微囊藻抑制—AgBiO_3应急处置与酵母菌生态抑制法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会经济的高速发展和城市人口密度的急剧增加,水体中污染物含量越来越高,富营养化状态日趋严重。藻类水华已经给水体、经济和人类健康带来了很大的危害,因此开发安全高效的藻华应急处理和长效生态抑藻技术已经成为富营养化控制中迫切需要解决的问题。当前抑制微生物的纳米材料的开发以及水体中有益菌胞外分泌物对微藻化感抑制作用的发现为人们提供了控制水华的新思路。
     在藻华应急处理方面,纳米光催化材料能够利用太阳能有效抑制藻类生长,且安全高效无毒,是一种具有良好应用前景的环境污染治理新技术。常规光催化材料如TiO_2只能利用太阳能中不足5%的紫外光,在实际应用中作用有限,本研究中针对该问题以离子交换法制备了可见光响应型AgBiO_3纳米光催化材料,并将其应用于藻类爆发的应急控制。
     同时,着眼于富营养水体的长期藻华污染防治方面,微生物化感抑藻是一种安全、不破坏水体生态环境、不需要外源添加的原位抑藻技术,是解决长效生态抑藻的有效手段。本研究在课题组前期工作基础上以自然环境中大量存在的酵母菌群为对象研究通过促进其胞外化感抑藻物质的产生达到长效抑藻的目的。在研究抑藻效果的基础上,初步探讨了纳米光催化材料及酵母菌胞外化感物质的抑藻机理,为其在水华防治应用中提供理论参考及相关技术支持。主要研究内容包括:
     1、用离子交换法制备了具有可见光响应的催化剂AgBiO_3,晶体结构为六方晶格,晶胞常数是a= 5.641(1),c=16.118(2) (?),RWP=7.96,RP=6.12%;透射电镜分析其团聚体为直径接近200nm的游离状球体;光吸收阈值约为470nm,对应的带隙宽度为2.5eV;可见光下对甲基橙有良好的降解能力,并能有效分解亚甲蓝。
     2、藻液初始浓度、AgBiO_3浓度、藻液初始pH值和光质是影响铜绿微囊藻受AgBiO_3胁迫时生长状况的主要因素。与AgNO_3和NaBiO_3相比,在可见光下AgBiO_3抑藻效果显著,有效抑制了铜绿微囊藻细胞的活性和叶绿素a含量,使正常藻细胞数目减少;细胞质膜分离,类囊体结构发生改变,气囊破裂。根据实验结果推测AgBiO_3的抑藻机理为其产生的自由基抑制铜绿微囊藻的光合作用,破坏细胞膜,使膜透性增大、电解质外渗,胞内物质流出,进而引发细胞凋亡。
     3、通过对BG11培养基优化选出四种对AgBiO_3抑藻效果有极显著影响的因素:ZnSO_4、CaCl_2、CuSO_4和NaNO_3;其中ZnSO_4、CaCl_2、CuSO_4表现出正影响,NaNO_3表现出负影响。当它们浓度分别为:ZnSO_4 0.24 mg·L~(-1),CaCl_2 125.94 mg·L~(-1),CuSO_4 0.28 mg·L~(-1),NaNO_3 600 mg·L~(-1)时,AgBiO_3对铜绿微囊藻的4h抑制率达到最大为61.86%,比优化前的平均值42.79%增长了44.57%。
     4、在不添加葡萄糖基质的条件下,混合酵母菌液并未对微囊藻产生抑制作用;而在接种混合酵母菌并添加葡萄糖的混合藻液中,微囊藻生长受到显著抑制,且经高温灭菌的葡萄糖酵母发酵液同样表现出了良好的抑藻活性,表明酵母菌抑藻活性可能是由酵母菌代谢葡萄糖分泌的具有高热稳定性的胞外分泌物表达的。
     5、受酵母菌胞外化感物质抑制的藻细胞轮廓清晰,结构完整,而颜色减淡,推测该混合酵母菌的抑藻活性物质主要是通过破坏叶绿素而达到抑藻效果的。通过对受试水样的HPLC-SEC与三维荧光光谱分析,初步确定该抑藻活性物质是有较强紫外吸收作用的含有芳香环的酸性物质。经气相色谱-质谱分析,初步推测酵母菌抑藻活性物质可能为分子量为220.35的2, 6-二叔丁基-4-甲基苯酚和分子量为151.18的2-(3H)-苯并噻唑酮。将两种物质分别用于微囊藻生长实验中,它们都表现出很好的抑藻效果。
With the rapid development of social economy and sharp increase of population density,more and more pollutants in water were discharged into the water,water eutrophication is getting more severe. The bloom of algae in water has brought a large amount of adverse effects to water quality,local economies and human health. Therefore,restricting the overgrowth of algae has received increasing attention. There are many limitations in the traditional methods of inhibiting algae,so the development of new products and new ideas has become an urgent need to control eutrophication problems. The inhibitory effects of microalgae from extracellular matters of beneficial bacterium in water and the current nanosized photocatalyst have provided new ideas for controlling algal blooms.
