高效微生物处理抗生素废水工程化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素类发酵废水是一类富含难降解有机物和生物毒性物质的有机工业废水,具有治理难度大、处理成本高和有毒有害等特点。抗生素废水采用传统的废水处理工艺很难达标排放,废水的处理问题成为丁国内外研究的热点和难点。为有效解决抗生素生产废水的污染问题,科研机构及企业本身都进行丁不断的探索和研究.寻找有效的治污方法。
     本研究课题依托华北制药股份有限公司三废治理中心污水生化处理系统,首先分析了三废治理中心废水水质特点及废水处理系统不能达标排放的原因,从而开展高效微生物+A/O生化处理系统的探索和研究。研究的小试阶段进行了高效微生物菌种对青霉素为主的抗生素发酵废水的适应性试验;中试阶段开展了高效微生物+A/O生化处理系统在废水进水水量、水质波动大的条件下,在预定的运行参数条件下运行稳定性试验,得出了COD、NH3-N去除率达到试验要求,参数设定符合实际情况的结论。工程化运行在小试和中试实验结果及三废治理中心升级改造完成的基础上,在工程新增15000m3的好氧处理装置中接种高效微生物菌种,按设计要求开展生产性试验,测试新增的高效微生物处理装置和三废治理中心废水处理工艺的污染物去除率及技改完成后废水排放浓度。监测数据显示工程化试验阶段系统的废水处理量为6000-7000 m3.d-1之间,进水COD平均浓度在10000-20000 mg-L-1之间,NH3-N平均浓度在500-1000mg.L-1之间,操作参数pH值在8左右,出水水质COD浓度稳定保持在200-400 mg·L-1之间,NH3-N浓度稳定保持在10-20 mg.L-1之间,新增的“高效微生物+A/O生化处理”工艺的COD平均去除率达到85%以上,NH3-N平均去除率达到95%以上,技改工程完成后三废治理中心原水经厌氧水解、常规好氧曝气和高效微生物生化处理后COD平均去除率达到95%以上,NH3-N平均去除率达到98%以上,出水COD浓度控制在400 mg.L-1以内,NH3-N浓度控制在20 mg.L-1以内,出水水质达到预期的设计目标。
     研究结果表明,三废治理中心技改工程的高效微生物处理工艺及系统运行参数符合工程要求,应用高效微生物技术处理抗生素制药废水,处理效果显著,能有效保证出水水质稳定达标,该处理工艺解决了抗生素废水治理的难题,为有效解决抗生素类发酵废水的治理提供了有效手段。
Antibiotic wastewater with high refractory and toxic Organic compounds is high cost and difficult to be treated by traditional biotreatment technology. The effective of traditional treatment technology also did not match the discharged standard. The low removal rate and effective is still important question in this field. Therefore. more attention should have been focused on the novel and cost-effective treatment technology.
     This experiment was conducted in the centre of three waste treatments in North China Pharmaceutical Company Ltd. First, the reason and question of the existed engineering was analyzed. Then the high effective micoorgannism with A/O biological treatment technology was studied in details. Last engineering was designed in light of the experiment and conducted to study the effect of the new technology. The results of lab scale and pilot scale experiments showed that the high effective micoorgannism with A/O biological treatment technology have high removal rate of COD、NH3-N and meeted to the decharged standard. The new construted aerobic bank of 1 5000 m3 was performed at the following inlet parameters:6 000~7000 m3·d-1, in 10 000~20 000 mg·L-1 COD, in 500~1 000 mg·L-1 NH3-N, pH of 8; and the outlet effective was 200~400 mg·L-1 COD and 10~20 mg·L-1 NH3-N. The removal rate of COD and NH3-N was 95~98% and 98~99%, respectively.
     Therefore, the high effective micoorgannism with A/O biological technology was very effectivly for the antibiotic wastewater treatment of the centre of three waste treatments in North China Pharmaceutical Company Ltd, and the designed engineering based on the new technology might match with the decharged standard and has the practical application and knowledge values for the similar engineering or wastewater.
引文
[1]Li. S.Z.. X.Y.Li. et al. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics[J]. Separation and Purification Technology,2004,34(1-3):109-114
    [2]杨军.陆正禹.胡纪萃.等.抗生素工业废水生物处理技术的现状与展望[J].环境科学.1997.18(3):83
    [3]Kummerer. K. Drugs in the environment:emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals inrelation to other sources a review[J]. Chemosphere,2001,45(6-7): 957-969
    [4]Roman H. T.Thomas. H.Klaus, et al. Occurrence of antibiotics in the aquatic environment[J]. The Science of the Total Environment,1999,225(1-2):109-118
    [5]Kummerer. K.. A. Al-Ahmad. V Mersch-Sundermann. Biodegradability of some antibiotics, elimination of the genotoxicityand affection of wastewater bacteria in a simple test[J]. Chemosphere,2000,40(7):701-710
    [6]王凯军,秦人伟.发酵工业废水处理[M].北京:化学工业出版社.2000.468-505
    [7]买文宁,杨明.曾令斌.抗生素废水处理工程的设计与运行[J].给水排水.2002.28(4):42-45
    [8]刘明华.杨林.詹怀宇.复合型改性木质素絮凝剂处理抗生素类化学制药废水的研究[J].中国造纸学报,2006,21(2):47-50
    [9]吴敦虎,李鹏,王曙光,等.混凝法处理制药废水的研究[J].水处理技术.2000.26(1):53
    [10]刘明华,何为,黄建辉.等.一种新型高效有机无机复合絮凝剂处理制药废水的研究[J].福州大学学报:自然科学版,2005,33(1):121-125.
