玉米两个相关F_(2:3)群体秸秆产量和品质性状QTL分析及遗传相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米秸秆具有丰富的粗纤维,能值高,是我国北方反刍动物的主要粗饲料。我国每年生产玉米秸秆副产品1 500亿公斤,改良秸秆产量和品质对提高玉米生产的综合经济和社会效益,具有重要的现实和长远意义。高油玉米双重的优良籽粒和秸秆品质,使其具有更高的利用价值和更广阔的市场发展前景。以往利用普通玉米种质对部分秸秆产量和品质性状开展了QTL定位研究,利用高油玉米种质进行的相关研究局限于籽粒品质和穗粒性状。本研究选用具有ASK种质背景的高油玉米自交系GY220为父本,同时与两个普通玉米自交系8984和8622杂交构建了分别包含284个(P1F_(2:3))和265个(P2F_(2:3))F_(2:3)家系的两个相关群体,同时在两种环境条件下进行田间试验,利用SSR分子标记构建高密度遗传图谱,采用复合区间作图法(CIM)对13个秸秆产量和品质性状进行单个性状的QTL定位和效应分析;利用多区间作图法(MIM)分析定位QTL间的上位效应;对秸秆及其相关籽粒和植株性状进行多性状联合QTL分析;利用BioMercator 2.1软件整合遗传图谱,并采用元分析方法进行“一致性”QTL分析,以探讨秸秆产量和品质性状的分子遗传基础及其与籽粒产量、籽粒品质和植株性状间的遗传关系,同时筛选控制主要秸秆性状的稳定主效QTL及其有效的分子标记,为改良秸秆产量和品质性状的杂交种选育、MAS和关键QTL的精细定位及克隆提供理论依据和材料平台。
     主要实验和研究结论如下:
     1.两个F_(2:3)家系群体13个秸秆性状均存在超双亲分离;P1F_(2:3)群体3个性状和P2F_(2:3)群体6个性状呈偏态分布,其余性状均呈连续正态分布;联合方差分析结果表明,大多数秸秆性状的家系间、环境间及家系与环境互作显著或极显著;鲜秸秆产量(FSY)、秸秆粗蛋白含量(CPC)、体外干物质消化率(IVDMD)和中性洗涤纤维含量(NDF)的遗传力较高,为0.781~0.917,而半纤维素含量(HCC)和体外细胞壁消化率(IVNDFD)的遗传力较低,为0.046~0.427。
     2.两个F_(2:3)家系群体在两种环境条件下及两种环境合并分析共检测到144个与13个秸秆性状相关的QTL,P1F_(2:3)和P2F_(2:3)群体分别检测到70个和74个QTL,位于全部10条染色体上,单个QTL贡献率分别为4.8%~20.1%和5.1%~20.4%;定位QTL间互作较少,而且效应较小;表现为加性、部分显性、显性和超显性的QTL为10个、41个、20个和73个,超显性和部分显性效应在玉米秸秆性状的遗传中起着重要作用;高油玉米亲本自交系GY220提供了54.2% IVDMD和IVNDFD QTL的增效基因和64.0% ADF和NDF QTL的减效基因,两个普通玉米亲本自交系提供了77.8% FSY和57.1% DMY QTL的增效基因。
     3.秸秆产量和品质性状QTL的遗传背景和环境稳定性较低。两个群体没有在相同标记区间检测到控制同一性状的共同QTL,仅在相邻标记区间检测到与FSY、CPC(3个)和IVNDFD相关的QTL,分别位于3.06-3.07,2.04、7.04、7.04-7.05和4.08-4.09 bin位点,在相同bin位点9.03和5.03检测到控制粗脂肪含量(EEC)和粗蛋白产量(CPY)的QTL;86个QTL仅在一种环境条件下被检测到,占75.4%;26个QTL在两种环境条件下或一种环境条件下及合并分析同时被检测到,占22.8%;仅2个QTL在两种环境条件下及合并分析同时被检测到,占1.8%。在49个贡献率大于10%的QTL中,qlFSY1-5-1/qFSY1-5-1、qlDMC2-3-1/qDMC2-3-1、qlCPC1-7-1/qCPC1-7-2、qlCPC1-7-2/qCPC1-7-3、qlCPC2-5-1/ qxCPC2-5-1/qCPC2-5-1、qxCPC2-5-2/qCPC2-5-2和qlIVNDFD2-1-2/qxIVNDFD2-1-1/ qIVNDFD2-1-1具有环境稳定性,可以作为进一步研究和应用于MAS的主要目标QTL。
     4.两个群体在不同环境条件下3组秸秆产量性状间、13组秸秆品质性状间、6组秸秆产量与品质性状间,以及秸秆CPC与籽粒蛋白质含量、株高(PH)和穗位高(EH),FSY和秸秆干物质产量(DMY)与PH和EH呈比较一致的显著相关关系。其中ADF与NDF和IVDMD与IVNDFD呈极显著正相关,IVDMD和IVNDFD与ADF和NDF呈极显著负相关;FSY和秸秆干物质含量(DMC)与ADF和NDF呈极显著负相关。
     5.多性状联合QTL分析可以明显提高相关性状的QTL检测功效,对18组显著正相关性状和12组显著负相关性状进行联合QTL分析,涉及3个秸秆产量、7个秸秆品质、1个籽粒品质和3个植株性状共15个性状,共检测到1004个多性状QTL,其中新检测到674个QTL。位于多条染色体上控制相关性状的QTL存在紧密连锁或/一因多效。
     6.两个群体的整合遗传图谱总长度2 388.67 cM,包括274个SSR标记,平均间距8.72 cM。13个秸秆性状的144个QTL和32个秸秆、植株、籽粒品质和穗粒性状的465个QTL分别检测到13个和42个“一致性”QTL,控制相关性状的QTL在染色体上多成簇分布,植株与秸秆产量性状、秸秆品质与籽粒品质和穗粒性状QTL多位于同一“一致性”QTL区段。第7、3和5染色体是秸秆性状QTL分布热点染色体,第5染色体98.85 cM、第3染色体197.03 cM和第7染色体114.33 cM可能存在控制秸秆性状的关键真实QTL。
     7.秸秆CPC是最主要的秸秆品质性状,与多个主要秸秆产量和品质及籽粒品质和植株性状显著相关,其中与FSY、IVDMD、IVNDFDD和籽粒蛋白质含量呈显著正相关,与DMC、ADF、NDF、PH和EH呈显著负相关。多性状联合QTL分析结果表明,位于多条染色体上控制这些相关性状的QTL存在紧密连锁或/一因多效。综合考虑秸秆性状育种目标和各性状间的遗传关系,在显著提高秸秆产量的同时难以改良秸秆品质,可以对籽粒蛋白质含量或秸秆CPC实施正向MAS改善秸秆品质,通过种植大群体提高秸秆产量。
Maize stover with rich crude fiber and high energy, is the main coarse forage for ruminant animal in northern china. In china, 150 billion kilograms of maize stover was produced annually. Improving maize stover yield and quality traits has important role in increasing economic benefits and social effects in maize production. High-oil corn has high commercial value and broad developmental prospects owing to its advantages in both kernel nutritional quality and stover quality. Previous researches about QTL mapping for several stover yield and quality traits have been conducted with normal maize