碰撞射流通风方式在办公类建筑中应用的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从20世纪70年代能源危机以来,人们就在不断的寻求各种节能措施。对于暖通空调( Heating, Ventilating and Air Conditioning)系统来说,它的能耗占建筑总能耗的30%~40%,因此做好HVAC系统的节能工作是很关键的。那么,什么样的通风方式不仅节能而且能满足人们对室内空气品质和热舒适性的要求呢?为了解决这一矛盾,置换通风系统作为解决手段之一被越来越广泛的应用于公共建筑和民用建筑,因为它不仅能提供更好的空气品质,同时也是一种节能的通风方式。但是由于置换通风要求送风速度小,气流无法到达较远的地方,因此跨度比较大的一些建筑就不能采用置换通风系统,在这种情况下人们提出了碰撞射流通风方式,它具有可以应用在跨度比较大的建筑上的优点,因此碰撞射流通风方式现在已经广泛应用于欧洲一些国家的各类建筑。
     由于T.Karimipanah和H.B.Awb通过实验发现,采用碰撞射流通风时,喷口的安装高度在0.3m与1.5m之间,送风速度在1.4m/s与3.0m/s之间时,室内的气流组织比较好,因此,本文采用商业软件Airpak模拟办公室采用碰撞射流通风,喷口的安装高度为0.3m、0.9m和1.5m时,不同送风速度下室内速度场。通过模拟发现,喷口在不同的高度时,最佳的送风速度都为1.4m/s。通过模拟还发现,喷口的安装高度为0.3m,不仅能满足人们的舒适性要求,而且送风的卷吸作用对工作区的影响比较小。
     通过模拟在相同的情况下分别采用碰撞射流通风和置换通风的温度场、速度场、PMV和PPD,发现碰撞射流通风具有置换通风的一些优点,例如:室内气流组织比较好、工作区空气龄小、通风效率高、节能等。同时碰撞射流通风克服了置换通风冬天不能供热的缺点。
     因此,在进行碰撞射流通风系统设计时,在确定了喷口负责的区域后需要确定喷口最优的安装高度和出口风速,以便在保证工作区空气品质的前提下,尽量提高工作区舒适性指标。
Since the energy crisis in 70s of last century, people have been searching for a variety of measures to save energy. In HVAC, its energy consumption maybe is 30~40 percent of the total energy consumption, so it is critical to take proper actions in HVAC system. Which kind of ventilation system can save energy and satisfy people to the indoor air quality and hot comfort at the same time? To solve this problem, Displacement ventilation system as a method has been widely used in public buildings and office buildings because it not only can provide better indoor air quality, but also is a saving energy ventilation system. Because the velocity of displacement ventilation is small and the flow air can't arrive at the farther place, some buildings of bigger across degree can't adopt the displacement ventilation system. In that case, the impinging jet ventilation is put forward. Because the advantages of being adopted in the building of bigger across degree, the impinging jet ventilation has been widely used in kinds of buildings in European nation.
     Because T.Karimipanah and H.B.Awb find through the experiment , adopting the impinging jet ventilation , while the installation height of the spout is between 0.3m and 1.5m, the velocity is between 1.4m/s and 3.0m/s, the indoor air current is better , so this paper uses commercial CFD software Airpak to simulate the velocity field by the impinging jet ventilation under the conditions of different wind velocity sent by spray and the different height of spout in office building. According to the result, the best wind velocity under different height of spout is 1.4m/s. According to the result, when the spout is in the height of 0.3 meter, it can satisfy people’s comfort request and the smaller work area of people feeling uncomfortable.
     Temperature fields, velocity distribution ,PMV and PPD are respectively simulated by the two kinds ventilation under the other same circumstance. According to the result, we discover that the impinging ventilation has some advantages same with displacement ventilation. For example, the better type of flow air, higher ventilation efficiency, smaller air age in work area and saving energy. The impinging ventilation overcomes the displacement ventilation
引文
1 李强民. 置换通风的原理、设计及应用.暖通空调. 2000, 30(5): 41~46
    2 Etheridge D, Sandberg M. Building Ventilation: Theory and Measurement. UK: Wiley, 1996
    3 Karimipanah T, Sandberg M, Awbi HB. A Comparative Study of Different Air Distribution System in a Classroom. In: Awbi HB, Editor. Air Distribution Systems in Romms. Ventilation for Health and Sustainable Environment. Proceeding of the ROOMVENT 2000, Vol. 2.Oxford: Elsevier, 2000. 1013-8
    4 于松波. 置换通风与冷却吊顶相结合系统的 CFD 模拟研究. 天津大学硕士论文. 2002: 22~26
    5 Karimipanah T. Turbulent Jets in Confined Spaces. Ph. D. Thesis, Royal Institute of Technology, Sweden, 1996
    6 Martin Behne. Indoor Air Quality in Rooms with Cooled Ceilings: Mix Ventilation or rather Displacement Ventilation? Energy and Buildings. 1999,30(5): 155~166