    [11]马文鑫,陈卫中,任建军,等.制药废水预处理技术探索[J].环境污染与防治.2001.23(2):87-89
    [12]魏有权,王化军.张强,等.气浮法预处理土霉素废水的试验研究[J].过滤与分离.2003.13(1):19-2]
    [13]李向东.冯启言,于洪锋.气浮-水解-好氧工艺处理制药废水[J].环境工程.2005.23(3):17-18
    [14]夏文林,李武.煤灰吸附-两级好氧生物工艺处理制药废水[J].环境工程.1999,17(2):13-15
    [15]张满生,章劲松.物理吸附法处理制药废水[J].青海环境,1999.9(3):106-107
    [16]刘国信.叶康钰.夏恒霞.从制药废水中回收金霉素的研究[J].水处理技术.1995.21(2):85-88
    [17]朱安娜.吴卓,荆一凤,等.纳滤膜分离洁霉素生产废水的试验研究[J].膜科学与技术2000.20(4):47
    [18]李颖.电解CASS工艺处理制药废水工艺研究与设计[J]..环境工程,2003.21(1)33-36
    [19]胡晓娜.何争光.胡惠娜.催化铁内电解法处理齐多夫定制药废水的试验研究[J].江苏环境科技.2006.19(4):13-15
    [20]史敬伟.杨晓东.铁炭微电解法预处理制药废水的研究[J].辽宁化工.2006.35(4):211-213
    -[21] 迟娟.黄全辉.李敏哲,等.内电解-MBR工艺处理制药废水的研究[J].工业水处理.2006.26(1):26-29.
    [22]楼茂兴.王方园.制药综合废水的处理[J].工业用水与废水.2003,34(5):39-41
    [23]邹振扬.邓颖,甄庆.等.Fe-C层加催化剂治理制药废水中有机污染物新方法研究[J].化学研究与应用,1999,11(1):91-95
    [24]缪晡.沈江.臭氧氧化处理抗肿瘤抗生素生产废水在工程中的应用[J].医药工程设计.1995(4):39-42
    [25]Balcioglu.I. A.. M. Otker. Treatment of pharmaceuticalwastewater containing antibiotics by O3and O3/H2O2 processes [J]. Chemosphere,2003, 50(1):85-95
    [26]程沧沧,肖忠海,胡德文,等UV/TiO2-Fenton试剂系统处理制药废水的研究[J].环境科研究,2001,14(2):33-35
    [27]王春平,马子川Fenton试剂处理青霉素废水实验研究[J].重庆环境科学,2003,25(12):47-48
    [28]郑玉峰,王向建.黄相国,等.光降解制药废水的试验研究[J].环境保护科学,2002.28(109):16-17
    [29]李耀中,孔欣,周岳溪,等.光催化降解三类难降解有机工业废水[J].中国给水排水.2003.19(1):5-8
    [30]李灵芝,李建渠.自制Ti02光催化剂降解制药废水的研究[J].环境科学与技术.2007.30(6):91-93
    [31]肖广全,陈玉成,杨志敏,等.超声波-好氧生物接触法处理制药废水[J].给水排水,2005.31(1):65-67
    [32]陈一中,朱敏,刘瑜,等.小诺霉素发酵废水好氧生物处理试验研究[J].上海环境科学.1997,16(4):26
    [33]王洋,徐雅昕,赵玉秀.等.深井曝气法处理高浓度有机废水的工艺及应用[J].环境保护科学,1999,26(2):33-34
    [34]杨俊仕,李旭东,李毅军,等.水解酸化-AB生物法处理抗生素废水的试验研究[J].重庆环境科学,2000,22(6):50-53
    [35]耿士锁.加压生化-生物过滤法处理合成制药废水[J].江苏环境科学.1998.2:14-16
    [36]乔洪棋.毕东.揭成渝.四环素工业废水生化处理工艺的研究[J].重庆环境科学.1994.16(1):5
    [37]相会强.刘良军.胡宇庭.水解酸化-两段生物接触氧化工艺处理制药废水[J].环境科学与技术.2005.28(1):92-93
    [38]张记市.谢刚.孙可伟.含酚制药废水处理技术[J].环境技术.2003.4:34-38
    [39]郝晓刚.李春.接种颗粒污泥UASB反应器处理味精-卡那霉素混合废水[J].工业水处理.1999.19(2):18-19
    [40]王辉宇.李立明.李敬国.上流式厌氧污泥床反应器处理抗生素废水试验[J].华北水利水电学院学报.2002.23(3):66-68
    [41]李再兴.杨景亮.罗人明.等UASB处理阿维菌素废水的研究[J].重庆环境科学.2002.24(2):49-55
    [42]丁凯.詹忠庆UASB-两级生物接触氧化工艺处理制药废水[J].安徽化工.2006.142(4):47-48
    [43]买文宁.周荣敏.厌氧复合床处理抗生素废水技术[J].环境染治理技术与设备.2002.3(5):23-27
    [44]于宏兵.杜军.李景新,等.水解酸化-二段式生物接触氧化处理生物制药废水[J].环境工程,2005,23(5):9-10
    [45]邱丽君,彭放,廖海波.水解酸化-SBR法处理生物制药废水[J].工业水处理,2005,25(1):58-60.