germplasms, but such researches using high-oil maize were only limited on grain quality and ear-kernel traits. In this study, an elite high-oil maize inbred line GY220 developed from ASK germplasms was crossed with two elite dent maize inbred lines 8984 and 8622 to generate two connected F2:3 populations (P1F2:3 and P2F2:3). High-density genetic maps were constructed using SSR markers. The field experiments were conducted under two different environments, at Luoyang in spring and at Xuchang in summer. QTL analyses for 13 stover yield and quality traits were conducted by composite interval mapping (CIM) method. The interactions between detected QTL were analysis by multiple interval mapping (MIM) method. Joint QTL analysis were done using CIM method of multiple traits analysis among stover traits, and stover traits with their significantly related grain quality traits, ear-kernel traits, and plant traits, respectively. An intergrated map was constructed and consensus QTLs were identified using meta-analysis method in Biomercator 2.1. Our first objective was to reveal the molecular genetic mechanism of stover yield and quality traits, and the genetic relationship among stover traits and between them with other traits. The second objective was to identify major QTL for stover traits and their effective linked markers. These results will do great help in breeding for stover yield and quality traits, and in MAS, fine mapping, and map-based cloning for major QTL. The main results were as follows:
     1. Transgressive segregation was observed for all 13 stover traits in the two F2:3 populations. Normal distribution was observed for most traits except for 3 traits in P1F2:3 population and 6 traits in P2F2:3 population. Joint analysis of variance showed that F2:3 family lines, environments and the interactions between genotype and environment for most traits were all significant or highly significant. Heritabilities for fresh stover yield (FSY), crude protein content (CPC), in vitro dry matter digestibility (IVDMD) and neutral detergent fiber (NDF) were relatively high, ranging from 0.781 to 0.917, while those for hemicellulose concentration (HCC) and in vitro cell wall digestibility (INNDFD) were low, from 0.046 to 0.427.
     2. Totally, one hundred and forty four QTL were detected for 13 stover traits in the two F_(2:3) populations under two environments and in combined analysis. 70 and 74 QTL were detected in P1F_(2:3) population and P2F_(2:3) populations, respectively. They were located on all ten chromosomes. Phenotypic variation explained by a single QTL varied from 4.8% to 20.1% in P1F_(2:3) population and from 5.1% to 20.4% in P2F_(2:3) population. Limited digenic interactions among detected QTL were found, and their effects were low. The number of QTL expressing additive, partially dominant, dominant and over-dominant effects were 10, 41, 20 and 73, respectively, which reflected that partially dominance and over dominance played the most part role in the genetics of stover traits. The positive alleles of 54.2% QTL for IVDMD and IVNDFD, and the negative alleles of 64.0% QTL for ADF and NDF were contributed by the high-oil parent line GY220, and the positive alleles of 77.8% QTL for FSY, and those of 57.1% QTL for NDF were contributed by the two dent corn parent lines.
