一种新的风浪谱模型及其在高度计风速反演中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风浪谱模型被广泛应用于海洋研究的诸多领域,例如海-气相互作用、上层海洋动力学、海浪预报、海洋微波遥感和海洋工程等。在风浪出现的一个很宽的频率范围,风浪谱可被分为大尺度的长波风浪谱(重力波)以及小尺度的短波谱(毛细重力波谱)。在高度计、微波散射计和微波辐射计的遥感机理研究中,全波数范围内的风浪谱模型扮演了不可缺少的角色。本文给出了一种新的全波数范围内的风浪谱模型,并将其应用到高度计风速反演中去,取得了较好的效果。
     Liu等(2003)提出的深水风浪谱模型包括“风速”、“逆波龄”和“逆谱宽度”三个参数。依据该模型以及海上和实验实观测数据,本文作者发现了海上和实验室条件下,风速、逆波龄(反映波浪成长状态)和逆谱宽度三参数之间分别存在着统计关系。三参数统计关系式表明,影响风浪能量分布的“逆谱宽度”不是一个独立参数,它是由风速和逆波龄这两个最基本参数确定的。这样,三参数统计关系式连同Liu等(2003)的公式构成了一个新的风浪谱模型。在这个新模型中,逆波龄和风速两个基本参数确定了风浪谱的总能量水平、风浪谱的最大能量位置(表现为谱峰位置)和风浪能量分布的宽窄特征(表现为峰右侧高频波段谱的陡度)。
     本文研究同时表明,依据实验室水槽数据获得的三参数统计关系式不同于依据海上现场观测数据获得的三参数统计关系式,在相同的风速和波龄条件下,实验室风浪谱的陡度不同于海上风浪谱的陡度,这也是海上风浪谱与实验室风浪谱的根本区别。
     比较证实,由于考虑了波龄因子的影响,Liu等(2003)提出的风浪谱模型连同三参数统计关系式组成的新模型能够很好地符合不同成长状态下的海上观测数据和实验室水槽测量数据。根据新的风浪谱模型计算得到的谱宽度与乌克兰国家科学院获得的测量数据非常符合。此外,新的风浪谱模型能够很好地模拟美国海军实验室使用微波雷达获得的波面高度谱现场测量数据和其它现场测量数据。新的风浪谱模型不但有益于全面理解风速和逆波龄对风浪能量分布的影响,而且对于海洋微波遥感研究特别是判断海洋环境要素反演的不确定性具有重要意义。
     依据粗糙海面电磁波镜面散射理论,将根据全波数范围内的谱模型计算的标准化雷达后向散射截面与TOPEX/Poseidon(T/P)高度计测得的雷达后向散射截面(Ku波段)进行比较,可以反演高度计风速。将反演获得的高度计风速与同步的浮标风速进行比较发现,在所选浮标附近海域,波龄因子对高度计风速反演存在较大影响。与目前T/P高度计风速反演业务化算法相比,考虑波龄因子影响后,根据谱模型反演获得的风速与浮标风速之间均方根误差和平均偏差更小。与20个浮标测量结果相比,根据新风浪谱模型反演获得的风速与浮标风速之间的均方根误差较目前高度计业务化算法减小了11%,偏差减小了21%。
     以墨西哥湾同步高度计、浮标资料为例,定量研究了海浪成长状态对高度计风速反演的影响。同步的高度计风速和浮标风速比较显示,在墨西哥湾地区,海浪成长状态对高度计风速反演有较大影响。在考虑海浪成长状态影响的条件下,利用谱模型反演高度计风速,取得了较好的效果。由于波龄因子可以根据高度计测得有效波高以及业务化算法获得的风速得到,因此根据新风浪谱模型反演获得的风速具有广泛的适用性。
The wind wave spectrum models are widely used in various fields of ocean investigations, for example, ocean-atmosphere interaction, upper layer ocean dynamics, wave forcasting, ocean remote sensing and ocean engineering. Within the full wavenumber range, the wind wave spectrum can be divided into long wave spectrum (gravity spectrum) and short wave spectrum (gravity-capillary spectrum). They in particular play an important role in the study of the remote sensing theory concerning microwave scatterometers, radiometers and altimeters. In this thesis, a new wind wave spectrum model for full wavenumber range is proposed. Based on the new model, more accurate altimeter wind speeds are obtained.
