富氧曝气处理某制药废水及其污泥性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前采用富氧曝气法处理制药废水的研究还不多,富氧曝气法具有很多优点,本研究采用富氧曝气法处理制药废水中的一种废水,为该种废水处理的实际工程应用提供设计参考依据。本文综述了活性污泥法的发展及革新;制药废水的各种处理方法,分析各方法的优缺点。本文采用富氧曝气法处理阿维菌素废水并与空气曝气法作比较。主要研究内容及结果如下:
     (1)首先研究适合于处理阿维菌素废水的富氧气体浓度,主要研究的富氧气体浓度有四种35%、45%、55%、65%,研究表明富氧气体浓度大的曝气系统,其反应速率较快,并且随着废水浓度的增加,该种优势越明显。在处理中浓度废水时,富氧气体浓度大的系统,处理效果较好,并且随着废水浓度的增加,这种差距就越明显,但是并不是富氧气体浓度越高越好,55%与65%这两个系统的处理效果始终相差不大,在综合考虑耗氧量的前提下,建议采用55%的富氧气体浓度处理阿维菌素废水。
     (2)研究富氧曝气系统处理阿维菌素制药废水的最佳曝气时间为12h,最佳曝气量为80L/h。研究pH值、温度对富氧曝气系统的影响并与空气曝气系统作比较,结果表明富氧曝气系统的最佳pH值为6.0~7.5,最佳温度在25~35℃、在最佳条件下处理效果均优于空气曝气系统;研究曝气方式(间歇曝气或连续曝气)对富氧曝气系统处理效果的影响,结果表明采用间歇曝气的方式(每曝气2h,静置0.5h,整个过程为12h)可以达到与连续曝气相同的效果,而空气曝气系统则达不到连续曝气时的效果。富氧曝气系统在减少曝气量+机械搅拌的条件下,可以达到与最佳曝气量条件下相同的处理效果,而空气曝气系统加搅拌无明显效果。富氧曝气系统的抗负荷冲击(pH值冲击、容积负荷冲击)能力要强于空气曝气系统。
     (3)富氧曝气系统的污泥的吸附性能和沉降性能均优于空气曝气系统,且产生的剩余污泥量少于空气曝气系统,主要原因是氧气浓度高,可以给系统提供充足的氧气,通过驯化逐渐改变系统中的微生物的组成,这也是富氧曝气系统污泥量减少的原因。
Currently, the research of Oxygen-enriched aeration to used to treatment the pharmaceutical wastewater is few. Oxygen-enriched aeration method has many advantages. To use the oxygen-enriched aeration method to treatment the pharmaceutical wastewater in this study, offer the the design reference for the practical engineering applications of this kind of wastewater. The paper reviewed the development of activated sludge and process of innovation, a variety of treatment methods for pharmaceutical wastewater, to analyze the advantages and disadvantages these methods. In this paper, use oxygen-enriched aeration to treatment the Avermectin wastewater and compared with the air aeration method. Main research contents and results are as follows:
     (1) First, to study the suitable concentration of oxygen gas for treatment of Abamectin wastewater. The oxygen-rich gas concentrations has four which is 35%, 45%, 55% and 65%. The studies show that the system of a large concentration of oxygen-rich gas, its reaction rate faster, and with the water concentration increases, the more obvious advantages of this type. In dealing with the concentration of wastewater, the systems of oxygen gas with large concentration, the treatment effect is better, and as the water concentration increases, this gap more obvious, but not the oxygen-rich gas concentrations as high as possible, 55% and 65% of the treatment effect of these two systems has always been more or less, in the comprehensive consideration under the premise of oxygen consumption, we recommend using 55% of the oxygen-rich gas concentrations in the wastewater treatment of Abamectin.
     (2)Study of oxygen-enriched aeration system to handle the avermectin pharmaceutical wastewater of the best aeration time is 12h, the best aeration capacity is 80L/h. Study of the pH, temperature on the impact of oxygen enrichment aeration system,and compare with the air aeration systems, the results show that the optimal pH in oxygen aeration system is 6.0 ~ 7.5, the best temperature is 25 ~ 35℃, in the best conditions, the treatment effect is superior to air aeration system; Research aeration mode (intermittent aeration or continuous aeration) on the oxygen aeration system of treatment effect, results show that the intermittent aeration method (2h per aeration , put it aside for 0.5h, the whole process for 12h) can achieve the same effect with continuous aeration and air aeration system can not reach the effect of continuous aeration. the conditions of Oxygen aeration system to reduce the amount of Aeration+ Mechanical agitation ,it can be achieved the same treatment effect with the best aeration conditions, but the system of air aeration system + Mechanical agitation had no significant effect. The anti-shock loading capacity (pH,volumetric loading) of Oxygen-enriched aeration system was stronger than the air aeration system.
     (3)The sludge adsorption and sedimentation performance of the Oxygen aeration system is better than the air aeration system, and the sludge generated is less than air aeration system, mainly due to high concentrations of oxygen and can provide sufficient oxygen to the system, The composition of microbes gradually changed through by the domestication in the system, which is the mechanism of the amount of oxygen-rich sludge aeration system to reduce.
引文
[1]李亚新主编.活性污泥法理论与技术中国建筑工业出版社,2007.
    [2]张传刚.富氧曝气生物污水处理技术[J].深冷技术.1997(3):47-51.
    [3]罗启芳,沈杭生.高浓洁霉素生产废水处理技术研究[J].重庆环境科学,1990,12(6):17-20.
    [4]宋勇,于海涛.微电解/水解酸化/SBR工艺处理化学制药废水[J].中国给水排水,2009(23).