     Photocatalysis technology,which can effectively inhibit the growth of algae with the use of light as the energy source,has been showed to be potentially advantageous for environmental pollution prevention and a bright application future. However,common photocatalyst such as TiO_2 is only activated by UV light with wavelengths below 387 nm for its band gap,which means few of the solar energy could be used for bactericide,thus limited the application of TiO_2. In this study,a novel,visible light-responsive AgBiO_3 algaecide was prepared and characterized,which could restrict the growth of Microcystis aeruginosa and even kill them combined with the simulated solar radiation energy. Microbiological method with extracellular matters of beneficial bacterium is characterized as safety , undestroying with ecological environment of water,in-situ remediation technology with no addition,which is a future direction of eutrophication prevention and controlling. This study find out the preliminary mechanism of inhibition of macroalgae by extracellular matters and photocatalyst and provide a scientific basis for inhibit bloom of microalgae. The main contents of this paper are as follows:
     (1)AgBiO_3 was prepared with the ion exchange method,which was the hexagonal lattice with parameters as a= 5.641(1) and c=16.118(2) (?) and the final R factors were R_(WP)=7.96 and R_P=6.12%. SEM photograph showed AgBiO_3 was mainly spherical shape with a diameter of approximately 50~200 nm. There is a strong absorption in the visible region and the absorption edge is approximately 470nm,the band gap calculated is approximately 2.5eV for AgBiO_3. Comparing to undoped TiO2,AgBiO_3 greatly improved photocatalytic activity,decomposing methyl orange dye solutions under visible light irradiation.
     (2) Initial biomass density,concentration of AgBiO_3,initial pH and light quality were the main factors which effect the growth inhibition of Microcystis aeruginosa. Compared with AgNO_3 and NaBiO_3,AgBiO_3 had a stronger deleterious effect on cyanobacterium cultured in BG11with radiation of simulated natural light,while NaBiO_3 was the weakest inhibitor. Morphology analysis,determination of chlorophyll a and electrolyte leaking rate revealed that AgBiO_3 algaecide could damage the cyanobacterium wall and cell membrane irreversibly with their high photocatalytic activity,thus inhibited growth and proliferation of M. aeruginosa effectively.
     (3) Culture conditions were optimized for improved growth-inhibition of Microcystis aeruginosa exposed to AgBiO_3. The optimised concentrations of medium components were as follows: ZnSO_4 0.24 mg·L~(-1),CaCl_2 125.94 mg·L~(-1),CuSO_4 0.28 mg·L~(-1) and NaNO_3 600 mg·L~(-1). The inhibition rate reached 61.86%,an increased by 44.57% over the mean value (42.79%) before optimisation。
     (4) In the absence of growth substrate,the mixed liquid yeast did not produce growth inhibition of algae; however,under the mixed yeast with liquid glucose added,the algae chlorophyll concentration significantly decreased and continued to maintain at a low level,meanwhile,the extracellular matters of yeast sterilized in high temperature showed a good inhibition activity of algae. It indicated that the inhibition activity of yeast is due to extracellular matters which have high thermal stability.
     (5) Microscope showed that the algae in the treatment sample had clear-cut contours,integrate structures and pale color compared to that in the control sample. It can be showed that active substance of the mixed yeast inhibited the growth of algae by means of destructing algal chlorophyll. By the analysis of HPLC-SEC and EEM of the samples,it is initially determined that the active substance inhibiting growth of algae is a kind of humic acid with aromatic rings which absorb ultraviolet rays strongly. By the analysis of GC/MS, active substance of mixed yeast inhibiting the growth of algae may be 2,6-Di-tert-butyl-4-methylphenol (the molecular weight of 220.35) and 2-(3H)-benzothiazole ketone (the molecular weight of 151.18).
引文
[1] Liu W.,Qiu R.L.,Water eutrophication in China and the combating strategies [J], Journal of chemical technology and biotechnology,2007,82 (9), 781-786.
    [2] Daniel,T.C.,Sharpley,A.N.,Edwards,D.R,et al.,Minimizing surface water eutrophication from agriculture by phosphorus management [J], Journal of soil and water conservation,1994,49(2), 30-38.
    [3]鄢恒珍,龚文琪,梅光军等,陈晓东水体富营养化与生物修复技术评析[J],安徽农业科学2009,37(34), 17003-17006.
    [4] Hamed A.F., Survey of distribution and diversity of blue-green algae (Cyanobacteria) in Egypt [J], Acta Botanica Hungarica, 2005, 47, 117-136.
    [5]虞功亮,宋立荣,李仁辉,中国淡水微囊藻属常见种类的分类学讨论——以滇池为例[J],植物分类学报,2007,45 (5), 727–741.
    [6]胡鸿钧,魏印心,中国淡水藻类:系统、分类及生态[M],北京,科学出版社,2006, 68.
    [7] Mariyo F. W., Ken-ichi H., Wayne W. C., et al., Toxic microcystis. CRC Press Inc.2000. Florida,in USA.
    [8] Kenneth L. R., Michio N., Byoung W. C., Structure and biosynthesis of toxins from blue-green algae (cyanobacteria) [J],Journal of Applied Phycology,1994,6, 159-176.
    [9] Dokulil M.,Chen W.,Cai Q.,Anthropogenic impacts to large lakes in China: the Tai Hu example [J], Aquatic Ecosystem Health and Management,2000,3, 81-94.