     The spectrum model of the wind waves for deep water proposed by Liu et al. (2003) contains three parameters: the wind speed, the inverse wave age and the inverse spectral width. Based on the deep water wave model proposed by Liu et al. (2003), statistical relationships among the wind speed, inverse wave age and inverse spectral width are derived for field data and laboratory data, respectively. With the statistical relationships and equations given by Liu et al. (2003), a new wind wave spectrum model for deep water is proposed in this study. In the new model, the total spectral energy level, the location of the maximum spectral energy (represented by location of spectral peak), and the width character of energy distribution (represented by the spectral steepness) at high frequencies located to the right of spectral peak of wind waves are all determined by the two basic parameters, i.e., the wind speed and the inverse wave age.
     The statistical relationships also show that with the same wind speed and wave age, the steepness of the wind wave spectrum at high frequencies located to the right of the spectral peak for field case is different from that for laboratory case. This is the main difference between field wind wave spectrum and laboratory spectrum.
     With the inverse spectral width, the new model is more appropriate to describe the real wind wave status. Compared with measurements in the Black Sea, the model calculated zeroth spectral moment m0 and the spectral width are in both good agreements with measured data. Furthermore, the new model can match elevation spectrum data obtained by four-frequency microwave radar and other field measurements fairly well. The new model can not only better describe and explain the influence of the wind speed and wave age on the energy distribution of developing wind waves generated in open ocean, but also it plays a significant role in the study of oceanic microwave remote sensing, especially for understanding the uncertainty of retrieved ocean environment variables.
     Based on the specular reflection theory of electromagnetic waves at rough sea surface and the spectral model of wind waves with a wave age factor, the sea surface wind speeds are retrieved from the normalized radar backscatter cross section measured by TOPEX/Poseidon Ku-band altimeter using the mean square slope calculated from the spectral models of the wind waves and the gravity-capillary waves. The study shows the wave age factor has a significant influence on retrieving altimeter wind speeds. Compared with the empirical algorithm in operational use for altimeter winds retrieval, after the effects of wind age factor is included in the analytical algorithm, the root mean square difference and bias between retrieved altimeter wind speed from the analytical algorithm and buoy observations are 11% and 21% lower, respectively.
     Effects of the wave state on altimeter wind speed retrieval are also investigated based on the observations in the Gulf of Mexico. The comparison between measurements from the altimeter and buoys shows that the wave state has significant effects on the altimeter wind speed retrieval. After considering the effects of the wave state, the altimeter winds are retrieved more accurately with a new wind wave spectrum model. The wave age factor which denotes the wave state can be calculated from altimeter measured H s and U 10 (from algorithm in operational use for TOPEX/Poseidon altimeter). Thus, the analytical algorithm proposed in this study has a comprehensive applicability.
