterle. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys., 74, 1131 (2002)
    
    [18] D. G. Fried, T. C. Killian, L. Willmann, D. Landuis, S. C. Moss, D. Kleppner, and T. J. Greytak. Bose-Einstein Condensation of Atomic Hydrogen. Phys. Rev. Lett., 81, 3811 (1998).
    
    [19] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi. Spin-Singlet Bose-Einstein Condensation of Two-Electron Atoms, Phys. Rev. Lett., 91, 040404 (2003)
    
    [20] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Bose-Einstein Condensation of Chromium, Phys. Rev. Lett., 94, 160401 (2005)
    
    [21] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I. Westbrook, and A. Aspect. A Bose-Einstein Condensate of Metastable Atoms. Science, 292,461(2001)
    
    [22] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F.Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle. Observation of Bose-Einstein Condensation of Molecules. Phys. Rev. Lett., 91, 250401 (2003)
    
    [23] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm. Bose-Einstein Condensation of Molecules. Science, 302, 2101 (2003).
    
    [24] M. Greiner, C. A. Regal, and D. S. Jin. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature, 426, 537 (2003)
    [25] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet. Observation of Fermi Pressure in a Gas of Trapped Atoms. Science, 291, 2570 (2001)
    
    [26] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon. Quasipure Bose-Einstein Condensate Immersed in a Fermi Sea. Phys. Rev. Lett., 87,080403(2001)
    
    [27] S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas. All-Optical Production of a Degenerate Fermi Gas. Phys. Rev. Lett., 88, 120405 (2002)
    
    [28] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Gorlitz, and W. Ketterle. Two species mixture of quantum degenerate Bose and Fermi gases. Phys. Rev. Lett., 88, 160401(2002).
    
    [29] M. E. Gehm, S. L. Hemmer, S. R. Granade, K. M. O'Hara, and J. E.Thomas. Mechanical stability of a strongly interacting Fermi gas of atoms. Phys. Rev. A, 68, 011401(R)(2003)
    
    [30] K. E. Strecker, G. B. Partridge, and R. G. Hulet. Conversion of an atomic Fermi gas to a long-lived molecular Bose gas. Phys. Rev. Lett., 91, 080406 (2003).
    [31] Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieckmann, and W. Ketterle. Fiftyfold Improvement in the Number of Quantum Degenerate Fermionic Atoms. Phys. Rev. Lett., 91, 160401 (2003)
    
    [32] J. Cubizolles, T. Bourdel, S. Kokkelmans, G. Shlyapnikov, and C.Salomon. Production of Long-Lived Ultracold Li2 Molecules from a Fermi Gas. Phys. Rev. Lett., 91, 240401 (2003)
    
    [33] C. Silber, S. Gunther, C. Marzok, B. Deh, P. W. Courteille and C. Zimmermann. Quantum-Degenerate Mixture of Fermionic Lithium and Bosonic Rubidium Gases. Phys. Rev. Lett., 95, 170408 (2005)
    
    [34] G. Roati, F. Riboli, G. Modugno, and M. Inguscio. Fermi-Bose quantum degenerate 40K - 87Rb mixture with attractive interaction. Phys. Rev. Lett., 89, 150403 (2002)
    [35] C. A. Regal, C. Tickner, J. L. Bohn, and D. S. Jin. Creation of ultracold molecules from a Fermi gas of atoms. Nature, 424, 47 (2003)
    
    [36] M. Kohl, H. Moritz, T. Stoferle, K. Gunter and T. Esslinger. Fermionic Atoms in a Three Dimensional Optical Lattice: Observing Fermi Surfaces, Dynamics, and Interactions. Phys. Rev. Lett., 94, 080403 (2005)
    [37] C. Ospelkaus, S. Ospelkaus, K. Sengstock and K. Bongs. Interaction-Driven Dynamics of 40K-87Rb Fermion-Boson Gas Mixtures in the Large-Particle-Number Limit. Phys. Rev. Lett., 96, 020401 (2006)
    
    [38]S.Aubin, S. Myrskog, M. H. T. Extavour, L. J. Leblanc, D. Mckay, A. Stummer and J. H. Thywissen, Trapping fermionic 40K and bosonic 87Rb on a chip. Nature Phys., 2, 384 (2006)
    
