中国玉米地方品种的多样性研究与种族划分
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是我国重要的粮、经、饲兼用作物之一,在我国农业生产中占有重要地位。自传入我国后,经过近500年的种植与栽培,在对我国复杂多样的生态环境的适应过程中,形成了大量的地方品种,并在这些品种中积累了广泛的遗传变异。作为一种重要的基础资源,地方品种为我国早期的玉米生产作出了重要贡献,并对后续的品种选育与改良具有重要的意义。因此,对这部分资源进行全面、精细的评价则是高效管理与深入利用这些资源的基础与关键。从20世纪50年代至90年代末,我国共收集与保存玉米品种16779份,其中包括地方品种13521份。尽管我国玉米品种资源的收集工作开展较早,并取得了显著成效,但对这些资源的全面评价与相关研究则严重滞后,尤其是地方品种资源。并且有关我国玉米品种的种族划分的正式研究,至今仍未开展。
     基于品种的地理来源与表型多样性评价数据,中国农业科学院构建了我国玉米地方品种的核心种质。本研究以这些核心种质为材料,对我国玉米地方品种进行了系统的多样性研究与种族划分,目的在于:1)全面分析我国玉米地方品种的表型多样性,并比较来自不同生态区的地方品种在表型多样性上的差异;2)评价我国玉米地方品种在DNA水平上的遗传多样性,并分析这些品种的遗传多样性在不同生态区之间的分布;3)了解我国玉米地方品种的群体结构以及各亚群的遗传多样性水平;4)明确我国玉米地方品种的种族结构;5)构建我国玉米地方品种的微核心种质,为我国玉米地方品种资源的有效管理、深入利用以及后续的相关研究建立一个高效的可行性平台。
     本研究广泛选取了30个表型性状以及覆盖玉米全基因组的55个SSR标记展开了我国玉米地方品种的全面分析,主要研究结论如下:
     1.基于27个数量性状与3个质量性状的Shannon-Weaver多样性指数分析结果显示,我国玉米地方品种存在较高水平的表型多样性。其中,表型多样性最高的是百粒重与株高,其Shannon-Weaver多样性指数依次为2.10与2.09,而多样性水平最低的是轴色与抽雄-散粉间隔期,其Shannon-Weaver多样性指数仅0.64与0.84。来自9个生态区的品种存在较大表型多样性差异,其中,西南区玉米地方品种的表型多样性水平最高,而西北区与高原区则相对较低。表型多样性的分析结果表明,西南生态区玉米种质资源的表型变异明显高于另8个区,具有较高的保护价值和利用潜力。
     2.利用覆盖玉米全基因组的55个SSR标记,采用TP-M13-SSR检测技术研究了846份玉米核心地方品种的遗传多样性,并比较了不同类型的SSR标记在揭示研究材料遗传多样性上的差异。结果显示我国玉米核心地方品种的平均遗传多样性为0.65,总等位变异805个,平均14.64个/位点,特异等位变异114个,平均2.07个/位点,稀有等位变异597个,平均10.85个/位点。来自9个生态区的品种的遗传多样性水平比较一致,但在等位变异上存在明显差异,其中等位变异数、特异等位变异数与稀有等位变异数最高的均是西南区,依次为621个、40个和433个,明显高于另8个生态区,说明该区的玉米地方品种存在最丰富的等位变异。
     在55个SSRs中,重复序列为2bp的SSRs在等位变异的检测效率上明显高于重复序列>2bp的SSRs(P=0.0144),在遗传多样性的检测效率上也明显高于后者(P<<0.001)。基因内SSRs在等位变异的检测效率上与基因间SSRs差异不显著(P=0.3563),但在遗传多样性的检测效率上则显著高于后者(P=0.0125)
     3.基于模型(Model-based)的群体结构分析将我国玉米核心地方品种划分为5个亚群,其中来自3个玉米主产区西南区、黄淮海区与北方区的品种依次构成了亚群2、亚群3与亚群4,而来自南方区的品种则构成了其余的2个亚群,其中来自广东、海南以及部分来自江西品种构成了亚群5,而来自该区其它省市的品种则构成了亚群1846份核心地方品种的群体结构分析结果显示了我国玉米地方品种在群体结构上存在极明显的地理来源特征。
     4.基于30个表型性状的主成分分析所确定的12个主要候选性状,开展了我国玉米地方品种的种族划分研究。结果将我国760份核心玉米地方品种划分为9个种族,综合各种族所包含品种的地理来源以及在4个花期相关性状与主茎叶片数所构建的综合生育期上的具体表现,将这9个种族依次定名为西南马齿种族、西南糯玉米种族、北方硬粒种族、西南白色硬粒种族、黄色硬粒种族、西南黄色硬粒种族、衍生种族、北方马齿种族与爆裂种族。
     5.以最多等位变异捕获量为选择依据,基于核心种质构建了我国玉米地方品种的微核心种质。285份微核心种质中有233份分别来自我国的29个省、市与地区,有52份则引自美洲、欧洲与其它国家,具有广泛的地理来源。基于55个覆盖玉米全基因组的SSR标记的遗传多样性分析显示,285份微核心种质在等位变异与稀有等位变异上分别捕获了核心种质的91.05%与83.32%,且与核心种质差异不显著(P值分别为0.4119和0.2126),其遗传多样性则为0.65,与核心种质的差异也不显著(P=0.6019)。此外基于55个SSRs的聚类结果显示285份微核心种质中来自北方区、黄淮海区、西南区以及南方区的品种均被划分为2个不同的亚组,表明这些微核心种质之间存在较大的遗传差异。
     品种的地理来源以及遗传多样性分析结果均表明,本研究所构建的微核心种质具有广泛的地缘差异与遗传差异,可代表我国玉米地方品种的核心种质,全面应用于玉米的品种选育、改良以及优异等位基因资源的发掘等后续的相关研究。
Maize is one of the most important cereals and forage crops in China,and plays a key role in Chinese agriculture.During the long term adaptation to the complicated eco-environments in the nearly 500 years since its first importing into China,a vast number of landraces have formed,in which abundant genetic diversity has accumulated.Being important basic germplasm resources,these landraces have heavily improved the development of maize production in the early stage in China,and will still be of great importance to the current and future improvement of maize cultivars.So it is of full necessary to carry out a systematic and fine evaluation on the phenotypie and DNA level before the thorough use of these landraees germpalsm.On the other hand,from 1950s to the end of 1990s,a total of 16779 accessions of maize was gathered and preserved in China National Genebank(CNG),including 13521 landraces accessions.Though great accomplishments have gained in the maize germplasm collection,systematic evaluation and related analysis of these germplasm, especially of the maize landraees,are extremely feeble.What's more,there are still no normal reports on the racial classification of maize landraees preserved in CNG.