    7 赵震. 置换空调室内空气品质的数值模拟研究. 西安交通大学硕士论文,2002
    8 Beltaos S, Rajaratnam N Plane Turbulent Impinging Jets Journal of Hydraulic Reaserch 1972; 11: 29-59
    9 Gutmak E, Wolfshtein N Plane Turbulent Impinging Jets. Jouranl of Fluid Mechanics 1978; 88(part 4): 737-756
    10 Rajaratnam N. Tutbuleng Jets. Amsterdam: Elsevier, 1976
    11 Berthilson L, Ohlsson PJ. Down-to-floor Impingping Jet supply device-air Exchange Efficiency. B. Sc. Thesis, University College of Galve, 1997
    12 Gan G, Awbi HB. Numerical Simulation of the Indoor Environment. Building and Environment 1994; 29(4): 449-459
    13 T.Karimipanah, HB. Awb. Theortical and Experimental Investigation of Impinging Jet Ventilation and Comparison with Wall Displacement Ventilation. Buiding and Environment. 2002, 37: 1329~1342
    14 周鹏, 李强民. 置换通风与冷却顶板. 暖通空调, 1998, 28(5):1~5
    15 孟广田, 李强民. 置换通风的热舒适分析与评价. 建筑热能通风空调, 2000,(1): 20~22
    16 马仁民. 置换通风的通风效率及其微热环境评价. 暖通空调, 1997, 27(4):1~6
    17 马仁民, 连之伟. 置换通风几个问题的讨论. 暖通空调, 2000, 30(4):18~22
    18 倪波. 置换通风的实验研究. 暖通空调, 2000, 30(5):2~4
    19 岑鸣, 倪波. 上海体育馆置换通风系统设计研究. 暖通空调, 2000, 30(5):5~8
    20 张帆. 置换通风家冷却顶板技术评述. 建筑热能通风空调, 1999, (4):31~34
    21 洪武开. 置换通风与低能耗健康建筑. 建筑热能通风空调, 2001, (6):52~54
    22 张俊梅, 沈国民, 谢军龙等. 应用 CFD 方法确定置换通风系统的设计参数. 建筑热能通风空调, 2001(2):17~19
    23 A.K. Melikov. Airflow Characteristics in the Occupied Zone of Rooms with Displacement Ventilation. ASHARE Trans. 1990, 95(6): 555~563
    24 Q. Chen. Indoor Airflow with Cooled Panel and Radiative Heat Source. ASHARE Trans. 1992, 86(5): 33~42
    25 Xiaoxiong Yuan, Qingyan Chen, Leon R. Glicksman. Measurements and Computations of Room Airflow with Displacement Ventilation. ASHRAE Trans. 1999, 105(1): 340~352
    26 谭洪卫. 剧场空间置换空调系统的应用研究之一: 地上侧送风方式. 暖通空调. 2003, 33(3): 21~24
    27 赵彬, 李先庭, 彦启森. 用零方程湍流模型模拟通风空调室内空气流动. 清华大学学报(自然科学版). 2001, 41(10): 109~113
    28 G F Tang, G Y Li, Z K Chen. A Characteristic of Airflow Around Buildings In Small Zone. Recent Advance In Wind Engineering, 1989(2)
    29 赵彬, 李先庭, 胡斌等. 计算流体力学在暖通空调中的应用. 制冷空调与电力机械. 2001,(4): 10~14
    30 郭蓉. 流线型送风口顶送洁净室气流组织的数值研究. 哈尔滨建筑大学硕士论文. 1997: 46~47
    31 Muller D, U. Renz. Measurements and Prediction of Room Airflow Patterns using Different Turbulence Models Proceeding of Room Vent. 1998, 105(3): 109~116
    32 Nieslen P. V. The Selection of Turbulence Models for Prediction of Room Airflow. ASHRAE Trans. 1998, 104(1): 1119~1127
    33 陈焕新. 空调列车室内空气品质与气流组织的研究. 华中科技大学博士学位论文. 2002: 50~51
    34 陶文铨. 数值传热学(第 2 版). 西安交通大学出版社. 2001: 333~352
    35 傅斌. 地下商业街室内 CO2 浓度的数值模拟与分析. 哈尔滨工业大学硕士论文, 2002
    36 章梓雄, 董曾南. 粘性流体力学. 清华大学出版社, 1998
    37 Qingyan Chen, Weiran Xu. A Zero-Equation Turbulence Model for Indoor Airflow Simulation. Energy and Buildings, 1998,(28): 137~144
    38 Weiran Xu, Qingyan Chen. A Two-layer Turbulence Model for Simulating Indoor Airflow Part 2: Applications. Energy and Buildings. 2001, 69(33): 627~639
    39 姚征,陈康明. CFD 通用软件综述. 上海理工大学学报. 2002, 24(2): 137~144
    40 Jelena Srebric, Qingyan Chen. An Example of Verifyication Validation and Reporting of Indoor Environment CFD Analyses. ASHARE Trans. 2002, 108(2): 185~194
    41 Qingyan Chen. Computational Fluid Dynamics for HAVC: Successes and Failures. ASHARE Trans. 1997, 103(1): 178~187
    42 J.T. Tuomaala, Carey J. Simonson, Kalevi. Validation of Coupled Airflow and Heat Transfer Routines in a Building Simulation Tool. ASHARE Trans. 2002, 108(1): 435~449
    43 王丽娜. 洁净手术室局部顶送单向流形式的数值模拟与改进探讨. 哈尔滨工业大学硕士论文. 2004: 22~23
    44 Airpak 英文帮助文件
    45 S. V. Patanker, D. B. Spalding, A Calculation Processure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. Int J Heat Mass Transfer, 1972,15:1787-1806
    46 王福军. 计算流体动力学分析.清华大学出版社. 2004: 74~83
    47 荣莉. 送风口和热源位置对置换通风系统影响的数值模拟研究. 哈尔滨工业大学硕士论文. 2003: 26~27
    48 [美] S. V. 帕坦卡著, 张震译. 传热与流体流动的数值计算.机械工业出版社
    49 陆亚俊, 马最良, 邹平华. 暖通空调. 中国建筑工业出版社. 2002: 244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700