    [39] J. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst and W. Vassen. Metastable helium Bose-Einstein condensate with a large number of atoms. Phys. Rev. A., 73, 031603(R)(2006)
    
    [40] Takeshi Fukuhara, Yosuke Takasu, Mitsutaka Kumakura, and Yoshiro Takahashi. Degenerate Fermi Gases of Ytterbium. Phys. Rev. Lett., 98, 030401 (2007)
    
    [41] Feshbach, H., 1958, Unified theory of nuclear reactions, Ann. Phys. (NY) 5, 357-390
    
    [42] Feshbach, H., 1962, Unified theory of nuclear reactions II, Ann. Phys. (NY) 19, 287-313
    
    [43] Stwalley, W. C, 1976, "Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: New field-dependent scattering resonances and predissociations," Phys. Rev. Lett. 37,1628-1631
    
    [44] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A, 47, 4114 (1993)
    
    [45] Inouye, S., M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature, 392, 151(1998)
    
    [46] Dieckmann, K., C. A. Stan, S. Gupta, Z. Hadzibabic, C. H. Schunck, and W. Ketterle, Decay of an ultracold fermionic lithium gas near a Feshbach resonance. Phys. Rev. Lett., 89, 203201 (2002)
    
    [47] S. Jochim, M. Bartenstein, G. Hendl, J. Hecker Denschlag, R.Grimm, A. Mosk, and W.Weidemüller. Magnetic field control of elastic scattering in a cold gas of fermionic lithium atoms. Phys. Rev. Lett., 89, 273202 (2002)
    
    [48] X. Du, L. Luo, B. Clancy, and J. E. Thomas. Obser-vation of anomalous spin segregation in a trapped Fermi gas. Phys. Rev. Lett., 101, 150401 (2008)
    
    [49] K. E. Strecker , G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation and propagation of matter-wave soliton trains. Nature, 417,150 (2002)
    [50] M. Junker, D. Dries, C. Welford, J. Hitchcock, Y. P. Chen, and R. G. Hulet. Photoassociation of a Bose-Einstein Condensate near a Feshbach Resonance. Phys. Rev. Lett., 101, 060406 (2008)
    [51] C. D'Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Simoni. Feshbach resonances in ultracold 39K. New J. Phys., 9,223 (2007)
    [52] T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Resonant control of elastic collisions in an optically trapped Fermi gas of atoms. Phys. Rev. Lett., 88, 173201 (2002)
    [53] P.Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abee-len, and B. J. Verhaar, Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett., 81, 69 (1998)
    [54] A.Marte, T. Volz, J. Schuster, S. Dürr, G. Rempe, E. G. M.van Kempen, and B. J. Verhaar. Feshbach resonances in rubidium 87: Precision measurement and analysis. Phys. Rev. Lett., 89, 283202 (2002)
    [55] C. Chin, V. Vuleti'c, A. J. Kerman, and Chu. High resolution Feshbach spectroscopy of cesium. Phys. Rev.Lett., 85, 2717 (2000)
    [56] J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga. Observation of Feshbach resonances in an ultracold gas of 52Cr. Phys. Rev. Lett., 94, 183201 (2005)
    [57] A. Simoni, F. Ferlaino, G. Roati, G. Modugno, and M. Inguscio. Magnetic control of the interaction in ultracold K-Rb mixtures. Phys. Rev. Lett., 90, 163202 (2003)
    [58] C. Klempt, T. Henninger, O. Topic, J. Will, W. Ertmer, E. Tiemann, and J. Arlt. 40K-87Rb Feshbach resonances: Modeling the interatomic potential. Phys. Rev. A, 76, 020701(R)2007
    [59] C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach, and W. Ketterle. Observation of Feshbach resonances between two different atomic species. Phys. Rev. Lett., 93, 143001 (2004)
    [60] E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, et al. Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K. Phys. Rev. Lett., 100, 053201 (2008)
    [61] B. Deh, C. Marzok, C. Zimmermann, and P. W. Courteille. Feshbach resonances in mixtures of ultracold 6Li and 87Rb gases. Phys. Rev. A, 77, 010701(R) (2008)
    [62] C. Chin, R. Grimm, P. Julienne, E. Tiesinga. Feshbach resonances in ultracold gases arXiv:0812.1496
    [63] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson. Resonances in ultracold collisions of 6Li, 7Li, and 23Na. Phys. Rev. A, 51, 4852 (1995)
    [64] C. C. Bradley, C. A. Sacket, and R. G. Hulet. Bose-Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett., 78, 985 (1997)
    [65] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687(1995)
    [66] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon. Formation of a matter-wave bright soliton. Science, 296, 1290 (2002)
    [67] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett., 85, 1795(2000)
    [68] S. B. Papp, J. M. Pino, R. J. Wild, S. Ronen, C. E. Wieman, D. S. Jin, and E. A. Cornell. Bragg spectroscopy of a strongly interacting 85Rb Bose-Einstein condensate Phys. Rev. Lett., 101, 135301 (2008)
    [69] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet. Formation and propagation of matter-wave soliton trains. Nature, 417, 150 (2002)
    [70] T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin. Resonant control of elastic collisions in an optically trapped Fermi gas of atoms. Phys. Rev. Lett., 88, 173201 (2002)
    [71] K. O'Hara, S. L. Lemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas. Observation of a strongly interacting degenerate Fermi gas. Science, 298, 2179 (2002)
    [72] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, and H.-C. Nagerl. Quantum Gas of Deeply Bound Ground State Molecules. Science, 321, 1062 (2008)
    [73] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye. A High Phase-Space-Density Gas of Polar Molecules. Science, 322,231 (2008)
    