     Based on the geographical distribution and phenotypie analysis of all the landrace accessions conserved in CNG,a core collection of all the maize landrace accessions was established.We fingerprinted the core aeeessions with 30 phenotypic traits and 55 simple sequenee repeat(SSR)markers,and the goals were to:(1)study the phenotypic diversity of Chinese maize landraces thoroughly,and compare the differences of phenotypic diversity among 9 maize regions;(2)evaluate the genetic diversity of maize landraces preserved in CNG on DNA level,and analyze the distribution of genetic diversity among different maize regions;(3)reveal the population structure of Chinese maize landraces and the genetic diversity of each subpopulations;(4)examine the races of maize germplasm in China;and(5)establish a mini core set of the core collections,so as to construct a feasible and easily attainable platform of maize landraces for the efficient management,thoroughly utility and succeeding related researches.
     A total of 760 landrace accessions were used for the phenotypic analysis and racial classification while 846 landrace accessions were used for the evaluation of genetic diversity.The main results were as follows:
     1.Based on the analysis of 27 quantitative traits and 3 qualitative traits,the whole set of 760 core maize landrace accessions preserved in CNG showed a relatively high level of phenotypic diversity.Among all of the 30 traits,100-kernel weight and plant height represented the highest level of phenotypic diversity,with the value of Shannon-Weaver diversity indices of 2.10 and 2.09 separately,while the traits of cob color and tassel-pollenshedding interval showed the lowest phenotypic diversity,with Shannon-Weaver diversity indices only of 0.64 and 0.84 respectively.At the same time, there existed distinct discrepancy among the accessions from 9 maize regions in China, among which Southwest Region possessed the highest phenotypic diversity,while Northwest Region and Plateau Region possessed the lowest.The results of phenotypic diversity analysis suggested that maize landraces from Southwest Region contained broader phenotypic variation,existing relatively high protection value and utility potential.
     2.Fingerprinted with a set of 55 TP-M13-SSRs(simple sequence repeat with tailed primer M13)covered the entire maize genome,all of 846 maize core landrace accessions existed a high level of genetic/gene diversity.Totally,we observed 805 alleles,114 specific alleles and 597 rare alleles across 55 SSRs,with an average of 14.64,2.07 and 10.85 alleles per locus respectively,and the total genetic diversity was 0.65,conforming the broad genetic base of maize landraces in China.Comparisons among landraces with different geographical origins showed slightly difference of genetic diversity among the accessions from 9 maize regions,while distinct discrepancy existed in total alleles,specific alleles,and rare alleles among these regions,and Southwest Region held higher number of these three types of allelcs than the other 8 regions,implied the most abundant genetic diversity.
     Among the whole set of 55 simple scqucnce repeats,dinuclcotide SSRs could capture more alleles and genetic diversity than other repeat SSRs(P=0.0144 and p<<0.001 respectively),while gene-based SSRs could capture higher genetic diversity than genomic SSRs(P=0.0125),but almost the same alleles as the latter(P=0.3563).