     3. The stability in genetic backgrounds and environments for QTL of stover yield and quality traits were low. No common marker intervals associated with the same trait was found for the two populations. Only three QTL for CPC, and each one QTL for FSY and IVNDFD were detected in adjacent marker intervals, which were located at bin 2.04, 7.04, 7.04-7.05, 3.06-3.07 and 4.08-4.09, respectively. QTL for EEC and CPY were all detected at the same bin 9.03 and 5.03. Eighty-six QTL (accounting for 75.4%) were only detected under one environment. Twenty six QTL (accounting for 22.8%) were detected under both environments or under one environment and in combined analysis. Only 2 QTL (accounting for 1.8%) were commonly detected under two environments and in combined analysis. Among the 49 QTL with phenotypic variations higher than 10%, qlFSY1-5-1/qFSY1-5-1, qlDMC2-3-1/qDMC2-3-1, qlCPC1-7-1/qCPC1-7-2, qlCPC1-7-2/qCPC1-7-3, qlCPC2-5-1/qxCPC2-5-1/qCPC2-5-1, qxCPC2-5-2/qCPC2-5-2 and qlIVNDFD2-1-2/qxIVNDFD2-1-1/qIVNDFD2-1-1 showed high stability across different environments, and they could be used as the main objective QTL in further studies and in MAS.
     4. Significant correlations were almost consistently observed among three pairs of stover yield traits, thirteen pairs of stover quality traits, six pairs of stover yield with quality traits, between CPC with grain protein content, PH and EH, and between FSY and DMY with PH and EH in both populations and under different environments. Significant positive correlations were observed between ADF with NDF, and between IVDMD with IVNDFD. IVDMD, IVNDFD, FSY and DMC were all negatively correlated with ADF and NDF.
     5. Multiple trait joint analysis could improve QTL detection for significantly correlated traits. One thousand and four multiple-trait QTL were detected for 18 pairs of positively correlated traits and 12 pairs of negatively correlated traits, including three stover yield traits, seven stover quality traits, one grain quality traits and three plant traits. Six hundreds and seventy four new QTL were detected. Those QTL for correlated traits on several chromosomes might be QTL with pleiotropy or tight linked QTL.
     6. The linkage length of the integrated map for the two populations was 2 388.67 cM, which included 274 SSR markers, with an average interval of 8.72 cM between adjacent markers. Thirteen and 42“consensus”QTL were detected for 144 QTL associated with 13 stover traits, and 465 QTL associated with all 32 traits (including stover traits, grain quality traits, ear-kernel traits and plant traits), respectively. Most QTL for correlated traits were distributed on chromosomes in cluster. QTL for plant traits and stover yield traits, and for stover quality traits, grain quality traits and ear-kernel traits, were often located on chromosome regions for the same“consensus”QTL. QTL for stover traits were located on chromosomes 7, 3 and 5 in hotspot. True major QTL for stover traits might exist on three chromosome regions, 98.85 cM on chromosome 5, 197.03 cM on chromosome 3, and 114.33 cM on chromosome 7.
     7. CPC was the most important stover quality traits, since it was significantly correlated with several stover yield and quality traits, grain quality traits, and plant traits. CPC was positively correlated with FSY, IVDMD, IVNDFDD and grain protein content, and negatively correlated with DMC, ADF, NDF, PH and EH. Multiple trait joint QTL analysis among them reflected that their related QTL were pleiotropic or tight linked. Therefore, it was not easy to improve stover yield and quality traits simultaneously. Considering the breeding objective for stover yield and quality traits and their genetic correlations, it was very difficult to improve stove quality traits while increasing stove yield. It was possible to improve stover quality through conducting positive MAS on grain protein content or CPC, and to increase stover yield by planting large population.
引文
1.白琪林.青贮玉米秸秆品质性状遗传及其近红外测定方法的研究.中国农业大学博士学位论文,2005.
    2.陈亮,楼巧君,孙宗修,邢永忠,余新桥,罗利军.水稻低温发芽力的QTL定位.中国水稻科学,2006,20(2): 159-164.
    3.邓启云,袁隆平,梁凤山,李继明,李新奇,王岳光,王斌.野生稻高产基因及其分子标记辅助育种研究.杂交水稻,2004,19:6-10.
    4.丁效华.作物数量性状基因图位克隆研究进展.植物遗传资源学报,2005,6( 4):464-468.
    5.杜春芳,李朋波,李润植.植物数量性状变异的分子基础与QTL克隆研究进展.西北植物学报,2005,25(12):2575-2580.
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2001.
    7.冯放.现代近红外光谱分析技术及其应用.生命科学仪器,2007,5(10): 9-13.
    8.冯魏.面向21世纪发展我国玉米产业.中国农业科技导报,2001, 3 (4): 32-37.
    9.付家锋.玉米植株性状QTL的遗传背景和环境稳定性及其遗传相关研究.河南农业大学硕士学位论文,2008.
    10.高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究.浙江大学博士论文,2001.
    11.顾红雅,翟礼嘉,明小天.植物基因与分子操作.北京大学出版社,1995.
    12.何慈信,朱军,严菊强,Mebrouk B,吴平.水稻穗干物质重发育动态的QTL定位.中国农业科学,2000, 33 (1) : 24- 32.
    13.何小红,徐辰武,蒯建敏,顾世梁,李韬.数量性状基因作图精度的主要影响因子.作物学报,2001,27(4):469-475.
    14.扈光辉.饲用玉米的育种进展与趋势.玉米科学,2003,11(2):46-49.
    15.霍鲜鲜,侯先志,李翠英.瘤胃微生物对纤维物质的粘附作用.内蒙古畜牧科学,2001,22(3): 19-22.
    16.兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析.作物学报, 2005, 31(10): 1253-1259.
    17.兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析.作物学报,2005,31(10): 1253-1259.
    18.李维明,吴为人,卢浩然.1993.检测作物数量性状基因与遗传标记连锁关系的方差分析法及其应用.作物学报,1993,9(2): 97-102.