引文
[1] Liu, Y.G., Yan, X.H., Su, M.Y. Directional spectrum of wind waves: part1-Model and derivation. J. Ocean Uni. Qingdao, 2003, 2(1): 1-12
    [2] Liu, Y.G., Yan, X.H., Su, M.Y. Directional spectrum of wind waves: part2-Comparison and confirmation. J. Ocean Uni. Qingdao, 2003, 2(1): 13-23
    [3]徐德伦,于定勇.随机海浪理论.北京:高等教育出版社,2001
    [4]文圣常,余宙文.海浪理论与计算原理.北京:科学出版社,1984
    [5] Barner, N. F. Finding the Direction of Travel of Sea Waves, Nature, 1954, 174, 1048-1050
    [6] Longuet-Higgins, M. S. The effect of nonlinearities on statistical distributions in the theory of sea waves. J. Fluid Mech., 1963, 17(3), 459-480
    [7] Mitsuyasu, H. et al. Observations of the Directional Spectrum of Ocean Wave using a clover-leaf buoy. J. Phys. Oceanogr., 1975, 5(4), 750-760
    [8]何宜军,谢涛.极化合成孔径雷达测量海浪的研究.遥感技术与应用,2003,18(4):202-205
    [9]张彪,何宜军.干涉合成孔径雷达海浪遥感研究,遥感技术与应用,2006,26(1):11-16
    [10]孙建.SAR影像的海浪信息反演.中国海洋大学博士论文.2005
    [11]俞聿修,柳淑学.海浪方向谱的现场观测与分析.海洋工程,1994,11(2):1-11
    [12]吴秀杰,滕学春.实测海浪方向谱的统计特征.黄渤海海洋,1999,16(2):1-5
    [13]赵栋梁,管长龙,吴克俭,文圣常.海浪方向谱估计方法的比较.海洋学报,1999,21(3):119-225
    [14]周波,石爱国,蔡烽,张永胜.海浪方向谱的数据测量和估计方法.船舰科学技术,2005,27(2):46-49
    [15]吴秀杰,滕学春,束美新.海浪方向谱的阵列测量.黄渤海海洋,1992,10(4):43-45
    [16]赵栋梁,黄娟.贝叶斯统计方法在海浪方向谱研究中的应用.海洋学报,2000,22(5):31-40
    [17]赵栋梁.非线性相互作用对高频方向谱估计的影响.青岛海洋大学学报,1998,28(4): 531-535
    [18] Alpers W., Bruening, C. On the Relative Importance of Motion-Related Contributions to the SAR imaging Mechanism of Ocean Surface Waves. IEEE Trans. on Geo. and Remote Sensing, 1986, GE-24: 873-885
    [19] Alpers, W., Ross, D. B., Rufenach, C. L. On the Detectability of Ocean Surface Waves by Real and Synthetic Aperture Radar. J. Geophys. Res., 1981, 86:5481-6498
    [20] Hasselmann, K., Raney, R. K., Plant. W. J., et al. Theory of Synthetic Aperture Radar Ocean Imaging: a MARSEN View. J. Geophys. Res., 1985, 90: 4659-4686
    [21] Monaldo, F. M., Lyzenga, D. R. On the Estimation of Wave Slope- and Height-Variance Spectra from SAR Imagery. IEEE Trans on Geo. and Remote Sensing, 1986, GE-24: 543-550
    [22] Engen, G., Johnsen, H., Krogstad, H. E., et al. Directional Wave Spectra by Inversion of ERS-1 Synthetic Aperture Radar Ocean Imagery. IEEE Trans on Geoscience and Remote Sensing, 1994, 32: 340-352
    [23] Hasselmann, K., Hasselmann, S. On the Nonlinear Mapping of an Ocean Wave Spectrum into a Synthetic Aperture Radar Image Spectrum and Its Inversion. J. Geophys. Res., 1991, 96: 10713-10729
    [24] Komen, G. J., Cavaleri, L., Donelan, M., et al. Dynamics and Modelling of Ocean Wave. Cambridge: Cambridge University Press, 1994
    [25]何宜军.合成孔径雷达提取海浪方向谱的参数化方法.科学通报. 1999,44(4):428-433
    [26] Neumann, G. On wind generated ocean waves with spectral reference to the problem of wave forecasting. N. Y. U., Coll of Eng., Res. Div., Dept. of Metcor. and Oceanogr., 1952
    [27] Bretschneider, C. L. Wave variability and wave spectra for wind-generated gravity waves. U. S. Army Corps of Engineers, Beach Erosion Board, Tech. Mem., 1959, 113:192
    [28] Pierson, W. J., Moscowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 1964, 69: 5181-5190