     3.Model-based population structure analysis showed that 846 core accessions could be grouped into 5 subpopulations,which were Group1,Group2,Group3,Group4,and Groups in turn.Among these 5 subpopulations,Group2,Group3,and Group4 were formed by the accessions from Southwest Region,Huang Huaihai Region,and North Region respectively,and Groups was formed by the accessions from provinces of Guangdong and Hainan and part of Jiangxi province in South Region,while Groupl was formed by the accessions form the other provinces and regions in South Region. The result of population structure of 846 landrace accessions showed a strong geographical trend.
     4.Principle component analysis(PCoA)of 30 phenotypic traits determined 12 candidates for the racial classification of all the 760 landrace accessions,and the results of PCoA indicated that the maize landraces preserved in CNG included 9 races. Based on the geographical origin and performance of each race on the integrated trait of maturity constructed by four flowering related traits and leaves per plant,these 9 races were named by southwestern dents,waxy race,northern flints,southwestern white flints,yellow flints,southwestern yellow flints,derived race,northern dents,and popcom race.
     5.To efficiently assist in the use of maize landrace germplasm,we define mini core set of these accessions that capture the maximum number of SSR alleles using the Line Selection function in PowerMarker V3.25.A mini core set contained 285 accessions was established,of which 233 mini corc accessions were from 29 provinces,cities,or regions throughout China,and the other 52 mini core acccssions wcrc imported from America,Europe,and other countries and regions around the world,which indicated a roughly broad geographical distribution of all the 285 mini core accessions.
     All of these 285 mini core accessions were fingerprinted with the same set of 55 SSR markers that covered the entire maize genome,the results showed that the mini core set captured 91.05%alleles and 83.32%rare alleles of the original core accessions,and there existed no significant diffcrcnccs between the mini core set and the core set on both of alleles and rare alleles(P=0.4119 and 0.2126 respectively),as well as genetic diversity(P=0.6019).Phylogenetic analysis of all the 285 mini core accessions based on 55 SSRs indicated that the accessions from North Region,Huang Huaihai Region, Southwest Region,and South Regin could be separated into two different subclusters, which implied a rather broad genetic variation among these mini core accessions. The geographical distribution and genetic diversity of the whole set of 285 mini core accessions confirmed that the mini core set established in this research existed an extensive wide geographical origin,and a broad genetic variation,which suggested that this mini core set well represented the core accessions.All the results confirmed that in stead of the maize landrace accessions conserved in core set and CNG full scaly, the mini core set could be thoroughly used in the improvement of maize breeding in China,as well as mining of the favorable alleles contained in these germplasm and other related succeeding researches on maize landraces
引文
[1].柏光晓,聂琼,任洪,沈建华,华筑珠,梁镇林.玉米地方品种赖氨酸含量与主要性状的相关分析.山地农业生物学报.2004,23(3):189-192
    [2].曹广才,黄长玲.特用玉米品种、种植、利用.北京:中国农业科技山版社,200l:30-40
    [3].曹镇北,徐文伟.有关玉米族(race)的几个问题.中国种业,1990,4:7-9,22
    [4].崔俊明.新编玉米育种学.北京:中国农业科学技术出版社.2007:8
    [5].董玉琛.我国种质资源的研究现状与展望.中国农业科技导报,1999,2:36-40
    [6].杜金友,黎裕,王天宇,石云素,宋燕春,王海波.SSR和AFLP分析玉米遗传多样性的研究.华北农学报,2003,18(1):59-63
    [7].顾万春.统计遗传学.北京:科学出版社.2004,7:165-198