    19.李学慧.利用两个相关F2:3群体研究玉米穗粒性状QTL及粒重与籽粒品质性状遗传关系.河南农业大学硕士学位论文, 2008.
    20.李雪华,李新海,郝转芳,田清震,张世煌.干旱条件下玉米耐旱相关性状的OTL一致性图谱构建.中国农业科学,2005,38(5):882-890.
    21.李炎,张月学,徐香玲,蒿若超.近红外反射光谱(NIRS)分析技术及其在农业上的应用.黑龙江农业科学,2008,1:105-108.
    22.李应中.发展玉米生产是我国增加粮食产量的一个有效途径.中国科学院院刊,1996,217-219.
    23.李玉玲,董永彬,牛素贞.爆裂玉米3个膨爆特性的非条件和条件QTL分析.分子植物育种,2006,4(3): 372-380.
    24.李玉玲.爆裂玉米种质基础及其数量性状的分子遗传研究.河南农业大学博士论文.2005.
    25.林沝.实用付里叶变换红外光谱学.北京:中国环境科学出版社,1991.
    26.刘艳霞.Alho高油玉米自交系与不同来源普通玉米自交系的遗传关系研究.河南农业大学硕士学位论文, 2007.
    27.柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种,2003,1:48-52.
    28.陆婉珍,袁洪福,徐广通,等编著.现代近红外光谱分析技术.北京:中国石化出版社,2000.
    29.路明,周芳,谢传晓,李明顺,李新海,杨晓军,刘美洲,张世煌.玉米穗长上位效应和Q×E互作效应分析.作物杂志,2007,4:30-32.
    30.吕淑果.玉米饲用栽培的物质生产特性及营养品质研究.内蒙古农业大学硕士学位论文,2003.
    31.吕香玲,李新海,谢传晓,郝转芳,吉海莲,史利玉,张世煌.玉米抗甘蔗花叶病毒基因的比较定位.遗传,2008,30(1):101-108.
    32.莫惠栋.数量遗传学的新发展:数量性状基因图谱的构建和应用.中国农业科学,1996,29(2): 8-16.
    33.申建斌,蒋昌顺.作物QTL定位的应用及限制性因素.热带农业科学,2006,26(4):59-63.
    34.沈新莲,袁有禄,郭旺珍,朱协飞,张天真.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果.高技术通讯,2001,10:13-17.
    35.盛良学,贺喜全.我国优质饲用玉米育种研究进展.杂粮作物,2002,22(3):134-137.
    36.盛志廉,陈瑶生编著.数量遗传学.科学出版社,1999,340-347.
    37.宋秀芳.玉米籽粒油分含量基因的SSR分子标记、定位及相关分析.中国农业大学博士论文,2003.
    38.苏秀侠.发展粮饲兼用玉米前景广阔.全国玉米高产栽培技术研讨会,1997.
    39.孙德生,李文滨,张忠臣,陈庆山,杨庆凯.大豆株高QTL发育动态分析.作物学报,2006, 32 (4) : 509-514.
    40.佟屏亚.中国发展玉米综合利用的策略和前景.全国玉米高产栽培技术研讨会,1997.
    41.王延召.玉米籽粒品质性状QTL定位及其遗传相关研究.河南农业大学博士学位论文, 2007.
    42.吴建伟,刘成,石云素,宋燕春,张桂寅,马峙英,王天宇,黎裕.不同水分条件下玉米株高和穗位高的QTL分析.植物遗传资源学报,2005,6(3):266-271.
    43.吴军,白琪林,苏胜宝,陈绍江,孟庆翔,严衍禄.近红外反射光谱法分析玉米秸秆纤维素含量的研究. 2005,33(10):1421-1423.
    44.吴军.高油玉米秸秆品质与营养价值评价.中国农业大学硕士学位论文,2004.
    45.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12 (5) : 490-495.
    46.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399.
    47.吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析.作物学报,2000,26(4):501-507.
    48.向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展.中国农业大学学报,1999,4(增刊):1-7.
    49.肖文一.饲用植物栽培与利用北京:农业出版社.1989.
    50.邢永忠,徐才国,华金平,谈移芳,孙新立.水稻株高和抽穗期基因的定位和分离.植物学报,2001,43(7):721-726.
    51.徐云碧.分子数量遗传学.北京:中国农业大学出版社,1994.
    52.薛吉全,马国胜,路海东.重视饲用玉米发展促进农业结构调整.玉米科学,2004,12:122-124.
    53.严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析.科学通报,2003,48 (18) : 1959-1964.
    54.严衍禄,赵龙莲,李军会.现代近红外光谱分析的信息处理技术.光谱学与光谱分析,2000,6:777-780.
    55.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33 (4):523-530.
    56.杨益善,邓启云,陈立云,邓化冰,庄文,熊跃东.野生稻高产QTL的分子标记辅助育种进展.杂交水稻,2005,20(5):1-5.
    57.杨运清,李仁杰,李淑玲.动态性状遗传参数的估计方法.畜牧兽医学报,1996,27(5):412-416.
    58.于永涛,张吉民,石云素,宋燕春,王天宇,黎裕.利用不同群体对玉米株高和叶片夹角的QTL分析.玉米科学,2006,14(2):88-92.