    [29] Wu, J. Wind stress and surface roughness at air-sea interface. J. Geophys. Res., 1969, 74(2), 444-452
    [30] Hasselmann, D. E. et al. Directional wave spectral observed during JONSWAP. Erg?nzungsheft Zeit Deut. Hydr. Zeit., 1973, 12: 95
    [31] Huang, N.E., Long, S.R., Yuen, Y. A unified two-parameter wave spectral model for a general sea state, J. Fluid Mech., 1981,112: 203-224
    [32]汪炳祥.新型风浪谱及其应用.海洋与湖沼,1962,4(3-4):142-159
    [33]汪炳祥.风浪谱的形式的再探讨.海洋与湖沼,1964,6(1):23-36
    [34] Wen, S. C., et al. Theoretical wind wave frequency spectra in deep water,Ⅰ, Form ofspectrum. Acta Oceano. Sini., 1988, 7(1):1-16
    [35] Wen, S., et al. Theoretical wind wave frequency spectra in deep water. Comparison and verification of spectra. Acta Oceano. Sinica, 1988, 7 (2) : 159-169
    [36] Wen, S. C. Generalized wind wave spectra and their applications. Scientia Sini., 1960, 9(3): 377-402
    [37] Wen, S., et al. Theoretical wind wave frequency spectra in shallow water. Acta Oceano. Sinica, 1988, 7 (3): 325-343
    [38] Wen, S., et al. Improved form of wind wave frequency spectrum. Acta Oceano. Sinica, 1989, 8(4) : 467-483
    [39] Wen, S., et al. Form of deep water wind wave frequency spectrum, Derivation of spectrum. Progress in Natural Science, 1994, 4 (4): 407- 427
    [40] Wen, S., et al. Form of deep water wind wave frequency spectrum: Comparison with existing spectra and observations. Progress in Natural Science, 1994, 4 (5):586-596
    [41] Wen, S., et al. Effect of water depth on wind wave frequency spectrum: Spectral form. China J. Oceano. Limno., 1996, 14 (2): 97-105
    [42] Wen, S., et al. Effect of water depth on wind wave frequency spectrum: Verification and comparison. China J. Oceano. Limno., 1996, 14 (3): 225-233
    [43] Wen, S. C. Proposed spectra for ocean swell. Scientia. Sinica, 1961, 10 (5) : 569-591
    [44] Wen, S. C., et al. Analytically derived wind wave directional spectrum: Derivation of the spectrum. J. Oceanogr., 1993, 49: 13-147
    [45] Wen, S. C., et al. Analytically derived w ind2wave directional spectrum: Characteristics, comparison and verification of spectrum. J. Oceanogr., 1993, 49: 149-172
    [46] Wen, S. C., et al. A proposed directional function and w ind2wave directional spectrum. Acta. Oceano. Sinica, 1995, 14 (2): 155-166
    [47] Wen, S. C., et al. Wave modeling based on an adopted wind wave directional spectrum. J. Ocean Univ. Qingdao,1999, 29 (3): 345-397
    [48] Longuet-Higgins, M. S., Cartwright, D. E., Smith N. D. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Proc. Conf. On Ocean Wave Spectra, 1961: 111-132
    [49] Donelan, M.A., Hamilton, J., Hui, W.H. Directional spectral of wind-generated waves, Phil.Trans. R. Soc. London, 1985, A315: 509-562
    [50] Banner, I., Jones, S. F. Equilibrium spectra of wind waves. J. Phys. Oceanogr., 1990, 20: 966-984
    [51] Banner, I., Jones, S. F., Trinder, J. C. Wavenumber spectra of short gravity waves. J. Fluid Mech., 1989, 198: 321-344
    [52]俞聿修,柳淑学.风浪方向分布模式的比较.海洋工程,1995,13(4):1-11
    [53]管长龙.我国海浪理论及预报研究的回顾与展望.青岛海洋大学学报. 2000, 30(4):549-556
    [54]侯一筠.非线性海浪波面与波高的统计分布.海洋与湖沼,1990,21(5):425-425
    [55]隋世峰等.台风波浪数值预报的CHGS方法:风浪的成长和涌浪的消衰.热带海洋,1989,8(2): 13-20
    [56]余宙文,蓝昌华.平稳正态反正弦定律在海浪谱估计中的应用.海洋与湖沼,1979,10(1):1-8
    [57]余宙文,蒋德才,张大错.联合海浪过程的数值模拟.海洋学报,1979,1(1):1-16