    [8].韩茂利.近五百年玉米在中国境内的传播.中国文化研究,2007:44-56
    [9].黄荣华.湖北省玉米品种的特性评价.作物种质资源.1991,4:17-18
    [10].黎裕,王天宇,石云素,宋燕春.基因组学方法在玉米种质资源研究中的应用.植物遗传资源学报,2003,4(3):256-260
    [11].黎裕,王天宇,田松杰,石云素,宋燕春.利用分子标记分析遗传多样性时的玉米群体取样策略研究.植物遗传资源学报,2003,4:314-317
    [12].李凤艳,张兴华,韦继兴.爆裂玉米地方品种资源的筛选与评价.中国种业.2002,7:25-26
    [13].李凤艳,张兴华,张仁和.玉米优异地方种质资源的筛选与评价.植物遗传资源学报.2003,4(3):225-227
    [14].李会勇,王天宇,黎裕,石云素,宋燕春,陆平.TP-M13自动荧光检测法在高粱SSR基因型鉴定中的应用.植物遗传资源学报,2005,6(1):68-70
    [15].李丽华,魏昕,番光堂.西南玉米自交系SSR遗传多样性研究.四川农业大学学报,2007,25(1)44-50
    [16].李新海,袁力行,李晓辉,张世煌.李明顺,李文华.利用SSR标记划分我国玉米自交系的咋中优势群.中国农业科学,2003,36(6):622-627
    [17].刘纪麟,郑用琏,张祖新,卢洪,李建生,徐尚忠.三峡地区玉米地方品种杂种优势群的初探.作物杂志(增刊),1998:6-12
    [18].刘杰,刘公社,朱至清,陈刚.SSR标记用于玉米自交系遗传变异与杂种优势群划分的研究.西北植物学报,2002,22(4):741-750
    [19].刘雪.利用SSR标记分析我国44个玉米地方品种的遗传多样性[硕士学位论文].北京:中国农业科学院,2005
    [20].刘志斋,郭荣华,石云素,蔡一林,曹墨菊,宋燕春,王天宇,黎裕.我国玉米地方品种核心种质花期相关性状的表型多样性研究.中国农业科学,2008,6
    [21].刘志斋,王天宇,黎裕.TP-M13-SSR技术及其在玉米遗传多样性研究中的应用.玉米科学,2007,15(6):10-15,31
    [22].卢洪,郑用链,李建生,刘纪麟.27个玉米地方品种的配合力和杂种优势群的研究.华中农业大学报.1994,13(6):545-562
    [23].奇向辉,史进文,贾志斌.DNA分子标记简介.河北林业科技,2003,1:46-48
    [24].荣廷昭,李晚忱,杨克诚,张彪,张述宽,唐洪军,番兴明.西南生态区玉米育种.北京:中国农业出版社,2003:38-68
    [25].沈同,王镜岩.生物化学.第二版.北京:高等教育出版社,1990,319-320
    [26].石云素,黎裕,王天宇,宋燕春.玉米种质资源描述规范和数据标准.北京:中国农业出版社.2006,3:14
    [27].佟屏亚.20世纪中国玉米品种改良的历程和成就.中国科技史料,2001,22(2):113-127
    [28].佟屏亚.中国玉米种植区划.北京:中国农业科学技术出版社.1992:6-24
    [29].万国鼎.中国古今粮食作物的变化及其影响.见:王思明.万国鼎文集.北京:中国农业科学技术出版社,2005
    [30].王荣焕.玉米核心自交系的基因组LD结构及耐旱相关表型的关联分析[博士学位论].北京:中国农业科学院,2007
    [31].王义发,沈雪芳,张壁,郑洪建,侯根宝,颜韶兵,吴三妹.糯玉米种质资源的评价和创新育种.上海农业科学,2003,19(3):16-19
    [32].吴高龄,徐尚忠.湖北省玉米地方品种的因子分析.遗传.1997,19(3):26-29
    [33].吴永升,李明顺,李新海,黄开健,Warburton M,刘雪,陈卫国,张世煌.广西地方玉米种质和加拿大群体的遗传多样性分析.中国农业科学,2008,41(3):890-900
    [34].吴渝生,郑用琏,孙荣,伍少云.顾红波,毕有华.基于SSR标记的云南糯玉米、爆裂玉米地方种质遗传多样性研究.作物学报,2004,30(1):36-42
    [35].向安强.中国玉米的早期栽培与引种.自然科学史研究,1995,14(3):239-248
    [36].肖木辑,李明顺,孙有位,李新海,张世煌.辽宁省主要玉米自交系的SSR遗传多样性分析.玉米科学,2006,14(1):33-36
    [37].徐尚忠,吴高龄.湖北省玉米地方品种的进化研究.作物杂志(增刊).1998:37-44
    [38].徐尚忠.玉米的起源与进化.见:刘纪麟.玉米种学(第二版).北京:中国农业出版社,2002:1-27
    [39].徐文伟,曹镇北.我国玉米地方品种剑叶长度的初步观察.中国种业,1986,3:14-15
    [40].徐文伟,曹镇北.我国玉米地方品种剑叶长度的初步观察.中国种业.1986,3:14-15
    [41].晏庆九,霍仕平,张健,许明陆,张兴端.三峡库区玉米地方品种产量性状的遗传潜势分析.杂粮作物,2001,21(5):1-3
    [42].姚启伦,戴玄,李昌满,方平,冉景盛.三峡库区玉米地方品种特异性状的筛选及其研究.西北农林科技大学学报,2004,32(5):49-52,56
    [43].于永涛.玉米核心自交系群体结构及耐早相关候选基因rab17的等位基因多样性分析[博士学位论].北京:中国农业科学院,2006
    [44].曾学礼,张祖新.对湖北省20个玉米地方品种的数量性状分析与聚类分析.湖北农业科学.2001,5:35-38
    [45].张建华,杨晓洪,张金渝,米艳华,华秋瑾.云南糯玉米地方品种的籽粒淀粉的研究.西南农业学报.2006.9:543-547
    [46].张兰荣,李卫东,金明华.吉林省玉米地方品种的化学成分的研究.吉林农业科学.1989,4:54-56
    [47].张尧庭,方开泰.多元统计分析引论.北京:科学出版社.1983:325
    [48].张祖新,郑用琏,李建生,刘纪麟.三峡地区10个玉米地方品种的遗传潜势.华中农业大学学报,1994,13(5):449-454
    [49].张祖新,郑用琏,李建生,刘纪麟.玉米品种同工酶的遗传多样性及其与数量性状的关系.湖北农学院学报,1996,16(1):1-8
    (50].中国农业科学院品种资源研究所,山东省农业科学院玉米研究所.中国玉米品种志.北京:农业出版社,1988:1-5
    [51].中国农业科学院品种资源研究所.玉米优异种质资源——研究利用指南(1991-1995).北京:中国农业出版社,1996:1-9
    [52].中国农业科学院作物品种资源研究所,山东省农业科学院玉米研究所.中国玉米品种志.北京:农业出版社,1988:1-5
    [53].周洪生.玉米种子大全.北京:中国农业出版社,2000:1-24
    [54].Anderson E,Cutler HC.Races of Zea mays.I.Their recognition and classification.Annuals of the Missouri Botanical Garden.1942,29:69-88
    [55].Beadle GW.Studies of Euchlaena and its hybrids with Zea.1.Chromosome behavior in Euchlaena mexicana and its hybrids with Zea mays.Z.Abstam.Veerbungsl.,1932,62:291-304
    [56].Beadle GW.The ancestry of com.Scien Amer.1980,242:112-119
    [57].Bertan FJ,Ribaut JM,Bek D,Gonzalez de Leon D.Genetic diversity,specific combining ability,and heterosiss in tropical maize under stress and nonstress environments.Crop Science.2003,43:797-806