    [10] John A. D.,Edward M.,The nitrogen: phosphorus relationship in lakes,Limnology and Oceanography [J], 1992, 37 (5), 936-945.
    [11] Yull R., Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake [J], Limnology and Oceanography, 1978, 23 (1), 10-25.
    [12] Fujimoto N., Sudo R., Sugiura N.,et al.,Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N: P supply ratios and temperatures [J],Limnology and Oceanography, 1997, 42 (2), 250-256.
    [13]荆红卫,华蕾,孙成华等,北京城市湖泊富营养化评价与分析[J],湖泊科学,2008,20(3),357-363.
    [14] Neill M. A method to determine which nutrient is limiting for plant growth in estuarine waters—at any salinity [J]. Marine Pollution Bulletin,2005,50,945-955.
    [15] Lee S.J., Jang M.H., Kim H.S., et al., Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage [J],Journal of Applied microbiology,2000,89(2),323-329.
    [16] Nalewajko C.,Murphy T. P.,Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J],Limnology,2000,2, 45-48.
    [17] Jacoby J.M., Collier D.C., Welch E.B.,et al., Environmental factors associated with a toxic bloom of Microcystis aeruginosa [J], Canadian Journal of Fisheries and Aquatic Sciences,2000,57(1), 231–240
    [18] Pradhan S., Singha S., Rai L.C.,Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe, Ni and Cr[J],Bioresource Technology,2007,98(3), 595-601.
    [19] Weger H.G., Espie G.S. Ferric reduction by iron-limited Chlamydomonas cells interacts with both photosynthesis and respiration [J], Planta, 2000, 210(5), 775-781.
    [20] Luo G.Y., Zhu L., Ji T.J.,Effects of Different P Concentration and Aeration Parttens on Growth of Algae in Freshwaters [J],Journal of Chongqing University (Natural Science Edition),2007 2, 20-24.
    [21]陈德淑,廖振方,刘晖霞等,湖泊水体富营养化的治理[J],重庆大学学报(自然科学版) 2007,30(3),116-119.
    [22] Zhang G.M., Zhang P.Y., Wang B.,Ultrasonic frequency effects on the removal of Microcystis aeruginosa [J], Ultrasonics Sonochemistry,2006,13(5), 446-450.
    [23] Choi Y.S.,Kim B.W.,Photocatalytic disinfection of E coli in a UV/TiO_2-immobilised optical-fibre reactor [J], Journal of Chemical Technology and Biotechnology,2000,75,1145-1150.
    [24] Dunlop P.S.M.,Byrne J.A.,Eggins B.R.,The photocatalytic removal of bacterial pollutants from drinking water [J], Journal of Photochemistry and Photobiology A: Chemistry,2002,148(1-3),355-363.
    [25] Liu Y.B.,X.G.,Zhou B.X.,et al., Photoelectrocatalytic degradation of tetracycline by highly effective TiO_2 nanopore arrays electrode [J], Journal Hazardous Materials,2009, 171,678-683.
    [26] Peller J.R.,Whitman R.L.,Griffith S.,et al.,TiO_2 as a photocatalyst for control of the aquatic invasive alga,Cladophora,under natural and artificial light [J], Journal of Photochemistry and Photobiology A: Chemistry,2007,186 (2-3), 212-217.
    [27] Hyeok Choi,Maria G. Antoniou,Miguel Pelaez,et al.,Mesoporous Nitrogen-Doped TiO_2 for the Photocatalytic Destruction of the Cyanobacterial Toxin Microcystin-LR under Visible Light Irradiation[J],Environment Science and Technology, 2007, 41 (21), 7530–7535.
    [28] Scheffcr M. Multiplicity of stable states in freshwater systems [J], Hydrobiologia, 1990, 200(201), 475-487.
    [29] Abo-Ellil A.H., Amany H. Abo-Ellil,Evaluation of the Attachment Degrees of Some Microflora Inhabitants Different Types of Hydrophytes at Different Aquatic Ecosystems, Egypt [J],Research Journal of Agriculture and Biological Sciences, 2007, 3(5), 534-540.
    [30] Li F.M., Hu H.Y., Allelopathic effects of different macrophytes on the growth of Microcystis aeruginosa [J], Allelopathy Journal, 2005,15 (1), 145–152.
    [31] Xian Q.M., Chen H.D., Zou H.X.,et al.,Allelopathic activity of volatile substance from submerged macrophytes on Microcystin aeruginosa [J], Acta Ecologica Sinica, 2006, 26(11), 3549-3554.
    [32]田琦,王沛芳,欧阳萍等,5种沉水植物对富营养化水体的净化能力研究[J],水资源保护,2009,25(1),14-17.
    [33] Hilt S., Gross E.M.,Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? [J],Basic and Applied Ecology, 2008, 9(4), 422-432.
    [34] Josá.,Pichardo S., Prieto A.I., et al.,Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions[J], Aquatic Toxicology, 2005, 72(3), 261-271.
    [35] Goldburg R.J., Elliott M.S., Naylor R.L.,Marine Aquaculture in the United States. Environmental Impacts and Policy Options [J], Pew Oceans Commission, 2001.