    [74] F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. Hecker Denschlag. Ultracold Triplet Molecules in the Rovibrational Ground State. Phys. Rev. Lett., 101, 133005 (2008)
    
    [75] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature physics, 1, 23 (2005)
    
    [76] Immanuel Bloch. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature, 453 1016 (2008)
    
    [77] Cornish, S. L., N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman. Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions. Phys. Rev. Lett. 85, 1795 (2000)
    
    [78] M. Greiner, M. O. Mandel, T. Esslinger, T. Hansch, and I. Bloch. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415, 39 (2002a)
    
    [79] T. Kinoshita, T. Wenger, and D. S. Weiss. Observation of a One-Dimensional Tonks-Girardeau Gas. Science, 305, 1125 (2004)
    
    [80] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Foiling, J. I. Cirac, G. V. Shlyapnikov, T. W. Hansch, and I. Bloch. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature, 429, 277 (2004)
    
    [81] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and J. Dalibard. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1118 (2006)
    
    [82] Robert Jordens, Niels Strohmaier, Kenneth Gunter, Henning Moritz, Tilman Esslinger. A Mott insulator of fermionic atoms in an optical lattice. Nature, 455 204 (2008)
    
    [83] H. Moritz, T. Stoferle, M. Kohl, and T. Esslinger. Phys. Rev. Lett., 91, 250402 (2003)
    
    [84] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Foiling, J. I. Cirac, G. V. Shlyapnikov, T. W. Hansch, and I. Bloch. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature, 429, 277 (2004)
    
    [85] B. L. Tolra, K. M. O'Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston, and J. V. Porto. Observation of Reduced Three-Body Recombination in a Correlated 1D Degenerate Bose Gas. Phys. Rev. Lett., 92, 190401 (2004)
    [86] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885 (2008)
    
    [87] D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, P. Zoller. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett., 82, 1975 (1999)
    
    [88] O. Mandel, et al. Controlled collisions for multiparticle entanglement of optically trapped atoms. Nature, 425, 937 (2003)
    
    [89] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, J. V. Porto. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A, 73, 033605 (2006)
    
    [90] M. Anderlini, et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature, 448,452 (2007)
    
    [91] S. Foiling, et al. Direct observation of second-order atom tunnelling. Nature, 448, 1029(2007)
    
    [92] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40, 546 (1989)
    
    [93] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463 (1999)
    
    [94] S. Stringari and L. Pitaevskii, Bose-Einstein condensation (Oxford University Press, London, 2003).
    
    [95] C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases (Cambridge University Press, 2008).
    