    [58].Bigouroux Y,Mithell S,Matsuoka Y,Hamblin M,Kresovich S,Smith JSC,Jaqueth J,Smith OS,Doelbey JS.An analysis of genetic diversity across the maize genome using microsatellites.Gentics.2005,169:1617-1630
    [59].Botstein D,White RL Skolnick M,Davis RW.Construction of a genetic linkage map in man using testriction fragment length polymorphisms.American Journal of Human Genetics.1980,32:314-331
    [60].Briggs WH,McMullen MD,Gaut BS,Doebley J.Linkage mapping of domestication loci in a large maize-teosinte backcross resource.Genetics.2007,177:1915-1928
    [61].Brown AHD,Grace JP,Speer SS.Designation of a "core" collection of perennial Glycine.Soybean Genetic Newsletter.1987,14:59-70
    [62].Brown AHD.Core collections:a practical approach to genetic resources managenment.Genome.1989,31:818-824
    [63].Byene,Y,Botha AM,Myburg AA.Phenotypic diversity for morphological traits in traditional Ethiopian highland maize accessions.South African Journal of Plant and Soil.2005,22(2):100-105
    [64].Carvalho VP,Russ CF,Ferrira JM,Moreira RMP,Russ PM.Genetic diversity among maize (Zea mays L.)landraces assessed by RAPD markers.Genet Mol Biol.2004,27(2):228-236
    [65].Carvalho VP,Russ PM,Russ CF,Ferreira JM,Moreira RMP.Assessment of genetic diversity in maize(Zea mays L.)landraces using inter simple sequence repeat(ISSR)markers.Crop Breeding and Applied Biotechnology.2002,2:557-568
    [66].Collins GN,Kempton JH.A teosinte-maize hybrid.J.Agric.Res.1920,19:1-38
    [67].Crossa J,Taba S,Eberhart SA,Bretting P,Vencovsky R.Practical considerations for maintaining germplssm in maize.Theor Appl Oenet.1994,89:89-95
    [68].Dhillon BS,Vssal SK,Prssanna BM.Maize.In:Chopra V.L.and Prakssh S.(ed).Evolution and adaptation of cereal crops.New Hampshire,USA:Science Publishers,2002,97-133
    [69].Dixon DP,Lapthom A,Edwards R.Plant glutathione transfersses.Genome Biology.2002,3(3):1-10
    [70].Doebley J,Stec A.Genetic analysis of the morphological differences between maize and teosinte.Genetics.1991,129:285-295
    [71].Doebley J,Stec A.Inheritance of the morphological differences between maize and teosinte:comparison of results for two F2 populations.Genetics.1993,134:559-570
    [72].Doebley J.Molecular systematics of Zea(Gramineae).1990,Maydica,35:143-150
    [73].Doebley J.The genetics of maize evolution.Annu.Rev.Genet..2004,38:37-59
    [74].Doebley JF,Gaut BA,Smith BD.The molecular genetics of crop evolution.Cell.2006,127(7):1309-1321
    [75].Doebley JF,Goodman MM,Stuber CW.Isozyme variation in the races of maize from Mexio.Amer.J.Bot..1985,72(5):629-639
    [76].Doebley JF,Stec A,Hubbard L.The evolution of apical dominance in maize.Nature.1997,386(6624):485-488
    [77].Dong J,Wagner DB.Taxonomic and population differentiation of mitochonch-ial diversity in Pinus banksiana and Pinus contorta.Theor Appl Genet.1993,86:573-578
    [78].Enoki H,Sate H,Koinuma K.SSR analysis of genetic diversity among maize inbred lines asapted to cold regions of Japan.Theor Appl Genet.2002,104:1270-1277
    [79].Frankel OH,Brown AHD,Burden JJ.The conservation of plant biodiversity.Cambridge University Press,Cambridge,1995
    [80].Frankel OH,Brown AHD.Current plant genetic resources,In:Genetics:New Frontiers,vol.Ⅳ.Oxford and IBH Publ.Co.,new Delhi,India.1984,pp 1-11
    [81].Frankel OH,Brown AHD.Current plant genetic resources:a critical appraisal.In:Genetics:New Frontiers,vol.Ⅳ.1984,Oxford and IBH Publ.Co.,New Delhi,India:1-11
    [82].Frankel OH.Genetic perspectives of germplasm conservation.In:Genetic Manipulation:Impact on Man and Society.Cambridge University Press,Cambridgy.1984,pp 161-170
    [83].Fukunaga K,Hill J,Vigouroux Y,Matsuoka Y,Sanehez GJ,Liu K,Buckler ES,Doebley J.Genetic diversity and population structure of teosinte.Genetics.2005,169:2241-2254