    [58]蒋德才,张大错,高新生.最大熵法与传统法海浪谱估计的比较.山东海洋学院学报,1985,15(3):12-21
    [59]管长龙,文圣常,张大错.分析海浪方向谱的扩展本征矢方法:方法的导出.海洋与湖沼,1995,26(1):58-62
    [60]管长龙,文圣常,张大错.分析海浪方向谱的扩展本征矢方法:方法的验证、比较和应用.海洋与湖沼,1995,26(3):241-246
    [61]蒋德才,张大错.海浪单过程的数值模拟.山东海洋学院学报,1981,11(1):32-40
    [62]俞聿修.海浪的数值模拟.大连工学院学报,1981,20(2):84-90
    [63]刘新安,黄培基.偏态海浪过程的数值模拟.海洋学报,1991,13(4):445-457
    [64]刘新安,黄培基.非线性随机海浪模型的一种新型式.海洋与湖沼,1997,28(3):310-314
    [65]梁楚进,管长龙.运动坐标系下的海浪数值模拟.海洋湖沼通报,1998,(1):6-12
    [66]陈俊昌.外观海浪谱及其估计.南海海洋科学集刊,1982,(3):73-79
    [67]孙孚,丁平兴.海浪能量的外观分布.中国科学(B),1994,24(2):209-215
    [68]丁平兴,侯伟.海浪非线性性的实验研究1.海洋学报,1992,14(6):25-13
    [69]丁平兴,孔亚珍,侯伟.海浪非线性性的实验研究2.海洋学报,1993,15(1):1-8
    [70]丁平兴,孙孚,余宙文.海浪二阶非线性特征量的研究:理论推导.中国科学(B),1993,23(3):311-317
    [71]丁平兴,余宙文,孙孚.海浪二阶非线性特征量的研究:解释、推论及验证.中国科学(B),1993,23(4):418-425
    [72]吴克俭,宋金宝,楼顺里.论风浪的局域结构:风浪的局域结构与局域小波能谱.海洋与湖沼, 1998,29(4):403-408
    [73]吴克俭,宋金宝,楼顺里.论风浪的局域结构:风浪局域小波能谱的性质及应用.海洋与湖沼, 1998,29(5):488-493
    [74] Shen, Z., Mei, L. Equilibrium spectra of water waves forced by intermittent wind turbulence. J. Phys. Oceanogr., 1993, 23 (9):2019-2026
    [75] Shen, Z., Wang, W., Mei, L. Fine structure of wind waves analyzed with wavelet transform. J. Phys. Oceanogr., 1994, 24: 1085-1094
    [76] Phillips, O.M. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves, J. Fluid. Mech., 1985, 156: 505-531
    [77] Huang, N. E., Long, S. R., Yuen, Y., et al. A unified two-parameter wave spectral model for a general sea state. J. Fluid Mech., 1981, 112: 203-224
    [78] Liu, Y.G., Yan, X.H. The wind-induced wave growth rate and the spectrum of the gravity-capillary waves. J. Phys. Oceanogr., 1995, 25: 3196-3218
    [79] Liu, Y.G., Yan, X.H., Liu, W.T., Hwang, P.A. The probability density function of ocean surface slopes and its effects on radar backscatter. J. Phys. Oceanogr., 1997, 27: 782-797
    [80] Bjerkaas, A. W., Riedel, F. W. Proposed model for the elevation spectrum of a wind-roughened sea surface. Tech. Rep. APL-TG-1328-1-31, PP. 31. Appl. Phys. Lab., Johns Hopkins Univ., Laurel, Md., 1979.
    [81] Donelan, M.A. Pierson, W.J. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 1987, 92: 4971-5029
    [82] J?hne, B., Riemer, K.S. Two dimensional wave number spectra of small-scale water surface waves. J.Geophys. Res., 1990, 95: 11531-11546
    [83] Apel, J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res., 1994, 99: 16269-16291
    [84] Elfouhaily, T., Chapron, B., Katsaros, K., Vandemark D. A unified directional spectrum for long and shott wind-driven waves. J. Geophys. Res., 1997, 102, 15781-15786
    [85] Liu, Y. The spectrum of gravity-capillary waves, the probability density function of ocean surface slopes and their effects on radar backscatter. Ph D dissertation, University of Delaware, 1996, pp.140
    [86] Liu, Y.G., Su, M.Y., Yan, X.H., Liu, W.T. The mean-square slope of ocean surface waves and its effects on radar backscatter. J. Atmos. Oceanic. Technol., 2000,17: 980-993
    [87] Liu, Y.G., Pierson, W.J. Comparisons of scatterometer models for AMI on ERS-1: The possibility of systematic azimuth angle biases of wind speed and direction. IEEE Trans. Geosci .Remote. Sens., 1994, 32: 626-635
    [88] Hasselmann, K., Barnett, T.P., Bouws, E., Carlson H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D.J., Richter, K., Walden, H., Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Reihe A, No.12, (Deutsches Hydrographisches Institut, Hamburg) 1973, pp. 95