    [96] Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys., 80, 1215 (2008)
    
    [97] C. Cohen-Tannoudji. Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 70, 707 (1998)
    
    [98] W. D. Phillips. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721(1998)
    
    [99] S. Chu. Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 70, 685 (1998)
    
    [100] T. Bergeman, Gidon Erez, Harold J. Metcalf. Magnetostatic trapping fields for neutral atoms. Phys. Rev. A, 35, 1535 (1987)
    
    [101] W. Ketterle, D. Durfee, and D. Stamper-Kurn. In International School of Physics Enrico Fermi Course CXL Bose-Einstein Condensation in Atomic Gases,edited by M.Inguscio,S.Stringari,and C.Wieman(IOS Press,Varenna,1999),p.67
    [102]T.Bergeman,G.Erez,and H.J.Metcalf.Magnetostatic trapping fields for neutral atoms.Phys.Rev.A,35,1535(1987)
    [103]T.Esslinger,I.Bloch,and T.W.Hansch,Bose-Einstein condensation in a quadrupole-Ioffe-configuration trap,Phys.Rev.A,58,R2664(1987)
    [104]Francesca Ferlaino,Chiara D'Errico,Giacomo Roati,et al.Feshbach spectroscopy of a K-Rb atomic mixture.Phys.Rev.A,73,040702(R)(2006)
    [105]M.Modugno,F.Ferlaino,F.Riboli,et al.Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture.Phys.Rev.A,68,043626(2003)
    [106]J.Goldwin,S.Inouye,M.L.Olsen,et al.Measurement of the interaction strength in a Bose-Fermi mixture with ~(87)Rb and ~(40)K.Phys.Rev.A,70,021601(R)(2004)
    [107]G.Modugno,G.Ferrari,G.Roati,R.J.Brecha,A.Simoni,and M.Inguscio.Bose-Einstein Condensation of Potassium Atoms by Sympathetic Cooling.Science 294,1320(2001)
    [108]S.B.Papp,J.M.Pino,and C.E.Wieman.Studying a dual-species BEC with tunable interactions.arXiv:0802.2591(2008)
    [109]L.D.Sarlo,P.Maioli,G.Barontini,J.Catani,F.Minardi,and M.Inguscio.Collisional properties of sympathetically cooled 39K.Phys.Rev.A,75,022715(2007)
    [110]S.Kobayashi,J.Yamada,S.Machida and T.Kimura.Single-mode operation of 500Mbit/s modulated AlGaAs semiconductor laser by injection locking.Electron.Lett.,16746(1980)
    [111]卫栋 陈海霞 熊德智 张靖.~(40)K-~(87)Rb原子冷却的半导体激光系统.物理学报,55,6342(2006)
    [112]卫栋~(87)Rb—~(40)K玻色费米混和气体磁光阱的实验研究 山西大学2007届博士研究生学位论文
    [113]T.Day,F.Luecke,and M.Brownell.Continuously tunable diode lasers.Lasers and Optronics,6,15(1993)
    [114]A.S.Arnold,J.S.Wilson,and M.G.Boshier.A simple extended-cavity diode laser.Rev Sci Instrum.,69,1236(1998)
    [115]C.J.Hawthorn,K.P.Weber,and R.E.Scholtena.Littrow configuration tunable external cavity diode laser with fixed direction output beam.Rev Sci Instrum.,72,4477(2001)
    [116]Christoph Affolderbacha and Gaetano Miletib.A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation.Rev Sci Instrum.,76,073108(2005)
    [117]R.A.Nyman,G.Varoquaux,B.Villier,et al.Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,Rev.Sci.Instrum.,77,033105(2006)
    [118]B.DeMarco.Quantum Behavior of an Atomic Fermi Gas.Ph.D.thesis,University of Colorado,Boulder(2001)
    [119]E.A.Donley,T.P.Heavner,F.Levi,M.O.Tataw,and S.R.Jefferts.Double-pass acousto-optic modulator system,Rev Sci Instrum.,76,063112(2005)
    [120]张靖,陶桦,卫栋,董雅宾,耿涛,王军民,彭堃墀.Rb原子饱和吸收半导体激光器系统稳频.光学学报,23197(2003)
    [121]Jing Zhang,Dong Wei,Changde Xie,and Kunchi Peng..Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum.OPTICS EXPRESS,11,1338(2003)
    [122]刘涛,李利平,闫树斌,雷宏香,张天才,王军民 铯原子D_2线调制转移光谱的实验研究.中国激光.Vol.30 791(2003)
    [123]R.S.Williamson III,Magneto-optical trapping of potassium isotopes,Ph.D.thesis University of Wisconsin-madison(1997)
    [124]C.Monroe,W.Swann,H.Robinson,and C.Wieman.Very cold trapped atoms in a vapor cell.Phys.Rev.Lett.,65,1571(1990)
    [125]W.Phillips and H.Metcalf.Laser Deceleration of an Atomic Beam.Phys.Rev.Lett.,48,596(1982)
    [126]C.Wieman,G.Flowers,S.Glibert.Inexpensive laser cooling and trapping experiment for undergraduate laboratories.Am.J.Phys.,63(4),317(1995)
    [127]B.DeMarco,H.Rohner,and D S Jin.An Enriched ~(40)K Source for fermionic atom studies.Rev.Sci.Instrum.,70,1967(1999)
    [128]WEI Dong,XIONG De-Zhi,CHEN Hai-Xia,ZHANG Jing.An Enriched ~(40)K Source for Atomic Cooling.CHIN.PHYS.LETT.,24(3),679(2007)
    [129] T. Esslinger, I. Bloch, and T. W. Hansch. Bose-Einstein condensation in a Quadrupole-Ioffe Configuration trap. Phys. Rev. A, 58, R2664 (1998)
    