    [84].Galinat WC.The origin of corn.In:Sprague GF(ed).Corn and corn improvement.Wisconsin USA:Agronomical Society of America,1988,1-31
    [85].GeneMarker software version 1.6,SoflGenetics LLC,State College PA USA
    [86].Gethi JG,Labate JA,Lamlcey KR,Smith ME,Kresovich S.SSR variation in important U.S.maize inbred lines.Crop Science.2002,42:951-957
    [87].Gimenes MA,Lopes CR.Isoenzymetic variation in the germplasm of Brazilian races.Genetics and Molecular Biology.2000,23(2):375-380
    [88].Goodman M.M.Maize.In.Smart J and Simmonds N.W.(ed).Evolution of crop plants.2nd edn.New York:Longman Scientific and Technical Press,1995,192-202
    [89].Goodman MM,Pateriani E.The races of maize.Ⅲ.Choices of appreciate characters for racial calssification.Economic Botany.1969,23:265-273
    [90].Goodman MM,The races of maize:2.Use of multicariate analysis of variance to measure morphological similarity.Crop Science.1968,8:693-698
    [91].Grant UJ,Hatheway H,Timothy DH,Cassalett DC,Roberts LM.Races of maize in Venezuela.Nat.Aead.Sci.-Nat.Res.Council Publication.1136.Washington D.C..1963:92
    [92].Hague DR,Sims TL.Evidence for light-stimulated synthesis of phosphoenolpyruvate carboxylase in leaves of maize.Plant Phisiology.1980,66:505-509
    [93].Holbrook CC,Anderson WF,Pittman RN.Selection of a core collection from the U.S.germplasm collection of peanut.Crop Science.1993,33:859-861
    [94].http://www.genecool.com/bbs/thread-7559-1-1.html
    [95].Iltis HH,Doebley JF.Taxonomy of Zea(Gramineae)Ⅱ.Subspecifie categories in the Zea mays complex and a generic synopsis.Am.J.Bot.1980,67:994-1004
    [96].Jones ES,Sullivan H,Bhattramakki D,Smith JSC.A comparison of simple sequence repeat and single nucleotide polymorphism maker technologies for the genotypic analysis of maize (Zea mays L.).Thero Appl Genet.2007,115:361-371
    [97].Kxishnamurthy KV.Textbook of biodiversity.张正旺主译.北京:化学工业出版社,2006:12
    [98].Labate JA,Lamkey KR,Mitchell SE,Kresovich S,Sullivan H,Smith JSC.Molecular and historical aspects of corn belt dent diversity.Corp Science.2003,43:80-91
    [99].Li Y,Shi Y S,Cao Y S,Wang T Y.Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data.Genetic Resources and Crop Evolution.2004,51:845-852
    [100].Li Y,Shi YS,Cao YS,Wang TY.A phenotypic diversity analysis of maize germplasm preserved in China.Maydica.2002,47:107-114
    [101].Li Y,Shi YS,Cao YS,Wang TY.Establishment of a core collection for maize germplasm preserved in Chiese National Genebank using geographic distribution and characterization data.Genet Resour Crop Evol.2004,51:845-852
    [102].Li Y,Wu SZ,Cao YS,Zhang XZ.A phenotypic diversity analysis of foxtail millet(Setarta italica(L.)P.Beauv.)landraces of Chinese origin.Genet Resour Crop Evol.1996,43:377-384
    [103].Liu K,Goodman M,Muse S,Smith JS,Buckler E,Doebley J.Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites.Genetics.2003,165:2117-2128
    [104].Liu Z,Furnier GR.Comparison of allozyme,RFLP and RAPD markersfor revealing genetic variation within and between trembling aspen and bigtooth aspen.Theor Appl Genet.1993,87:97-105
    [105].Lu H,Bernardo R.Molecular marker diversity among current and historical maize inbreds.Theoer Appl Genet.2001,103:613-617
    [106].Lu H,Li JS,Liu JL,Bernardo R.Allozyme polymorphisms of maize populations from southwestern China.Theoretical and Applied Genetics.2002,104:119-126
    [107].Lubberstedt TL,Melchinger AE,Duble C,Vuylsteke M,Kniper M.Relationships among early European maize inbreds:Ⅳ.genetic diversity revealed with AFLP markers and camparison with RFLP,RAPD,and pedigree data.2000,40:783-791
