两相厌氧—好氧组合工艺处理制药废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用两相厌氧-好氧组合工艺,选择了两种典型的高浓度制药废水作为研究对象。针对抗生素废水含有高硫酸盐的特点,采用中试规模的酸相UASB-气提脱硫-甲烷相UASB-SBR工艺对其进行处理,研究了该工艺的启动及处理效果,优化了各工段的运行参数。采用水解酸化-UASB-SBR工艺处理金黄色素和胆固醇混合制药废水,对该工艺在工程应用中的调试运行进行了研究,确定各工段运行参数,并对废水中污染物质的去除情况和UASB中污泥培养进行了分析讨论。
     试验研究结果表明:
     Ⅰ采用中试规模的酸相UASB-气提脱硫-甲烷相UASB-SBR工艺处理高硫酸盐抗生素废水,当系统进水COD_(Cr)为10680~14140mg/L,硫酸盐浓度为1280~1610mg/L时,系统出水中COD_(Cr)为760~1020mg/L,COD_(Cr)平均去除率为92.8%,硫酸盐平均去除率为87.7%;在进出水pH值分别为5.5及6.5,进水硫酸盐平均负荷为1.4 kg/(m~3·d),上流速度为0.5m/h的情况下,酸相UASB对硫酸盐的平均去除率可达86.1%;HRT为3.8h、进水pH为6.5的情况下,气提脱硫器对硫化物的平均去除率可达86.3%;废水脱硫后,可保持甲烷相UASB中的硫化物低于90mg/L,进水COD_(Cr)负荷达到5.2kg/m~3·d时,COD_(Cr)去除率为50.6~56.5%;控制SBR反应器的进水COD_(Cr)负荷为1.3kg/(m~3·d)左右,MLSS为4.0±0.5g/L,DO在1.5~4.0mg/L范围内,SBR对于COD_(Cr)、氨氮的去除率分别为81.6%、98.6%。
     Ⅱ采用水解酸化-UASB-SBR处理金黄色素和胆固醇混合生产废水,结果表明:水解酸化池中填加球形生物填料,采用曝气搅拌,成功启动后,出水较进水的VFA平均增大10mmol/L,B/C提高了约0.1,COD_(Cr)平均去除率可达7%;UASB运行稳定后,进水COD_(Cr)容积负荷达到4.8kg/(m~3·d),进水COD_(Cr)基本在6800~7600mg/L范围内变化,出水为750~900mg/L,COD_(Cr)去除率在85%以上;UASB进水硫酸盐低于500mg/L时,COD_(Cr)去除率大于85%。UASB进水硫酸盐在1000~2600mg/L时,产甲烷菌会受到明显抑制,使得COD_(Cr)去除率降至80%以下。在MLSS为3000~5000mg/L,气水比45∶1的条件下,SBR出水COD_(Cr)为180~270mg/L,氨氮小于20mg/L,水质各项指标达到国家污水综合排放标准(GB8978—1996)二级标准。
In this paper,the combined process of two-phase anaerobic and aerobic was used.Two types of typical high concentration pharmaceutical wastewater were chosen as research objects.To the characteristic of high sulfate in antibiotics wastewater, the pilot-scale acid phase UASB-gas stripping desulfurization-methane phase UASB-SBR process was used to deal with it.The starting and the treatment effect of the process were studied and the operational parameters of each section were optimized. Hydrolytic acidification-UASB-SBR process was used to treat aluminon and cholesterol mixed pharmaceutical wastewater.The debugging operation of the process in the engineering application was studied and the operational parameters of each section were determined.Otherwise,the removal of materials in wastewater and the cultivation of sludge in UASB were analysed and discussed.
     The results of the study showed that:
     Ⅰ.Using the pilot-scale acid phase UASB-gas stripping desulfurization-methane phase UASB-SBR process to treat antibiotics wastewater with high concentration sulfate,when the influent COD_(Cr)was 10680~14140mg/L and sulfate was 1280~1610mg/L,the effluent COD_(Cr)of 760~1020mg/L,COD_(Cr)average removal rate of 92.8%and sulfate average removal rate of 87.7%were reached.When the pH values of influent and effluent was 5.5 and 6.5,the average sulfate load of influent was 1.4 kg/(m~3·d),the hydraulic load is 0.5m/h,the average removal rate of sulfate in acid phase UASB was up to 86.1%.When HRT was 3.8 hours,pH of influent was 6.5,gas stripping desulfurization got the average removal rate of sulfide up to 86.3%.After being desulfurized,sulfide in the methane phase UASB could be maintained below 90 mg/L.when influent COD_(Cr)load reached 5.2 kg/(m~3·d),removal rate of COD_(Cr)was 50.6~56.5%.Controlling the influent COD_(Cr)load around 1.3 kg/(m~3·d),MLSS 4.0±0.5 g/L,DO from 1.5 to 4.0 mg/L,COD_(Cr)removal rate of 81.6%and ammonia removal rate of 98.6%were reached in SBR.