    [36] Rajasimman M., Karthikeyan C., Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low density biomass support [J],Journal of Hazardous Materials, 2007, 143(1), 82-86.
    [37] Li Z.R., Zhang Z., Li J.,Comparative study of the nitrification characteristics of two different nitrifier immobilization methods [J], Biodegradation, 2009, 20(6), 859-865.
    [38] Lee S.O.,Ksto J.,Takiguchi N.,et al.,Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudosaltero-monas sp. Strain A28 [J], Applied and Environmental Microbiology, 2000, 66(1), 4334-4339.
    [39] N?geli A., Schanz F., Planktoneustonic algae in the surface films of Lake Zürich: Occurrence and dependence on phytoplankton succession [J], Aquatic Sciences - Research Across Boundaries, 1990, 52(3), 269-286.
    [40] Daft M. J.,Sterwart WD. Ecological studies on algal-lysing bacteria in fresh waters [J] Freshwater Biology, 1975, (5), 577-596.
    [41] Markell D.A., Wood-Charlson E.M., Immunocytochemical evidence that symbiotic algae secrete potential recognition signal molecules in hospite, Marine Biology, 2010, 157(5), 1105-1111.
    [42] Vymazal J., Greenway M., Tonderski K., Constructed Wetlands for Wastewater Treatment [J], Wetlands and Natural Resource Management, 2006, 19, 69-96.
    [43]汪俊三,覃环,高水力负荷人工湿地处理富养化湖水[J],中国给水排水,2005,21 (1),1-4.
    [44]聂志丹,年跃刚,金相灿等,3种类型人工湿地处理富营养化水体中试比较研究[J],环境科学,2007,28(8),1675-1680.
    [45] Wu D.Y., Long M.C., Zhou J.Y., et al., Synthesis and characterization of self-cleaning cotton fabrics modified by TiO_2 through a facile approach [J]. Surface & Coatings Technology, 2009, 203, 3728–3733.
    [46] Carp O., Huismanb C.L., Reller A.,Photoinduced reactivity of titanium dioxide [J], Progress in Solid State Chemistry, 2004, 32(1-2), 33-177.
    [47] Linkous C.A., Carter G. J., Locuson D.B., Photocatalytic Inhibition of Algae Growth Using TiO_2, WO3, and Cocatalyst Modifications[J],Environment Science Technology, 2000, 34 (22), 4754-4758.
    [48] Song J.J., Cho S.H., Chen H.,Removing algae with CoO_2-doped TiO_2 coatings on foamed glass [J], Journal of Ceramic Processing Research, 2008, 9(5), 486~489.
    [49] Pellera J.R., Whitmanc R.L., Griffith S., TiO_2 as a photocatalyst for control of the aquaticinvasive alga, Cladophora, under natural and artificial light[J],Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186(2-3), 212-217.
    [50] Alfaro S.O., Cruz A.M., Torres-Martínez L.M.,Remove of marine plankton by photocatalysts with Aurivillius-type structure [J], Catalysis Communications, 2010,11, 326–330.
    [51]廖兴盛,汪星,赵开弘等,UV-C光催化纳米TiO_2对蓝藻生长影响的研究[J],武汉植物学研究,2007,25(5),457-461.
    [52] Ochiai T., Fukuda T., Nakata K., et al., Photocatalytic inactivation and removal of algae with TiO_2-coated materials [J], Journal of Applied Electrochemistry, 2010, 40(10), 1737–1742.
    [53]周丽娟,陈小兰,邓国宾等,改性纳米TiO_2对蓝藻的生理生态影响[J],植物学通报,2008,25(1),67-71.
    [54] Liu I., Lawton L.A., Bahnemann D.W.,The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials [J],Chemosphere, 2009, 76(4), 549-553.
    [55] Bajwa R., Javaid A., Haneef B., EM and Vam Tachnology in Pakistan V: Response of Chickpea (Cicer Arietinum L.) to Co-inoculation with Effective Microorganisms (EM) and Va Mycorrhiza under Allelopathic Stress [J], Pakistan Journal of Botany, 1999, 31(2), 387-396.
    [56] Selosse M.A., E. Baudoin, Vandenkoornhuyse P., Symbiotic microorganisms, a key for ecological success and protection of plants [J], Comptes Rendus Biologies, 2004, 327(7), 639-648.
    [57] Boyaval P., Goulet J., Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped Lactobacillus helveticus [J], Enzyme and Microbial Technology, 1988, 10(12), 725-728.
    [58] Zegers N.D., Kluter E., Stap H.V., et al., Expression of the protective antigen of Bacillus anthracis by Lactobacillus casei: towards the development of an oral vaccine against anthrax [J],Journal of Applied Microbiology, 1999,87(2), 309-314.
    [59] Aymerich T., Holo H., Havarstein L.S., Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins [J], Applied Environment Microbiology, 1996, 62(5), 1676-1682.
    [60] Azuma H., Maruyama H.B.,Biochemically active substances from Actinomycetes and other organisms. II. Effects of various compounds on motilometry [J], The Journal of antibiotics, 1974,27(3), 185-191.
    [61] Khaliq A., Abbasi M.K., Hussain T., Effects of integrated use of organic and inorganicnutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan [J], Bioresource Technology, 2006, 97(8), 967-972.