    [130] P. E. Sokol. In Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S.Stringari (Cambridge University Press, Cambridge, UK, 1995), pp. 51
    
    [131] Jia LingLin and J. P. Wolfe. Magnetostatic trapping fields for neutral atoms. Phys. Rev. Lett., 71, 1222 (1993)
    
    [132] C. A. Sackett, C. C. Bradley, M. Welling and R.GHulet. Bra. J. Phys., 27 154 (1997)
    
    [133] M. R. Andrews, M.-O.Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle. Direct, Nondestructive Observation of a Bose Condensate. Science, 273, 84 (1996)
    
    [134] 冷原子实验计算机控制程序可以参考 http://www.nintaka.com
    
    [135] T. P. Meyrath. Precision analog optocoupler. George.ph.utexas.edu/ Meyrath/ informal, July 2002
    
    [136] T. P. Meyrath. Inexpensive Mechanical Shutter and Driver for Optics Experiments. George.ph.utexas.edu/ Meyrath/ informal
    
    [137] Wolfgang Petrich, Michael H. Anderson, Jason R. Ensher, and Eric A. Cornell. Behavior of atoms in a compressed magneto-optical trap. J. Opt. Soc. Am B, 11 1332 (1994)
    
    [138] Hardld F. Hess, Greg P. Kochanski, John M. Doyle, Naoto Masuhara, Daniel Klepp-ner and Thomas J. Greytak. magnetic trapping of spin-polarized atomic hydrogen. Phys. Rev. Lett., 59, 672 (1987)
    
    [139] R. van Roijen, J. J. Berkhout, S. Jaakkola and J. T. M. Walraven. Experiments with atomic Hydrogen in a magnetic Trapping field. Phys. Rev. Lett., 61, 931 (1988)
    
    [140] Naoto Masuhara, John M. Doyle, Jon C. Sandberg, Daniel Klepp-ner, Thomas J. Greytak, Hardld F. Hess and Greg P. Kochanski. Evaporation cooling of spin-polarized atomic hydrogen. Phys. Rev. Lett., 61, 935 (1988)
    
    [141] Francesca Ferlaino, Chiara D'Errico, Giacomo Roati, Matteo Zaccanti, Massimo Inguscio, and Giovanni Modugno. Feshbach spectroscopy of a K-Rb atomic mixture. Phys. Rev. A., 73, 040702(R) (2006)
    