    [89] Hasselmann, K. On the non-linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech., 1962, 12: 481-500
    [90] Kitaigorodskii, S.A., Alesksandrovich, S. The physics of air-sea interaction. Translated from Russian into English by A. Baruch, edited by P. Greenberg, (Israel Program for Scientific Translations Ltd.) 1973, pp. 147
    [91] Durden, S.L., Vesecky, J.F. A physical radar cross-section model for a wind-driven sea with swell. IEEE J. Ocea. Engin, 1985,10: 445-451
    [92] Kudryatsev, V.N., Markin, V.K., Chapron,B. Coupled sea surface-atmosphere model 2, spectrum of short wind waves. J. Geophys. Res., 1999, 104: 7625-7639
    [93] Leykin, I.A., Rozenberg, A.D. Sea-tower measurements of wind-wave spectra in the Caspian Sea. J. Phys. Oceanogr., 1984,14: 168-176
    [94] Cox, C. S., Munk, W. H. Statistics of the sea surface derived from sun glitter. J. Mar. Res., 1954,13: 198-227
    [95] Cox, C., Munk, W. Measurements of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am., 1954a,44: 838-850
    [96] Cox, C., Munk, W. Statistics of the sea surface deduced from photographs of sun glitter. J. Mar. Res., 1954b,13:198-227
    [97] Cox, C., Munk, W. Slopes of the sea surface deduced from sun glitter. Bull. Scripps. Inst. Oceanogr., 1956, 6(9):401-487
    [98] Kitaigorodskii, S.A., Krasitskii, V. P., Zaslavskii, M. M. On Phillips’s theory of equilibrium range in the spectra of wind-generated gravity waves. J. Phys. Oceanogr., 1975, 5: 410-420
    [99] Klinke, J., J?hne, B. Two-dimensional wave number spectrum of short wind waves-results from wind wave facilities and extrapolation to the ocean, in: Optics of the air-sea interface: theory and measurements, Proc. SPIE, Vol. 1749 (Int. Soc. Opt. Eng., San Diego) 1992, pp. 1-13
    [100] Largerloef, G. E. Final Report of the First Workshop Salinity Sea Ice Working Group, 1998 Cartwright, D.E., Longuet-Higgins, M.S. The statistical distribution of the maxima of a random function, Proc. Roy. Soc. London, 1956, 237, 212-232
    [101] Glazman, R. E., Pilorz, S. H. Effects of sea maturity on satellite altimeter measurements. J. Geophys. Res., 1990, 95: 2857-2870
    [102] Valenzuela, G.R. Theories for the interaction of electromagnetic and ocean wave- A review. Bound. Layer Meteorol., 1978,13: 61-85
    [103] Forristall, G.Z. Measurements of a saturated range in ocean wave spectra. J. Geophys. Res., 1981, 86: 8075-8084
    [104] Tang, S., Shemdin, O.H. Measurement of high frequency waves using a wave follower. J. Geophys. Res., 1983,88: 9832-9840
    [105] Liu, P.C. Normalized and equilibrium spectra of wind waves on Lake Michigan. J. Phys. Oceanogr., 1971,1: 249-257
    [106] Palm, W.J., Moscowitz, L., Reece, A.M. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves. Appli. Opt., 1977, 16: 1074-1081.
    [107] Babanin, A. V., Soloviev, Y. P. Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 1998,28: 563-576
    [108] Krivinskii, B.B. Variability of energetic characteristics of wind surface waves, Ph.D.thesis. Marine Hydrophysical Institute, Ukrainian National Academy of Science. 1991, (in Russian).
    [109]吕红民.大型风浪水槽风浪成长的谱特征.青岛海洋大学学报1998,28:17-22
    [110]何宜军,陈戈,郭佩芳,王海瑛.高度计海洋遥感研究与应用.北京:科学出版社,2002
    [111]刘玉光等.卫星海洋学, 2007.