    [62] Shinji I.,Effect of organic fertilizer and effective microorganisms on growth,yield and quality of paddy-rice varieties [J],Journal of Crop Production, 2000, 3(1), 269-273.
    [63] Ben-Haim Y., Banim E., Kushmaro A., Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi [J], Environmental Microbiology, 1999, 1(3), 223–229.
    [64]王平,吴晓芙,李科林等,应用有效微生物群(EM)处理富营养化源水试验研究[J],环境科学研究,2004,17 (3),39-43.
    [65] Li X.M., Yang Z.Y., Jian S.G., et al., Control of algae bloom in eutrophic water by effective microorganisms, Acta scientiarum naturalium Universitatis Sunyatseni, 2000, 39(1), 81-85.
    [66]陈建,丛君,陈高云等,利用有效微生物菌群控制蓝藻水华研究[J],环境工程学报,2010,4(1),101-104.
    [67] Rice E. L.,Allelopathy [M].NewYork,Academic Press,1974.
    [68] Rice E. L.,Allelopathy (2nd Ed) [M]. NewYork,Academic Press,1984.
    [69] Uribe C.S.,?Guerrero C.S.,?King D.B., et al., Allelochemicals targeting the phospholipid bilayer and the proteins of biological membranes [J], Allelopathy Journal, 2008, 21(1), 1-24.
    [70] Middelboe M,Sndergaard M,Letarte Y,et a1. Attached and free-living bacteria: Production and polymer hydmlysis during a diatom bloom [J], Microbial Ecology, 1995, 29, 23l-248.
    [71] Kodani S.,Imoto A.,Mitsutani A.,et al. Isolation and identification of the antialgal compound,harmane (1-methyl-β-carboline), produced by the algicidal bacterium,Pseudomonas sp. K44-l [J], Joumal of Applied Phycology, 2002, 14(2), 109-114.
    [72] Hayashida S. Isolation of anti-algal Pseudomonas stutzeri strains and their lethal activity for Chattonella antiqua [J], Agriculture Biology and Chemistyr, 1991, 55(3), 787-790.
    [73] Birringer R.,Gleiter H.,Klein H.P.,et a1. Synthesis of n-metals[J], Physics Letter, 1984, 102 (8), 365-369.
    [74] Siegel R.W., Nanastructured materials-mind over matter, Nanostructured Materials [J], 1993, 3, 1-18.
    [75] zhang Q H,Gao L,Guo J. Preparation and characterization of nanosized TiO_2 powders from aqueous TiCl4 solution [J], Applied catalysis B: Environmental, 2000, 26, 207-215.
    [76] Xie Y.B., Yuan C.W., Photocatalysis of neodymium ion modified TiO_2 sol under visible light irradiation [J], Applied Surface Science, 2004, 221(1-4), 17-24.
    [77] Huang H.J., Li D.Z., Lin Q., et al., Efficient Degradation of Benzene over LaVO4/TiO_2 Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation [J], Environmental Science and technology, 2009, 43 (11), 4164-4168.
    [78] Hamid R. P.,Mohammad H. K.,Mohammad H. Y.,et al.,Photocatalytic degradation with CdS/Cu of HMX and RDX wastewater nanophotocatalyst [J],Chinese Journal of Energetic Materials, 2008, 16(6), 745-751.
    [79] Xu Y.H., Liang D.H., Liu M.L., Preparation and characterization of Cu2O–TiO_2: Efficient photocatalytic degradation of methylene blue, Materials Research Bulletin, 2008, 43(12), 3474-3482.
    [80]蓝闽波,纳米材料测试技术[M],上海,华东理工大学出版社,2009, 108.
    [81] Zachariasen W.H., Hill E.L., The Theory of X-ray Diffraction in Crystals [J], The Journal of Physical Chemistry, 1946, 50 (3), 289-290.
    [82] Reimer L., Scanning electron microscopy: physics of image formation and microanalysis [M], Newyork, Springer-Verlag Berlin Heidelberg,1998, 1-12.
    [83] Clarke F.J., Anne C.J., Correction methods for integrating-sphere measurement of hemispherical reflectance [J], Color Research and Application, 1986, 11 (4), 253-262.
    [84] Ohno T.,Tokieda K.,Higashida,S.,et al. Synergism between rutile and anatase TiO_2 particles in photocatalytic oxidation of aphthalene [J],Applied Catalysis A: General, 2003, 244(2), 383-391.
    [85] Weil J.A., Bolton J.R., Electron paramagnetic resonance: elementary theory and practical applications [M], Hoboken, John Wiley & Sons, Inc., 2007.
    [86] Dunn J.F., Swartz H.M., In vivo electron paramagnetic resonance oximetry with particulate materials [J], Methods, 2003, 30(2), 159-166.
    [87]王金刚,王西奎,国伟林等,亚甲蓝光度法测定羟自由基[J],理化检验-化学分册,2007,495-497
    [88] Kumada N.,Kinomura N.,Sleight A.W.,Neutron powder diffraction refinement of ilmenite-type bismuth oxides: ABiO3 (A=Na,Ag), Materials Research Bulletin,2000, 35(14-15),2397-2402.
    [89]姜寿亭,李卫,凝聚态磁性物理[M],北京,科学出版社,2003, 48.