    [108].Mangelsdoff PC.Corn:its origin,evolution,and improvement.Harvard University Press,1974:101
    [109].Mangelsdorf PC.Corn:its origin,evolution,and improvement.Harvard University Press,1974:11-14
    [110].Moeller DA,Schaal BA.Genetic relationships among native American maize accessions of the Great Plains assessed by RAPDs.Theor Appl Genet.1999,99:1061-1067
    [111].Moons A.Osgstu3 and Osgstu4,encoding tan class glutathione S-transferases,are heavy metal-and hypoxic stress-induced and differentially salt stress-responsive in rice roots.FEBS Letters.2003,553(3):427-432
    [112].Oetting WS,Lee HK,Flanders DJ,Wiesner GL,Sellers TA,King RA.Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers.Genomics.1995,30(3):450-8
    [113].Oritz R,Ruiz-Tapia EN,Mujica-Sanchez A.Sampling strategy for a core collection of Peruvian quinoa germplasm.Theor Appl Genet.1998,96:475-483
    [114].Pfluger LA,Schlatter AR.Isozyme variation in some races of maize from Argentina.Genet Resour Crop Evol.1996A3:357-362
    [115].Poole RW.1974.An introduction to quantitative ecology.New York,McGraw-Hill
    [116].Pressoir G,Berthaud J.Population structure and strong divergent selection shape phenotypic diversification in maize landraces.Heredity.2004,92:95-101
    [117].Pilchard JK,Stephens M,Donnelly P.Inference of population structure using multilocus genotype data.Genetics.2000a,155:945-959
    [118].Pdchare JK,Stephens M,Rosenberg NA,Donnelly P.Association mapping in structured populations.American Journal of Human Genetics.2000b,67:170-181
    [119].Rebourg C,Chastanet M,Gouesnard B,Welcker C,Dubreuil P,Charcosset A.Maize introduction into Europe:the history reviewed in the light of molecular data.Theor Appl Genet.2003,106:895-903
    [120].Rebourg C,Gouesnard B,Charcosset A.Large scale molecular analysis of traditional European maize populations.Relationships with morphological variation.Heredity.2001,86:574-587
    [121].Reif JC,Hamrit S,Heckenberger M,Schipprack W,Maurer HP,Bohn M,Melchinger AE.Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks.Theor Appl Genet.2005,111:906-913
    [122].Reif JC,Warburton ML,Xia XC,Hoisington DA,Crossa J,Taba S,Muminovie J,Bohn M,Frish M,Melchinger AE.Grouping of accessions of Mexican races of maize revisited with SSR markers.Thero Appl Genet.2006,113:177-185
    [123].Reif JC,Xia XC,Melchinger AE,Warburton ML,Hoisington DA,Beck D,Bohn M,Frisch M.Genetic diversity within and among CIMMYT maize populations of tropical,subtropical,and temperate germplasm by SSR markers.Crop Science.2004,44:326-334
    [124].Reig JC,Warburton ML,Xia XC,Hoisington DA,Crossa J,Taba S,Muminovic J,Bohn M,Frish M,Melchinger AE.Grouping of accessions of Mexican races of maize revisited with SSR markers.Theor Appl Genet.2006,113:177-185
    [125].Rohlf FJ.NTSYS-pc:numerical taxonomy and multivariate analysis system.2000,Exeter software,New York,USA
    [126].Ruiz de Galarreta JI,Alvarez A.Morphological classification of maize landraces from northern Spain.Genetic Resources and Crop Evolution.2001,48:391-400
    [127].Saghai-Maroof MA,SOliman KM,Jorgenson R,Allward RW(1984)Ribosomal DNA spacer length polymorphisms in barley:Mendelian inheritance,chromosomal location and population dynamics.Proc Natl Acad Sci USA 81:8014-8018
    [128].Sanchez GJJ,Goodman MM,Rawiings JO.Approciate characters for racial classification in maize.Economic Botany.1993,47:44-59
    [129].SAS,Version 9.SAS Institute Inc,2002.Cary,North Carolina,USA
    [130].Schuelke M..An economic method for the fluorescent labeling of PCR fragments.Nature Biotechnology.2000,18:233-234