    [5]祁佩时,李欣,韩洪彬,刘云芝.复合式厌氧-好氧反应器处理制药废水的试验研究[J].哈尔滨工业大学学报2004(12).
    [6]李向东,冯启言,于洪锋,气浮-水解-好氧工艺处理制药废水[J].环境工程,2005(3).
    [7]张自杰,周帆编.活性污泥生物学与反应动力学[J].中国环境科学出版社,1989.
    [8]高庭耀主编,水污染控制工程(下册),高等教育出版社,1989.
    [9]刘晓琎,杨云龙,浅谈污水生物处理AB法[J].科技情报开发与经济,2007(2).
    [10]刘晓阳,吕伟娅,SBR法及其在废水处理中的应用与发展[J].南京建筑工程学院学报,2001,57(2):51-56.
    [11]F W Hardt et ,Solid Separation by Ultra-filtration for concentrated Activated Sludge,JUPC,1970,42,21-35.
    [12]文武,贾丽艳,刘洪波.城市污水处理技术与工艺研究进展综述[J].环境保护科学,2007,12,33(6):53-55.
    [13][日]蓧塚清,田泰司.PPM,voL16,No.5,1975.
    [14][日]武田幸雄,环境科技,vol13,No.45,1984.
    [15][日]武田幸雄,三中润一,铃木信.PPM,vol26,No.75,1985.
    [16]苏宏,闫广平等.加压SBR法处理淀粉废水的研究[J].吉林化工学院院报,vol.17,No.1,2000年3月.
    [17]马乐凡,李晓林,王跃泉.加压曝气生物法处理制浆中段废水[J].湖南造纸,2002,6(1).
    [18]陈立波,郭景海.加压曝气生物反应器及其工艺设计[J].环境工程,2002,12(3).
    [19]张铁军.深井曝气废水处理技术的现状及其发展[J].煤矿环境保护,2000,14(1).
    [20]上海市环境保护科学研究院,上海啤酒厂,用超深层曝气法处理啤酒工业废水,1983.
    [21]O kun,D .A .andLynn,W.R. Preliminary Investigations into the Effect of Oxygen Tension on Biological Sewage Treatment. Biological Treatment of Sewage and Industrial Wastes: Vol.1, A crobic Oxidation, Reinhold Publishing Corp,New York,1956.
    [22]Okun, D.A. Discussion of High Purity Oxygen in Biological Sewage Treatment,Sew.& Indus tral Wastes,29 , 1957.
    [23]John T. Pfefer and Ross E. Mckinney, Oxygen-enriched Air for Biological Waste Treatment, Water&Sewage WorksOct. 1965.
    [24]北京市市政设计院译.单级纯氧活性污泥法的硝化和除磷,译自Journal Water Pollution C ontrol Federation, 1980年第4期.
    [25]McWhirter; John R., High Oxygen Utilization in BOD-containing Water Treatment, United States Patent: RE29,781, September26,1977.
    [26]张美恩,介绍一种新的制氮方法一一变压吸附制氮[J],云南化工,1993 (3).
    [27]苏德胜,储明来,丁建林,沈光林.国内膜法富氧技术应用研究新进展[J],膜科学与技术,1999(1).
    [28]许景文,严忠.膜学入门,上海科技文献出版社,1989.
    [29]陆杰,徐高田,张玲,张国莹.制药废水处理技术[J].工业水处理,2001,21(10).
    [30]夏文林,李武.煤灰吸附—两级好氧生物工艺处理制药废水[J].环境工程,1997,17(2):13-15.
    [31]张一先,张俊强,张哲如.米菲司酮废水处理的试验研究[J].上海环境科学,1994,13(2):38-40.
    [32]郝存江,等.沉淀—吸附法处理双氯灭痛废水[J].环境污染与防治,2000,22(3):31-34.
    [33]李凤仙,李善评,张成禄.药厂扑热息痛废水治理的研究[J].环境科学与技术,1996,(1):31-34.
    [34]陈小平,米志奎.制药废水的物化处理技术与进展[J].安徽医药,2009,13(10):1279-1281.
    [35]张向怡、孙宝盛等.离子交换法回收土霉素及废水处理的研究[J].工业水处理,2006,26(2):74-77.
    [36]钱晖.高浓度制药废水预处理技术试验研究[J].环境科学与管理,2009,7:()
    [37]郭卫兵,王世宏,周青叶.庆大霉素废水治理工艺[J].污染防治技术,2000,13(2):117-118.
    [38]韩相奎,周春生,姚秀芹.SBR法处理中药废水的试验研究[J].环境科学,1996,17(1):67-65.
    [39]吉剑,刘峰,蒋京东,马三剑.UASB反应器处理制药废水的研究[J].山西化工,2009,5:56-58.
    [40]刘新亭,杨秀强.酸化—生物接触氧化法处理维生素C废水[J].上海环境科学,1990,9(6):12-14.
    [41]Dries J High Rate Biological Treatment of Sulfate-rich Waster Water in an Acetate-fed EGSB Reator[J] Biodegractation,1998,9:103-111.
    [42]赵振东,王春明,蒋文化,於胜洪,马三剑.UBF处理高浓度头孢类抗生素废水的实验研究[J].环境科技,2010,2.
    [43]周群英,高廷耀.环境工程微生物学[M],高等教育出版社,1988,137.
    [44]姜汉元,吴江.富氧曝气污泥性能及生化机理的研究北京建筑工程学报,1990(2):38.
    [45]周可欣,许木启,曹宏,徐军.利用微型动物削减剩余污泥量的研究.环境污染治理与设备,2003(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700