    [90]姚尚锋,李健民,[Fe_3O(Ala)_6(H_2O)_3](ClO_4)_7和[Fe_3O(Gly)_6(H_2O)_3](NO_3)_7·3H_2O的顺磁共振谱及变温磁化率研究[J],光谱实验室,2003,19(2),143-146.
    [91] Nagayama K., Shibata T., Fujimoto K., et al., Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae [J], Aquaculture, 2003, 218(1-4), 601-611.
    [92] Anderson D.M., Andersen,P., Bricelj V.M., et al., Monitoring and management strategies for harmful algal blooms in coastal waters, UNESCO, Paris, International, 174-263.
    [93] Sengco M.R., Li A.S., Tugend K., et al., Removal of red- and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens [J], Marine Ecology, Progress Series, 2001, 210, 41-53.
    [94] Hennes K. P., Curits A.S., Amy M. C., Fluorescently Labeled Virus Probes Show that Natural Virus Populations Can Control the Structure of Marine Microbial Communities [J], Applied Environmental Microbiology, 1995, 61(10), 3623-3627.
    [95] Kim H.G., Mitigation and controls of HABs [J]. Ecology Study, 2006, 189, 327-338.
    [96] Choi Y.S., Kim B.W., Photocatalytic disinfection of E coli in a UV/TiO_2-immobilised optical-fibre reactor [J], Joural of Chemical Technology and Biotechnology, 2000, 75(12), 1145-1150.
    [97] Dunlop P.S.M., Byrne J.A., Manga N., et al., The photocatalytic removal of bacterial pollutants from drinking water [J], Journal of Photochemistry and photobiology A-Chemistry., 2002, 148(1-2), 355-363.
    [98] Wintermans J. F, Mots D., Spectrophotometric characteristics of chlorophylis a and b and their pheophytins in ethanol [J], Biochimica Biophysica Acta, 1965, 109(2), 448-453.
    [99] Williams D.B., Carter C.B., The Transmission Electron Microscope [J], Transmission Electron Microscopy, 2009, 1, 3-22.
    [100]沈萍,微生物学[M],北京,高等教育出版社,2005, 27.
    [101] Ibrahim S.F., Engh G.V., Flow Cytometry and Cell Sorting [J], Advances in Biochemical Engineering/Biotechnology, 2007, 106, 19-39.
    [102]汤章城,现代植物生理学实验指南[M],北京,科学出版社,1999, 303.
    [103] Wallen D.G., Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae [J], Marine Biology, 1971, 10, 34-43.
    [104]秦彩云,范丰梅,郑维发,过氧化氢对不同光质下盐SZ-05生长及代谢产物积累的影响[J],徐州师范大学学报(自然科学版) ,2009,27 (1),87-91.
    [105] Krutzik P.O., Clutter M.R., Nolan G.P., Coordinate Analysis of Murine Immune Cell Surface Markers and Intracellular Phosphoproteins by Flow Cytometry [J], 2005, 175, 2357-2365.
    [106]李靖,李成斌,文涛等,流式细胞术(FCM)在生物学研究中的应用[J],中国农学通报,2008 ,24(6),107-111.
    [107] Collier J.L., Flow Cytometry and the Single Cell in Phycology [J], Journal of Phycology, 2000, 36(4), 628-644.
    [108] Jean M. J., Diane C. C., Eugene B. W., et al., Environmental factors associated with a toxic bloom of Microcystis aeruginosa[J], Canadia Journal of Fisheries and Aquatic Science, 2000, 57(1), 231–240.
    [109] Konopka A.E., Klemer A.R., Walsby A.E., et al., Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota[J], Journal of Plankton Research, 1993, 15 (9), 1019-1934.
    [110] Laura G.C., Jose′M.G., Montserrat C.L., et al., Light stimulates growth of proteorhodopsin-containing marine Flavobacteria [J], Nature, 2007, 445, 210-213.
    [111] Richardson A.D., Duigan S.P., Berlyn G.P., An evaluation of noninvasive methods to estimate foliar chlorophyll content [J], New Phytologist, 2002, 153, 185-194.
    [112] Reynolds C.S, The ecology of fresh water phytoplankton [M], Cambridge University Press, 1984.
    [113] Murray M.B., Cape J.N., Fowler D., Quantification of frost damage in plant tissues by rates of electrolyte leakage [J], New Phytologist, 1989, 113(3), 307-311.
    [114] Duvall E., Wyllie A. H., Death and the cell [J], Immunology Today, 1986, 7 (4), 115-119.
    [115] R. A. Fisher, Design of Experiments [J], British Medical Journal, 1936, 1, 554-558.
    [116] Bandaru V.V.R., Somalanka S.R., Mendu D.R., et al., Optimization of fermentation conditions for the production of ethanol from sago starch by CO-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology [J], Enzyme and Microbial Technology, 2006, 38, 209-214.
    [117] Naveena B.J., Altaf Md., Bhadriah K., Selection of medium components by Plackett–Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 inSSF using wheat bran [J], Bioresource Technology, 2005, 96(4), 485-490.
    [118] Singh R., Kumar R., Bishnoi K., et al., Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology [J],Biochemical Engineering Journal, 2009, 48, 28–35.