    59.翟文学,李晓兵,田文忠,周永力,潘学彪,曹守云,赵显峰,赵彬,章琦,朱立煌.由农杆菌介导将白叶枯病抗性基因Xa21转入我国水稻品种.中国科学(C),2000,30(2):200-206.
    60.张晓国,刘玉乐,康良仪,朱英国,田波.水稻花药特异表达基因启动子的扩增及克隆,武汉大学学报,1997,43(4):480-484.
    61.章元明.作物QTL定位方法研究进展.科学通报,2006,51(19):2223-2231.
    62.郑景生,江良荣,曾建敏,林文雄,李义珍.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL.分子植物育种,2003,1(5):633-639.
    63.周晓果,张正斌.作物数量性状基因座定位及分析研究进展.西北植物学报,2005,25(3):625-630.
    64.朱丹,郑大浩,蒋基建,李艳茹.高油玉米主要性状的遗传相关性.延边大学农学学报,2000,2(22):96-101.
    65.朱军.复合数量性状基因定位的混合线性模型方法.王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集.北京:中国农业科技出版社1998.
    66. Agrama H A S, Zakaria A G, Said F B, Tuinstra M. Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol Breed, 1999, 5: 187-195.
    67. Alpert K B, Tanksley S D. High resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503-15507.
    68. Andersen J R, Zein I, Wenzel G, Darnhofer B, Eder J, Ouzunova M, Lübberstedt T. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biology, 2008, 8:2.
    69. Andersen J R, Zein I, Wenzel G, Krützfeldt B, Eder J, Ouzunova M, Lübberstedt T. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor Appl Genet, 2007, 114:307-319.
    70. Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 2004, 20: 2324-2326.
    71. Argillier O, Méchin V, Barrière Y. Inbred line evaluation and breeding for digestibility related traits in forage maize. Crop Sci, 2000, 40:1596-1600.
    72. Austin D F, Lee M, Veldboom L R, Hallauer A R. Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci, 2000,40:30-39.
    73. Austin D F, Lee M, Veldboom L R. Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet, 2001, 102: 163-176.
    74. Barrière Y, Emile J C, Traineau R, Surault F, Briand M, Gallais A. Genetic variation for organic matter and cell wall digestibility in silage maize. Lessons from a 34-year long experiment with sheep in digestibility crates. Maydica, 2004, 49:115-126.
    75. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet, 2006, 113:206-224.
    76. Bodmer W F. Human genetics: The molecular challenge. Old Spring Harbor Symp Quant BiolⅡ, 1986, 1-13.
    77. Brondani C, Rangel P, Brondani R, Ferreira M. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104: 1192-1203.
    78. Cardinal A J, Lee M. Genetic relationships between resistance to stalk-tunneling by the European corn borer and cell-wall components in maize population B73×B52. Theor Appl Genet, 2005, 111: 1-7.
    79. Cardinal A, Lee M, Moore K J. Genetic mapping and analysis of quantitative trait loci (QTL) a?ecting fiber and lignin content in maize. Theor Appl Genet, 2003, 106:866-874.
    80. Carels N, Barakat A, Bernardi G. The gene distribution of the maize genome. Proc Natl Acad Sci USA, 1995, 92:11057-11060.
    81. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169-2185.
    82. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantita-tive trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168:2169-2185.
    83. Chee P W, Elias E M, Anderson J A, Kianian S F. Evaluation of a High Grain Protein QTL from Triticum turgidum L. var. dicoccoides in an Adapted Durum Wheat Background. Crop Sci, 2001, 41: 295 - 301.
    84. Chuck G, RobbinsT, Nijjar C, Ralston E, Neal C G, Dooner H K. Tagging and cloning of a petunia flower color gene with the maize transposable element activator. Plant Cell, 1993,5:371-378.
    85. Clark D, Dudley J W, Rocheford T R, LeDeauxb J R. Genetic analysis of corn kernel Chemical composition in the random mated 10 generation of the cross of generations 70 of IHO×ILO. Crop Sci, 2006, 46:807-819.
    86. Delmer D P, Haigler C H. The regulation of metabolic ?ux to cellulose, a major sink for carbon in plants. Metab Eng, 2002, 4:22-28.
    87. Denum B. Genetic and environmental variation in quality of forage maize in Europe. Netherlands J. Agric. Sci., 1988, 36: 400-403.
    88. Dhillon B S, Paul C, Zimmer E, Gurrath P A, Klein D, Pollmer W G. Variation and covariation in stover digestibility traits in diallel crosses of maize. Crop Sci, 1990, 30:931-936.
    89. Doebley J, Bacigalupo A, Stec A. Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Heredity, 1994, 85:191-195.
    90. Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics, 1995, 141:333-346.
    91. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386:485-488.
    92. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura1 A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18:926-936.
    93. Dolstra O, Medema J H, de Jong A W. Genetic variation for digestibility of cell-wall constituents in the stalk traits in maize (Zea mays ).in Proc. 14th Congress of the Maize and Sorghum Section, Nitra. 1987, 9: 7-11.
    94. Dorweiler J, Stec A, Kermicle J, Doebley J. Tesominte glume architecture I. A genetic locus controlling a key step in maize evolution. Science, 1993, 262: 233-235.
    95. Dudley J W, Clark D, Rocheford T R, LeDeaux J R. Genetic analysis of corn kernel chemical composition in the random mated 7 generation of the cross of generations 70 of IHP×ILP. Crop Sci, 2007, 47:45-57.