    [142] Chen Shuai, Zhou Xiji, Yang Fan, Xia Lin, Sun Yaya, Wang Yiqiu, and Chen Xuzong. Analysis of Run-away Evaporation and Bose-Einstein Condensation by Time-of-Flight Absorption Imaging.Chin.Phys.Lett.,21,2105(2004)
    [143]J.E.Lye,C.S.Fletcher,U.Kallmann,H.A.Hachor,and J.D.Close.Images of evaporative cooling to Bose-Einstein condensation.J.Opt.B,4,57(2002)
    [144]D.A.Butts,D.S.Rokhsar.Trapped Fermi gases[J].Phys Rev A,55(6),4346(1997)
    [145]Georg M.Bruun,Chaeles W.Clark.Ideal gases in time-dependent traps[J].Phys Rev A,61(6),061601-1(2000)
    [146]J.Goldwin,S.Inouye,M.L.Olsen,et al.Measurement of the interaction strength in a Bose-Fermi mixture with 87Rb and 40K[J].Phys Rev A,70(2),021601-1(2004)
    [147]Dezhi Xiong,Haixia Chen,Pengjun Wang,Xudong Yu,Feng Gao,Jing Zhang.Quantum Degenerate Fermi-Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap.Chin.Phys.Lett.,25,843(2008)
    [148]王鹏军,陈海霞,熊德智,于旭东,高峰,张靖,实现玻色-费米混合气体量子简并的四极Ioffe组合磁阱设计,物理学报,57,4840(2008)
    [149]M.H.Anderson et al.Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor.Science,269,198(1995)
    [150]K.B.Davis et al.Bose-Einstein Condensation in a Gas of Sodium Atoms.Phys.Rev.Lett.,75,3969(1995)
    [151]P.S.Jessen and I.H.Deutsch,Adv.At.Mol.Opt.Phys.,37,95(1996);D.R.Meacher,Contemp.Phys.,39,329(1998).
    [152]M.Kozuma,L.Deng,E.W.Hagley,J.Wen,R.Lutwak,K.Helmerson,S.L.Rolston,and W.D.Phillips,Phys.Rev.Lett.,82,871(1999);J.E.Simsarian,J.Denschlag,M.Edwards,C.W.Clark,L.Deng,E.W.Hagley,K.Helmerson,S.L.Rolston,and W.D.Phillips,ibid.85,2040(2000)
    [153]D.M.Stamper-Kurn,A.P.Chikkatur,A.Gorlitz,S.Inouye,S.Gupta,D.E.Pritchard,and W.Ketterle.Excitation of Phonons in a Bose-Einstein Condensate by Light Scattering.Phys.Rev.Lett.,83,2876(1999)
    [154]M.Greiner,O.Mandel,T.Esslinger,T.W Hansch,and I.Bloch.Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.Nature (London) 415,39(2002)
    [155]D.Jaksch,C.Bruder,J.I.Cirac,C.W.Gardiner,and P.Zoller.Cold Bosonic Atoms in Optical Lattices.Phys.Rev.Lett.,81,3108(1998)
    [156] S. Burger et al. Superfluid and Dissipative Dynamics of a Bose-Einstein Condensate in a Periodic Optical Potential. Phys. Rev. Lett., 86,4447 (2001)
    
    [157] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A.Trombettoni, A. Smerzi, and M. Inguscio. Josephson Junction Arrays with Bose-Einstein Condensates. Science, 293, 843(2001)
    
    [158] G. Campbell. PhD Thesis (Massachusetts Institute of Technology) 2006
    
    [159] S. Gupta, A. E. Leanhardt, A. D. Cronin, D. E. Pritchard. Coherent manipulation of atoms with standing light. C. R. Acad. Sci., 4,2479 (2001)
    
    [160] Talbot H., Philos. Mag., 9,401 (1836)
    
    [161] K. Patorski, Prog. Opt. 27, 1 (1989); K. Banaszek and K. Wodkiewicz, Opt. Exp. 2,
    
    169 (1998); M.V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996); M.V. Berry and E. Bodenschatz, J. Mod. Opt. 46, 2139 (1999)
    
    [162] M. Chapman, C. Ekstrom, T. Hammond, J. Schmiedmayer, B. Tannian, S. Wehinger, D. Pritchard. Near-field imaging of atom diffraction gratings: The atomic Talbot effect. Phys. Rev. A, 51, R14 (1995)
    
    [163] L. Deng, E. Hagley, J. Denschlag, J. Simsarian, M. Edwards, C. Clark, K. Helmerson, S. Rolston, W. Phillips. Temporal, Matter-Wave-Dispersion Talbot Effect. Phys. Rev. Lett., 83, 5407 (1999)
    
    [164] Rudolf Grimm, Matthias Weidemüller, Yu. B. Ovchinnikov. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys., 42, 95 (2000)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700