    [119] Sinha J., Dey P.K., Panda T., Extractive fermentation for improved production of endoglucanase by an intergeneric fusant of Trichoderma reesei/Saccharomyces cerevisiae using aqueous two-phase system [J], Biochemical Engineering Journal, 2000, 6, 163-175.
    [120] Plackett R.L.,Burman J.P.,The design of optimum multifactorial experiments[J],Biometrika,1946,33, 305-325.
    [121] Box G.E.P., Draper N., Empirical model-building and response surfaces, New York, John Wiley, 1987.
    [122] Rai L. C., Singh A. K., Mallick N. Employment of CEPEX enclosures for monitoring toxicity of Hg and Zn on in situ structural and funcational characteristics of algal communities of river Ganga in Varanasi, India[J], Ecotoxiac Environmental Safety, 1990, 20 (2), 211-221.
    [123]邱昌恩,毕永红,胡征宇,Zn2+胁迫对绿球藻生长、生理特性及细胞结构的影响[J],水生生物学报,2007,31(4),503-508.
    [124]阎海,潘纲,霍润兰,铜、锌和锰抑制月形藻生长的毒性效应[J],环境科学学报,2001,21(3),328-332.
    [125]徐勤松,施国新,许丙军等,Cu、Zn在黑藻叶片中的富集及其毒理学分析[J],水生生物学报,2007,31(1),1-8.
    [126]李建宏,曾昭琪,Co、Ni、Cu、Zn离子对蓝藻藻胆体光谱影响研究[J].南京大学学报,1997,33(4),639-643.
    [127] Short A.D., Bian J., Ghosh T.K., et al., Intracellular Ca2+ pool content is linked to control of cell growth [J], Proceedings of the National Academy of Sciences of United Staes Of America, 1993, 90(11), 4986-4990.
    [128] Tombes R.M., Faison M.O., Turbeville J.M., Organization and evolution of multifunctional Ca2+/CaM-dependent protein kinase genes [J], Gene, 2003, 322, 17-31.
    [129]郑江,高亚辉,韦青阳等,添加碳酸钙后螺旋藻中钙元素的分布及主要生化组成的变化[J],中国水产科学,2004,11(5),462-465.
    [130] Wong P.K., Chang L., Effects of copper, chromium and nickel on growth,photosynthesisand chlorophyll a synthesis of Chlorella pyrenoidosa [J]. Environmental Poll, 1991, 72, 127-139.
    [131]杜林方,付华龙,邹晓东,铜离子对钝顶螺旋藻完整细胞中光系统Ⅱ活性和藻胆体能量传递的影响[J],植物学报,1995,37(2),109-113.
    [132] Chojnacka K., Chojnacki A., Górecka H., Biosorption of Cr~(3+), Cd~(2+) and Cu~(2+) ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process [J], Chemosphere, 2005, 59(1), 75-84.
    [133] Nielsen H.D., Nielsen S.L., Adaptation to high light irradiances enhances the photosynthetic Cu~(2+) resistance in Cu~(2+) tolerant and non-tolerant populations of the brown macroalgae Fucus serratus [J], Marine Pollution Bulletin, 2010, 60(5), 710-717.
    [134]苏秀榕,费志清,裴鲁青,Cu、Zn和Cd对5种单细胞藻的酶基因表达调控的研究[J],海洋科学,2002,26(2),50-53.
    [135]苏秀榕,李太武,费志清,Cd~(2+)、Cu~(2+)和Zn~(2+)对5种单细胞藻酯酶基因表达调控的影响[J],应用与环境生物学报,2002,8(5),502-506.
    [136] Webster E.A., Murphy A.J., Chudck J.A., et al., Metabolism-independent binding of toxic metals by Ulva lactuca-cadiun bind to oxygen-containing group,as determined by NMR [J]. Biometals, 1997, 10, 105-117.
    [137] Xiao Z.J., Liu P.H., Qin J.Y., et al., Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate [J], Applied Microbiology Biotechnology, 2007, 74, 61-68.
    [138] Li X., Ouyang J., Xu Y., et al., Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology[J], Bioresource Technology, 2009, 100, 3613-3617.
    [139] Rajesh S., Rajender K., Kiran B., et al., Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology [J], Biochemical Engineering Journal, 2000, 48, 28-35.
    [140] AndréI.K., Cornell J.A., Response surfaces: designs and analyses. New York, Marcel Dekker Inc, 1996.
    [141] Avishek M., Goyal A., Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method [J], Bioresource Technology, 2008, 99, 3685-3691.
    [142] Wang Z.W., Liu X., Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology [J]. Bioresource Technology, 2008, 99, 8245-8251.
    [143] Haider M.A., Pakshirajan K., Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments [J], Applied Biochemical Biotechnology, 2007, 141, 377-390.
    [144] Muralidhar R.V., Chirumamila R.R., Marchant R., et al., A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]., Biochemical Engneering Journal, 2001, 9, 17-23.
    [145] Han J.H., Tang Y.P., Ni W., et al., A Review and Discussion of Treating Slighty Polluted Source Water with Environ-biological Techniques [J], Urban Environment & Urban Ecology, 2003, 16(6), 96-97.