    96. Dudley J W, Dijkhuizen A, Paul C, Coates S T, Rocheford T R. Effects of random mating on marker-QTL associations in the cross of the Illinois High Protein-Illinois Low Protein Maize strains. Crop Sci, 2004, 44:1419-1428.
    97. Dudley J W. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci., 1993, 33:660-668.
    98. Fedoroff N V, Furtek D B, Nelson O J. Cloning of bronze locus in maize by a simple and generalizable procedure using the transposable controlling element activator (AC). Proc Natl Acad Sci USA, 1984, 81:3825-3829.
    99. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E, Cong B, Liu J P, Mellor J, Elber R , Alpert K B, Tanksley S D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88.
    100. Fridman E, Pleban T, Zamir D. E. Fridman, T. Pleban and D. Zamir, A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA, 2000, 97 (9):4718-4723.
    101. Fulker D W, Cardon L R. A sib-pair approach to interval mapping of quantitative trait loci. Am J Hum Genet, 1994, 54: 1092-1103.
    102. Fullon T M, Grandillo S, Beck-Bunn T, Fridman E. Advanced backcross QTL analysis of a Lycopersicon esculentum×L. parviflorum cross. Theor Appl Genet, 2000, 100:1025-1042.
    103. Gao M, Chibbar RN. Isolation, characterization and expression analysis of starch synthase II a cDNA from wheat (Triticumaes tivum L.).Genome, 2000, 43:768-775.
    104. Geiger H H, Melchinger A E, Schmidt G A. Analysis of factorial crosses between flint and dent maize inbred for forage performance and quality traits. In: Dolstra O and Miedema P (ed.) Breeding of silage maize, Proceedings of the 13th Congress of Maize and Sorghum Section of Eucarpia, Wageningen, the Netherlands. 1986, 147-154.
    105. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4:1251-1261.
    106. Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463-473
    107. Goldman I L, Rocheford T R, Dudley J W. Molecular marker assooiated with maize kernel oil concentration in an Illinois high protein and Illinois low protein cross. Crop Sci, 1994, 34:908-915.
    108. Guillaumie S, Pichon M, Martinant J P, Bosio M, Goffner D, Barrière Y. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Planta, 2007, 226:235-250.
    109. Guillet-Claude C, Birolleau-Touchard C, Manicacci D, Rogowsky P M, Rigau J, Murigneux A, Martinant J P, Barrière Y. Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genetics, 2004, 5:19.
    110. Guo L B, Xing Y Z, Me H W, Xu C G, Shi C H, Wu P, Luo L J. Dissection of component QTL expression in yield formation in rice. Plant Breed, 2005, 124: 127-132.
    111. Hill W G. Selection with recurrent backcrossing to develop co-genic lines for quantitative trait loci analysis. Genetics, 1998, 148:1341-1352.
    112. Hospital F, and Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997, 147: 1469-1485.
    113. Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95:313-320.
    114. Huber S C, Huber J L. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Pyhsiol, 1992, 99:1275-1278.
    115. Jansen R C, Ooijen J W, Stam P, Lister C, Dean C. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91:33-37.
    116. Jansen R C, Stam P. High resolution of quantitative traits with multiple loci via interval mapping. Genetics, 1994, 136:1447-1455.
    117. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135:205- 211.
    118. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140:1111-1127.
    119. Jung H G, Mertens D R, Buxton. Forage quality variation among maize inbreds: in vitro fiber digestion kinetics and prediction with NIRs. Crop Sci, 1998, 38:205-210.
    120. Kao C H, Zeng Z B, Robert D T. Mutiple interval mapping for quantitative trait loci. Genetics, 1999, 152, 1203-1216.
    121. Keightley P D, Blfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res, 1993, 62:195-203.
    122. Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor Appl Genet, 1990, 79:583-592.
    123. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition. Plant Cell Physiol, 2002, 43:1096-1105.
    124. Korol A B, Ronin Y I, Itskovich A M, Peng J, Nevo E. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 2001, 157:1789-1803.
    125. Korol A B, Ronin Y I, Kirzhner V M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics, 1995, 140:1137-1147.
    126. Kraakman A T W, Niks R E, Van den Berg P M M M, Stam P, Eeuwijk F A V. Linkagedisequilibrium mapping of yield and yield stability in modern spring barley cultivars.Genetics, 2004, 168: 435-446.
    127. Krakowsky M D, Lee M, Beeghly H H, Coors J G. Characterization of quantitative trait loci affecting fibre and lignin in maize (Zea mays L.) Maydica, 2003, 48:283-292.
    128. Krakowsky M D, Lee M, Coors J G. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) I: stalk tissue. Theor Appl Genet, 2005, 111:337-346.
    129. Krakowsky M D, Lee M, Coors J G. Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea mays L.) II: stalk tissue. Theor Appl Genet, 2006, 112:717-726.
    130. Krakowsky M D, Lee M, Holland J B. Genotypic correlation and multivariate QTL analyses for cell wall components and resistance to stalk tunneling by the European Corn Borer in Maize. Crop Sci, 2007, 47: 483-488.
    131. Kruglyak L, Lander E S. Complete multi-point sib pair analysis of qualitative and quantitative traits. Am J Hum Genet, 1995, 57:439-459.
    132. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199.