    [112] David, L. Non-fully developed sea state characteristics from real aperture radar remote sensing. Ph. D. thesis, 1998, PP. 9
    [113] David L, Piotr S, Albert G. Full-range sea surface spectrum in nonfully developed state for scattering calculations. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1038-1051
    [114] Wu, J. Altimeter wind and wind-stress algorithms-Further refinement and validation. J. Atmos. Oceanic. Technol., 1994,11: 210-215
    [115] Xu, Q.,Liu, Y. A new formula on the Fresnel feflectance and its application in microwaves remote sensing. Science in China, Ser. D Earth Sciences, 2004, 47 (11): 1045-1052
    [116] Hwang, C. W., Kao, E. C., Parsons, B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry data. Geophys. J. Int., 1998,134:449-459
    [117] Wu, J. 1990, Mean square slope of the wind-disturbed water surface, their magnitude, directionality and composition. Radio Sci., 25:37-48
    [118] Walsh, E. J., Vandemark, D. C., Friehe, C. A. et al. Measurements sea surface mean square slope with a 36GHz scanning radar altimeter. J. Geophys. Res., 1998a, 103:12587-12601
    [119] Toba, Y. Local balance in the air-sea boundary processes 3: on the spectrum of wind waves. J. Oceanogr. Soc. Jpn., 1973,29: 209-220
    [120] Mitsuyasu, H., Honda, T. The high frequency spectrum of wind generated waves. J. Oceanogr. Soc. Jpn., 1974,30: 185-198
    [121] Zhao, D., Toba, Y. A spectral approach for determining altimeter wind speed model functions. J. Ocean., 2003, 59: 235-244
    [122] Ebuchi, N., Kawamura, H., Toba, Y. Fine structure of lab oratory wind-wave surfaces studies using an optical method. Boundary-Layer Met., 1987, 39: 133-151
    [123] Plant, W. J., Wright, J. W. Growth and equilibrium of short gravity waves in a wind-wave tank. J. Fluid Mech. 1977, 82: 767-793
    [124] Zhang, X. Capillary-gravity and capillary waves generated in a wind wave tank: Observations and theories. J. Fluid Mech., 1995, 289: 51-82
    [125] Ebuchi, N., Kizu, S. Probability distribution of surface wave slope derived using sun glitter images from geostationary meterological satellite and surface vector winds from scatterometers, J Oceanogr., 2002, 58: 477-486
    [126] Brown, G. S. Backscattering from a Gaussian-distributed perfectly conducting rough surface. IEEE Trans. Antennas. Propag., 1978, Ap-26: 472-482
    [127] Brown, G. S., Stanley, H. R., Roy, N. A. The wind speed measurement capacity of space borne radar altimeter. IEEE J Oceanic Engineer, 1981, OE-6: 59-63
    [128] Chelton, D. B., McCabe, P. J. A review of satellite altimeter measurement of sea surface wind speed: with a proposed new algorithm. J. Geophys. Res., 1985, 90: 4707-4720
    [129] Chelton, D. B., Wentz, F. J. Further development of an improved altimeter wind speed algorithm. J. Geophys. Res., 1986, 91: 14250-14260
    [130] Goldhirsh, R. E., Dobson, E. B. A recommended algorithm for the determination of ocean surface wind speed using a satellite borne radar altimeter. Rep. JHU/APLS1R85U-005, Appl. Phys. Lab., Johns Hopkins Univ Laurel, Md., 1985.
    [131] Witter, D. L., Chelton, D. B. A Geosat altimeter wind speed algorithm and a method for altimeter wind speed algorithm. J. Geophys. Res., 1991, 96, 8853-8860
    [132] Chen, G., Chapron, B., Ezraty, R. et al. A dual-frequency approach for retrieving sea surface wind speed from Topex Altimetry. J. Geophys. Res., 2002,107(C12): 3226-3235.
    [133]陈戈.卫星高度计反演海面风速---模式函数与应用实例.遥感学报.1999,3(4):305-311
    [130] Wu, J. Near nadir microwave specular return from the sea surface-Altimeter algorithm for wind and wind stress. J. Atmos. Oceanic. Technol., 1992,9:659-667
    [134] Glazman, R., Greysukh, A. Satellite altimeter measurement of surface wind. J. Geophys. Res., 1993, 98: 2475-2483
    [135] Anderson, C., Macklin, J. T., Gommenginger, C., et al. Sea state impact on wind field retrievals (WP 30). Technical Note3 of Study of the impact on nadir looking and side looking microwave backscatter. 2000, PP. 13-15. Available online http://www.noc.soton.ac.uk/JRD/SAT/AltWind/wp30.pdf
    [136] Wentz, F. J. A well-calibrated ocean algorithm for special sensor microwave / imager. J. Geophys. Res., 1997, 102(C4): 8703-8718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700