     Ⅱ.Using hydrolytic acidification-UASB-SBR process to treat aluminon and cholesterol mixed pharmaceutical wastewater,the results showed that:Appending spherical biologic filler in hydrolytic acidification pond and using aeration agitation, after successful starting,the VFA in effluent average increased 10mmol/L than in influent,B/C increased about 0.1,COD_(Cr)average removal rate was up to 7%.When UASB was stably operated,the influent volume load of COD_(Cr)reached 4.8 kg/(m~3·d). The COD_(Cr)of influent varied from 6800 to 7600 mg/L and was 750~900 mg/L in effluent.The removal rate of COD_(Cr)was 85%.When the influent sulfate was below 500 mg/L,the COD_(Cr)removal rate of UASB was up to 85%.When the influent sulfate of UASB was around 1000~2600mg/L,methanogenic bacteria would be significantly inhibited and the removal rate of COD_(Cr)droped to 80%.MLSS 3000~5000mg/L, volume ratio of air to water 45:1,the quality of SBR effluent with COD_(Cr)180~270mg/L and ammonia nitrogen less than 20mg/L attained the secondary criteria specified in the Integrated Wastewater Discharge Standard(GB 8978-1996).
引文
铩颷1]北京水环境技术与设备研究中心等.三废处理技术手册—废水卷[M].化学工业出版社,2000:205-220.
    [2]冯晓西,乌锡康.精细化工废水治理技术[M].北京:化学工业出版社,2000.
    [3]马文鑫,陈卫中,任建军,等.制药废水预处理技术探索[J].环境污染与防治,2001,23(2):87-89.
    [4]潘忐强.土霉素,麦迪霉素废水的化学气浮处理[J].工业水处理,1991,11(1):24-26.
    [5]张满生,张劲松.物理吸附法处理制药废水[J].青海环境,1999,9(3):106-107.
    [6]王玉珂.抗生素制药废水的炉渣处理[J].环境保护,1993,8:15-16。
    [7]李立明,王新宇.硫酸庆大霉素发酵废液混凝分离实验研究[J].信阳农业高等专科学校学报,2002,12(2):10-11.
    [8]吴敦虎,李鹏,王曙光,等.混凝法处理制药废水的研究[J].水处理技术,2000,26(1):53-55.
    [9]陈婷婷,崔兆杰,张成禄.铁-氧电池预处理头孢类抗生素生产废水[J].工业水处理,2007,27(2):23-25.
    [10]李欣,祁佩时.铁炭Fenton/SBR法处理硝基苯制药废水[J].中国给水排水,2006,22(19):12-15.
    [11]肖哗远,史云鹏.湿式氧化处理污水的应用现状及展望[J].工业用水与废水,2001,32(6):5-7,35.
    [12]邹平,高廷耀.SBR法处理制釣废水的试验研究[J].给水排水,2000,26(5):43-45.
    [13]丁建军,刘燕群,谭佑铭.SBR法处理高浓度霉素废水的实验研究[J].环境污染治理技术与设备,2003,4(6):27-29.
    [14]吴敦虎,李鹏,王曙光,等.混凝法处理制药废水的研究[J].水处理技术,2000,26(1):53-55.
    [15]潘腊青,杨建民.兼氧-接触氧化-气浮法处理高浓度制药废水[J].环境污染与防治,1999,21(增刊):74.
    [16]五海昕,肖月华,徐传进.生物制釣废水预处理实验研究[J].齐鲁药事,2005,24(8):500-501.
    [17]Oktem,Y.A.et al,.Anaerobic treatment of a chemical synthesis-based pharmaceutical...,Bioresour.Technol.(2007),doi:10.1016/j.biortech.2007.02.036.
    [18]钱卫平,刘人义,许利贵.A/O工艺处理制药废水[J].工业水处理,2006,26(1):81-82.
    [19]龚敏,张勇,赵九旭,等.ABR-EGSB-SBR组合工艺处理制釣废水[J].环境科学与技术,2006,29(12):80-86.
    [20]顾辽萍.高浓度制釣发酵废水处理啊程技术[J].工业水处理,2006,26(10):72-74.
    [21]李向东,冯启言,于洪锋.气浮-水解-好氧工艺处理制药废水[J].环境工程,2005,23(3):17-1.
    铩颷22]万金保,侯得印.水解酸化-SBR-接触氧化法处理制药废水[J].给水排水,2006,32(9):43-45.
    [23]乔俊莲,郑广宏,徐远雄.水解酸化/接触氧化/气浮/氧化工艺处理制药废水[J].工业水处理,2006,23(2);67-69.
    [24]王培京,刘战宇,葛平,等.厌氧.好氧两级生化法处理土霉素生产废水[J].环境工程,2003,21(1):27-29.
    [25]缪应褀.废水生物脱硫机理及技术[M].北京:化学工业出版社,2004.
    [26]王晓惠.抗生素工业废水厌氧生物处理技术研究[D].郑州大学硕士学位论文.2005.
    [27]任南琪,王爱杰。厌氧生物处理技术原理与应用[M].北京:化学工业出版社,2004:32.