    133. Laurie C C, Chasalow S D, LeDeaux J R, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford T R, Dudley J W. The genetic architecture of oil concentration in the maizekernel after 70 generations of divergent selection. Genetics, 2004, 168:2141-2155.
    134. Lee, M. DNA markers in plant breeding programs. Adv Agron, 1995, 55:265-344.
    135. Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja Alleles. Crop Sci., 2008; 48: 571 - 581.
    136. Li Y L, Niu S Z, Dong Y B, Cui D Q, Wang Y Z, Liu Y Y, Wei M G. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn. Theor Appl Genet, 2007, 115:129-140.
    137. Li Z K, Luo L J, Mei H W, Shu Q Y, Wang D L, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158:1737-1753.
    138. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled haploid population. Theor Appl Genet, 1996, 93:1211-1217.
    139. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled haploid population. Theor Appl Genet, 1996, 93:1211-1217.
    140. Lübberstedt T, Melchinger A E, F?hr S, Klein D, Dally A, Westhoff P. QTL mapping in testcrosses of ?int lines of maize: III. Comparison across populations for forage traits. Crop Sci, 1998, 37:1278-1289.
    141. Lübberstedt T, Melchinger A E, Klein D, Degenhardt H, Paul C. QTL mapping in testcrosses of European ?int lines of maize: II. Comparison of di?erent testers for forage yield traits. Crop Sci, 1997b, 37:1913-1922.
    142. Lübberstedt T, Melchinger A E, Sch?n C C, Utz H F, Klein D. QTL mapping in testcrosses of European ?int lines of maize: I. Comparison of di?erent testers for forage yield traits. Crop Sci, 1997a, 37:921-931.
    143. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.II.Grain yield components.Genetics, 2001, 158:1755-1771.
    144. Luo Z W, Wu Ch, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcrossor intercross schemes. Genetics, 2002, 161(2): 915-929.
    145. Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20:41-51.
    146. Mcmullen M D, Snook M, Lee E A, Byrne P F, Kross H, Musket T A, Houchins K, Coe E H. The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyanthocyanin synthesis in maize.Genome, 2001, 44:667-676.
    147. Méchin V, Argillier O, Hebert Y, Guingo E, Moreau L, Charcosset A, Barrière Y. Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci, 2001, 41:690-697.
    148. Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Apple Genet, 2003, 107:89-101.
    149. Melchinger A E, Utz H F, Schon C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149:383-403.
    150. Melchinger A E. Advances in the analysis of data on quantitative trait loci. In: Internationalcrop science II. Oxford IBH Publishing Co, New Delhi, 1997, 773-791.
    151. Mihaljevic R, Utz H F, Melchinger A E. Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci, 2004, 44:114-124.
    152. Miller R L, Dudley L W, Alexander D E. High intensity selection for percent oil in corn. Crop Sci., 1981, 21(3): 433-437.
    153. Misevic D, Alexander D E, Dumanovic J, Kerecki B, Ratkovic S. Grain moisture loss rate of high-oil and standard-oil maize hybrid. Agron J, 1988, 80 (5):841-845.
    154. Moreno-Gonzalez J. Efficiency on generations for estimating marker-associated QTL effects by multiple regression. Genetics, 1993, 135: 223-231.
    155. Moreno-Gonzalez J. Genetics models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor. Appl. Genet., 1992, 85:435-444.
    156. Morrow S L, Mascia K A, Altschuler M. Molecular characterization of a brown midrib3 deletion mutation in maize. Mol Breed, 1997, 3:351-357.
    157. Paterson A H, Domon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127:181-197.
    158. Paterson A H, Lanter E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative trait loci into Mendelian factors by using a linkage map of RFLP. Nature, 1988, 335:721-726.
    159. Piepho H P. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics, 2001, 157:425-432.
    160. Preiss J. Regulation of the biosynthesis and degradation of starch. Annu Rev Plant Physiol, 1982, 33:431-454.
    161. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L Y, Han B, Wang G L. The broad-spectrum blast resistance gene pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914
    162. Ralph J, Guillaumie S, Grabber J H, Lapierre C, Barriere Y. Genetic and molecular basis of grass cell-wall biosynthesis and degradability. III. Towards a forage grass ideotype. Cmpetes Rendus Biologies, 2004, 327:467-479.
    163. Reba? A, Blanchard P, Perret D, Vincourt P. Mapping quantitative trait loci controlling silking date in a diallel cross among four lines of maize. Theor Appl Genet, 1997, 95:451-459.
    164. Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134: 1277-1288.
    165. Salvi S, Tuberosa R, Phillips, R L. Development of PCR-based assays for allelic discrimination in maize, by using the 5 -nuclease procedure. Mol Breed, 2001, 8:169-176.
    166. Sax K. the association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8:552-560.
    167. Sch?n C C, Melchinger A E, Boppenmaier J, Brunklaus-Jung E, Herrmann R G, Seitzer J F. RFLP mapping in maize: quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci, 1994, 34: 378-389.
    168. Sehon C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70:648-659.
    169. Simpson S P. Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet, 1989, 77: 815-819.
    170. Soller M, Beckmann J S. 1990. Marker-based mapping of quantitative trait loci using replicated progenies. Theor Appl Genet, 1990, 67: 25-33.
    171. Soller M, Brody T, Genizi A. In the power of experimental designs for detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, 47:35-39.