    [131].Scott MP,Williams SM.Measuring reproductive success in insects.In:Scherwater B,Streit B,Wagner GP,DeSalle R.(Eds).Molecular ecology and evolution:Appraoches and applications.Birtchauser Verlad,Basel,1994
    [132].Senior ML,Murphy JP,Goodman MM,Stuber CW.Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system.Crop Science.1998,38:1088-1098
    [133].Smart J and Simmonds N.W.(ed).Evolution of crop plants.2nd edn.New York:Longman Scientific and Technical Press,1995,192-202
    [134].Strauss SH,Hong YP,Hopkins VD.High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiate,muriacata and attenuate.Theor Appl Genet.1993,86:605-611
    [135].Szabo VM,Burr B.Simple inheritance of key traits distinguishing maize and teosinte.Mol Gen Genet.1996,252:33-41
    [136].Taba S,Diaz J,Granco J,Crossa J.Evaluation of Caribbean maize accessions to develop a core subset.Crop Soi.1998,38:1378-1386
    [137].Taba S,Pineda F,Crossa J.Forming core subsets from the Tuxpeno race complex.Abstracts of the First International Crop Congress.Brasilia,Brazil.1992,84
    [138].Tarter JA,Goodman MM,Holland JB.Recovery of exotic alleles in semiexotic maize inbreds derived from crosses between Latin American accessions and a temperate line.Theor Appl Genet.2004,109:609-617
    [139].Vigouroux Y,Jaqueth JS,,Matsuoka Y,Smith OS,Beaviset WD,Stephen J,Smith C,Doebley J.Rate and pattern of mutation at mierosatellite loci in maize.Mol Biol Evol.2002,19:1251-1260
    [140].Vigouroux Y,Mitchell S,Matsuoka Y,Hamblin M,Kresovich S,Smith JSC,Jaqueth J,Smith OS,Doebley J.An analysis of genteic diversity across the maize genome using microsatellites.Genetics.2005,169:1617-1630
    [141].Wang T Y,Li Y,Shi Y S,Lu P,Song Y C,Yuan X M.Phenotypic diversity,utilization and strategies of genetic enhancement of maize landraces collected in China.21世纪玉米遗传育种展望—玉米遗传育种国际学术讨论会文集,2000:99-104
    [142].Warburton ML,Xia XC,Crossa J,France J,Melchinger AE,FrischM,Bohn M,Hoisington D.Genetic characterization of CIMMYT inbred lines and open pollinated populations using large scale fingerprinting methods.Crop Science.2002,42:1832-1840
    [143].Wellhausen,EJ,Roberts LM,Hernandex XE.Races of maize in Mexico.The Bussey Institution,Harvard University,Canbridge,Mass.1952:223
    [144].Westneat DF,Wester MS.Molecualr analysis of kinship in birds:interesting questions and useful techniques.In:Scherwater B,Streit B,Wagner GP,DeSalle R.(Eds).Molecular ecology and evolution:Appraoches and applications.Birkhauser Verlad,Basel,1994
    [145].Xia XC,Reif JC,Hoisington DA,Melchinger AE,Frisch M,Warburton ML.Genetic dviersity among CIMMYT miaze inbred lines invetigated with SSR markers:I.Lowland tropical maize.Crop Science.2004,44:2230-2237
    [146].Xia XC,Reif JC,Melchinger AE,Fisch M,Hoisington DA,Beck D,Pixley K,Warburton ML.Genetic diversity among CIMMYT maize inbred lines investigated with SSR makers:Ⅱ.Subtropical,tropical midaltitude,and highland maize inbred lines and their relationships with elite U.S.and Europe amize.Crop Science.2005,45:2573-2582
    [147].Yamasaki M,Tenaillon MI,Bi Ⅳ,Schroeder SG,Sanchez-Villeda H,Doebley JF,Gaut BS,McMullen MD.A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.Plant Cell.2005,17:2859-2872
    [148].Yao Q,Yang K,Pan G,Rong T.Genetic diversity of maize(Zea mays L.)landraces from southwest China based on SSR data.Journal of Genetics and Genomics.2007,34(9):851-860
    [149].Yu Y,Wang R,Shi Y,Song Y,Wang T,Li Y.Genetic diversity and structure of the core collection for maize inbred lines in China.Maydica.2007,52:181-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700