    [28]陈漫漫.两相厌氧.好氧工艺处理医药原料废水生产性研究[D].哈尔滨建筑大学硕士学位论文,2006,6.
    [29]裘湛,张之源.高速厌氧反应器处理城市污水的现状与发展[J].合肥工业大学学报,2001,25(1):117-122.
    [30]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [31]任南琪,王爱杰.厌氧处理构筑物中SRB的生态学[J].哈尔滨建筑大学学报,2001,35(1):40-44.
    [32]M.Vossoughi,M.Shakeri,I.Alemzadeh.Performance of anaerobic baffled reactor treatingsynthetic wasterwater influenced by decreasing COD/SO4 ratios[J].Chemical Engineering andProcessing,2003,42:811-816.
    [33]Choi,E.and J.M.Rim.Competition and Inhibition of Sulfate Reducers and Methane Producers inanaerobic Treatment[J].Wat.Sci.Tech.,1991,23:1259-1264.
    [34]Visser F A.Diversity and population dynamics of methanogenic bacteria in a granularconsortium[J].App Environ Microbiol,1991,57(6):1728.
    [35]马溪平.厌氧微生物学与污水处理[M]。北京:化学工业出版社,2005.
    [36]Isa,Z.et al.Sulphate Reduction Relative to Methane Production in High-rate AnaerobicDigestion[J].Appl.Environ.Microbiol.,1986,51(3):572-587.
    [37]M.Hasnain Isa,G.K.Anderson.Molybdate inhibition of sulphate reduction in two-phaseanaerobic digestion[J].2005,40:2079-2089.
    [39]In Seop Chang,Byung Hong Kim.Effect of sulfate reduction activity on biological treatmentofhexavalent chromium[Cr(VI)]contaminated electroplating wastewater under sulfate-richcondition[J].Chemophere,2007,68:218-226.
    [40]王伟,阮文权,邹华,等.EGSB反应器处理高浓度硫酸盐废水[J].食品与生物技术学报,2006,25(6):23-28.
    [41]E.Colleran,et al.Anaerobic digestion of high-sulphate-content wasterwater from the industrialproduction of critic acid[J].Wat.Sci,Tech.,1994,30(12):263-273.
    铩颷38]Sarner.Anaerobic Treatment[J],A Grown up Technology,Aguatech.1986(12).
    [43]杨景亮,左剑恶,胡纪萃.两相厌氧工艺处理含硫酸盐有机废水的研究[J].环境科学,1995,16(3):8-11.
    [44]Reis.Sulfate Reduction in Acidogenic Phase Digestion[J].Environ.Rech.Leters,1998(9).
    [45]韦朝海,王文祥,吴超飞.射流循环厌氧流化床两相厌氧处理高浓度硫酸盐有机废水[J].化工学报,2007,58(1):206-211.
    [46]国家环保局.水和废水监测分析方法[M].第3版,北京:中国环境科学出版社,1989.
    [47]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998:519-521.
    [48]Lopes SIC,et al.Low pH(6,5 and 4)sulfate reduction during the acidification of sucrose underthermophilic(55℃)conditions[J].Process Biochem(2006),doi:10.1016/j.procbio.2006.11.004.
    [49]S.Venkata Mohan,N.Chandrasekhara Rao,K.Kfishna Prasad,et al.Bioaugmentation of ananaerobic sequencing batch biofilm reactor(AnSBBR)with immobilized sulphate reducingbacteria(SRB)for the treatment of sulphate bearing chemical wastewater[J].ProcessBiochemistry,2005(40):2849-2857.
    [50]Takashi Yamaguchi,Hideki Harada,Tomoaki Hisano,et al.Process behavior of UASB reactortreating a wastewater containing high strength sulfate[J].Wat.Res,1999,33(14):3182-3190.
    [51]冀滨弘,章非娟.高硫酸盐有机废水厌氧处理技术的进展[J].中国沼气,1999,17(3).
    [52]胡纪萃.废水厌氧生物处理理论与技术[M].中国建筑工业出版社,2002:121
    [53]王绍文,罗志腾,钱雷.高浓度有机废水处理技术与工程应用[M].北京:冶金工业出版社,2003:139-141.
    [54]Yu Liu,Hai-Lou Xu,Shu-Fang Yang,et al.Mechanisms and models for anaerobic granulationin upflow anaerobic sludge blanket reactor[J].Water Research,2003(37):661-673.
    [55]陈红,路正禹.生产规模UASB反应器处理柠檬酸废水启动试验研究[J].给水排水,1996,22(4):22-25
    [56]KosaricN,Blaszczyk R,Orphan L,et al.The characteristics of granules from upflow anaerobicsludge blanket reactors[J].Wat Res,1990,24(12):1473-1477.
    [57]曹刚,徐向阳,冯孝善。碱度对UASB污泥颗粒化的影响[J].中国给水排水,2002,18(8):13-16
    [58]周可新,许木启,曹宏,等。用污泥生物指数评价活性污泥的运转效能[J].环境污染治理技术与设备,2005,6(9):88-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700