    172. Stuber C W, Edwards M D, Wendel J. F1 Molecular marker facilitated investigations of quantitative trait loci in maize.Ⅱ. Factors influencing yield and its component traits. Crop Sci, 1987, 27:639-648.
    173. Stuber C W, Sisco P H. Marker-facilitated transfer of QTL alleles between elite inbred lines and responses in hybrids.Proc 46th Annual Corn and Sorghum Industry Research Conf. American Seed Trade Assoc, 1991, 46:104-113.
    174. Stuber C W, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics, 1992, 132:823-839.
    175. Stuber C W. Mapping and maniqulating quantitative traits in maize. Trends Genet, 1995, 11: 477-481.
    176. Tanabe Sumiyo, Ashikari Motoyuki, Fujioka Shozo et al. A Novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
    177. Tang J H, Ma X Q, Teng W T, Yan J B, Wu W R, Dai J R, Li J S. Detection of quantitativetrait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chinese Sci Bull, 2006, 51: 2864-2869.
    178. Tang J H, Teng W T, Yan J B, Ma X Q, Meng Y J, Dai J R, Li J S. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155:117-124.
    179. Tanksley S D, Medina Hilho H, Rick C M. Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity, 1982, 49:11-25.
    180. Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 37:205-233.
    181. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28:286-289.
    182. van Ooijen JW. Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet, 1992, 84:803-811.
    183. Veldboom L R, Lee M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome, 1996, 39: 957-968.
    184. Vignols F, Rigau J, Torres M A , Capellades M, Puygdomenech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid o-methyltransferase. Plant Cell, 1995, 7:407-416.
    185. Visscher P M, Thompson R, Haley C S. Confidence intervals in QTL mapping by bootstrapping. Genetics, 1996, 143:1013-1020.
    186. Vladutu C, McLaughlin J, Phillips R L. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999, 153:993-1007.
    187. Wang C M, Yasui H, Yoshimura A, Zhai H Q, Wan J M. Inheritance and QTL mapping of antibiosis to green leafhopper in rice. Crop Sci., 2004: 44: 389 - 393.
    188. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed liner model approaches. Theor Appl Genet, 1999, 99:1255-1264.
    189. Wang X, Le Roy L, Nicodeme E, Li R, Wagner R, Petros C, Churchill G A, Harris S, Darvasi A, Kirilovsky J, Roubertoux P L, Paigen B. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res, 2003, 13(7): 1654-1664.
    190. Wassom J, Wong J, Martinez E, King J, Debaene J, Hotchkiss J, Mikkilenini V andRocheford T. QTL associated with maize kernel composition and related traits among Illinois High Oil×B73 backcross-derived lines. Theor Appl Genet, 2004
    191. Weller, J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, (42):627-640.
    192. Whittaker J C, Thompson R, Visscher P M. On the mapping of QTL by regression of phenotype on marker-type. Heredity, 1996, 77: 23-32.
    193. Wolf D P, Coors J G, Albrecht K A, Undersander D J, Carter P R. Forage quality of maize genotypes selected for extreme fiber. Crop Sci., 1993, 33: 1353-1359.
    194. Wu J X, Jenkins J N, McCarty Jr J C. Zhu J. Genetic association of yield with its component traits in a recombinant inbred line population of cotton. Euphytica, 2004, 140: 171-179.
    195. Wu W R, Li W M, Tang D Z, Lu H R.Worhand A J. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999, 151:297-303.
    196. Yamamoto T, Kuboki Y, Lin S Y. Fine mapping and characterization of quantitative trait loci of heading date in rice. 1996,Abstract for Plant Genome, IV: 57
    197. Yan J B, Tang H, Huang Y Q, Shi Y G, Zheng Y L, Li J S. QTL analysis for plant height with molecular markers in maize. Agr Sci in China, 2003, 2: 1069-1075.
    198. Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Comparative analyses of QTL for important agronomic traits between maize and rice. Acta Genet Sin, 2004, 31(12): 1401-1407
    199. Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121-131.
    200. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Tomoya Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photope riod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene constans. Plant Cell, 2000, 12:2473-2484.
    201. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997, 35: 145-153.
    202. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94:9226-9231.
    203. Zehr B E, Dudley J W, Chojecki J, Saghai-Maroof M A, Mowers R P. Use of RFLP markers to search for alleles in a maize population for improvement of an elite hybrid. Theor Appl Genet, 1992, 83:903-911.
    204. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468.
    205. Zeng Z B. QTL mapping and the genetic basis of adaptation: recent developments. Genetica, 2005, 123:25-37.
    206. Zhang J, Lu X Q, Song X F, Yan J B, Song T M, Dai J R, Rocheford T, Li J S. Mapping quantitative trait loci for oil, starch, and protein contents in grain with high-oil maize by SSR markers, Euphytica, 2007, 162:335-344.
    207. Zhang J, Lu X Q, Song X F, Yan J B, Song T M, Dai J R, Rocheford T, Li J S. Mapping quantitative trait loci for oil, starch, and protein contents in grain with high-oil maize by SSR markers, Euphytica, 2007, 162:335-344.
    208. Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113:33-38.
    209. Zhu J, Weir B S. Mixed model approaches for the genetics of quantitative traits. In:Chen LS, Ruan SG, Zhu J(eds) Advanced topics in biomathematics:Proc Int Conf on Mathematical Biology, World Scientific Publishing Co, Singapore, 1998:321-330.
    210. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639.
    211. Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani, Huang N, Zheng K L. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700