    [146]刘霞,杜桂森,藻类植物与水体富营养化控制[J],首都师范大学学报(自然科学版),2002,23(4),56-63.
    [147]聂秋月,谢悦波,庄景等,高效微生物治理蓝藻实验[J],世界科技研究与发展,2008,30(4),430-432.
    [148]章宗涉,黄祥,淡水浮游生物研究方法[M].北京,科学出版社,1991, 347-348z .
    [149] Ling C.Q., Li B., Zhang C., Inhibitory effect of recombinant adenovirus carrying melittin gene on hepatocellular carcinoma [J], Annals of Oncology, 2005, 16 (1), 109-115.
    [150] Tsoularis A., Wallace J., Analysis of logistic growth models [J], Mathematical biosciences, 2002, 179(1), 21-55.
    [151]李勤生,黎尚豪.溶解固氮蓝藻的细菌[J].水生生物学集刊,1981,7(3),377-384.
    [152] Fraleigh P. C., Burnham J. C., Myxococcal predation on cyanobacterial populations: nutrient effects [J], Limnol Oceanogr, 1988, 33(3), 476-483.
    [153] Imamura N., Motoike I., Noda.N., et al., A novel anti-cyanobacterial compound produced by an algae-lysing bacterium [J], Journal of Antibiotics, 2000, 53(11), 1317-1319.
    [154] Imamura N., Motoike I., Shimada N., et al., An Efficient Screening Approach for Anti-Microcystis Compounds Based on Knowledge of Aquatic Microbial Ecosystem [J], Journal of Antibiotics, 2001, 54(6), 582-587.
    [155] Mitsutani A., Takesue K., Mkirita. Lysis of Skeletonema costatum by Cytophaga sp.,isolated from the coastal waterof the Ariake sea [J], Nippon Suisan Gakkaishi, 1992, 58(2), 2158-2167.
    [156] Imai I., Ishida Y., Hata Y., Kill of marine phytoplankton by a gliding bacterium Cytophaga sp. , isolated from the coastal sea of Japan [J], Marine Biology, 1993, 116(2), 527-532.
    [157] Imai I., Ishida Y., Sakaguchi K., Algicidal marine bacteria isolated from northern Hiroshima bya [J], Japanese Fishing Science, 1995, 61(1), 628-636.
    [158] Lee S., Kato J., Takiguchi N., Involvement of an extracellular protease in Algicidal activity of the marine bacterium Pseudoalteromonas sp. strainA28 [J], Applied and Environmental Microbiology, 2000, 66(1), 4334-4339.
    [159] Yamamoto Y., Suzuki K., Distribution and algal-lysing activity of fruiting myxobacteria in lake Suwa [J], Journal of Phycology, 1990, 26(3), 457-462.
    [160] Dakhama A., Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa [J], Journal Applied Phycology, 1993, 5(9), 297-306.
    [161] Paul S., Jinnque R., Haim B.G., Bacterial suppression of Chlorella by hydroxylamine production [J], Water Research, 1979, 13(1), 267-273.
    [162]苏立强,郑永杰,色谱分析法[M],北京,清华大学出版社,2009, 128-129.
    [163] Mori S., Barth H.G., Size exclusion chromatography [M], Newyork, Springer-Verlag Berlin Heidelberg,1999, 4-7.
    [164]邹汉法,张玉奎,卢佩章,高效液相色谱法[M],北京,科学出版社,1998, 6.
    [165] Namkung E., Rittman B.E., Effects of SMP on biofilm-reactor performance [J], Journal of Environmental Engineering, 1988, 114(1), 199-210.
    [166] Barker D.J., Stuckey D. C., A review of soluble microbial products (SMP) in wastewater treatment systems [J], Water Research, 1999, 33(14), 20.
    [167] Park N., Kwon B., Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters [J], Journal of Membrane Science, 2005, 258, 9.
    [168]尚丽平,杨仁杰,现场荧光光谱技术及其应用[M],北京,科学出版社,2009, 18.
    [169]许金钩,王尊本,荧光分析法[M],北京,科学出版社,2006, 154-155.
    [170] Carrington W.A., Lynch R.M., Moore E.D., et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure [J]. Science, 1995, 268(9), 1483-1487.
    [171] Tian G.J., Shi J.S., Oil Identification Based on Parameterization of Three-dimensional Fluorescence Spectrum[J], Chinese Journal of Scientific Instrument, 2005, S1-302.
    [172] Shang L.P., Shi J.S., Optical fiber sensor system for Oil contamination measurement based on 3-D fluorescence spectrum parameterization [J], Proceedings of SPIE, the International Society for Optical Engineering, 2000, 4221, 171-174.
    [173] Irina S., Antonio C., Lothar S., et al. Spatial Preservation of Nuclear Chromatin Architecture during Three-Dimensional Fluorescence in Situ Hybridization (3D-FISH) [J], Experimental Cell Research, 2002, 276(1), 10-23.
    [174] Chen W., Westerhoff P., Leenheer J. A., et al., Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J], Environmental Science and Technology, 2003, 37(24), 5701-5710.
    [175]盛龙生,苏焕华,郭丹滨等,色谱质谱联用技术[M],北京,化学工业出版社,2006, 1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700