    [46]祁佩时,陈战利,于桂清,等.复合生化法处理难降解制药废水的研究[J].中国环保产业,2005(]0):31-33
    [47]左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展[J].中国沼气,2000.18(4):3-8
    [48]Dries J, De Smul A, Goethals L, et al. High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor[J]. Biodegradation,1998,9:103-111
    [49]白晓慧,张立秋,王欣泽,等.复合式厌氧反应器处理中药废水[J].给水排水.1999,25(4):39-40
    [50]祁佩时,丁雷,刘云芝,等.复合微氧水解-好氧工艺处理抗生素废水[J].环境工程,2006,24(1):24-26.
    [51]冯昭华.中药提取废水的治理工程[J].环境工程,2005.23(5):29-31.
    [52]李斌.王璐.厌氧-好氧法在制药废水处理中的应用[J].工业水处理,2002.22(12):47-48
    [53]Orhon, Derin, Genceli, et al. Characterization and Modeling of Activated Sludge for Tannery Wastewater[J]. WaterEnvironment Research,1999:20
    [54]钱卫萍.刘大义,许和贵.A/O工艺处理制药生产废水[J].工业水处理.2006,26(1):81-82
    [55]黄胜炎.医药工业废水处理现状与发展[J].医药工程设计杂志,2005.26(3):41-50
    [56]张书海,朱雪,李英辉UASB-兼氧-接触氧化-气浮处理生物制药废水[J].环境工程,2008. 26(3):22-23
    [57]龚敏.张勇.赵九旭.等.ABR-EGSB-SBR组合工艺处理制药废水[J].环境科学与技术.2006.29(12):80-82
    [58]马立艳.厌氧水解-CASS工艺在抗生素废水处理中的应用[J].科学技术与工程.2008.1671-1819
    [59]李向军.“厌氧+好氧”工艺在抗生素废水处理工程中应用及相关计算[J].水工业市场.2008(2):18-20
    [60]曾常华.复合菌群及其固定化技术处理抗生素生产废水的研究[D].南昌 南昌大学.2007
    [61]庞胜华.固定化活性污泥处理抗生素废水的试验研究[D].福州 福州大学.2005
    [62]Young C Y. The use of enzymes and biocatalytic additives forwastewater treatment process. Water Pollut Control Fed High-lights,1976,13:15-18
    [63]Fantroussi S E. Agathos S N. Is bioaugmentation a feasiblestrategy for pollutant removal and site remediation CurrentOpinion inM icrobiology,2005.8(3):268-275
    [64]Vogel T M. Bioaugmentation as a soil bioremediationapproach[J]. Environ Biotechno.1996. 7(3):311-316
    [65]全向春,刘佐才,范广裕.等.生物强化技术及其在废水治理中的应用[J].环境科学研究.1999,12(3):22-27
    [66]孙炜.熊振湖,刘春,等.生物强化及在环境污染物生物治理中的新进展[J].天津城市建设学院学报.2006,12(1):20-54
    [67]Britt M W, Jeppe L N, kristian K, et al. Influence of microbial activity on the stability of activated sludge flocs[J]. Colloid and sSurface B:Biointerfaces,2000,18(2):145-156
    [68]Mohan S V, RaoN C, PrasadK K, et al. Bioaugmenta-tion of an anaerobic sequencing batch biofilm reactor(AnSBBR) with immobilized sulphate reducing bacteria(SRB) for the treatment of sulphate bearing chem icalwastewaters. Process Biochem,2005,40(8):2849-2857
    [69]Kennedy M S, Grammas J, Arbackle WB. et al. Parachlorophenoldegradation uses bioaugmentation research[J]. Water Pollut Control Fed,1990.62:227
    [70]何义亮.张波.高效复合微生物技术处理化工试剂废水[J].中国给水排水.2002.18(5):74-76
    [71]Hung Y T, Zachopoulus S A, Horsfall F L. Effect of bioaugmentation process on sludge production in activated sludge reactors formunicipal wastewater treatment. Western Canada Water and Wastewater Assoc. Proc.39th Ann. Conf. Saskatoon:Saskatchewan.1987.63-74
    [72]Hung Y T. Horsfall F L. Wong J M. et al. Bioconversion of accumulated sludge with bacterial augentation process in aerated lagoonsfor municipal wastewater treatment. Intern J Environmental Stud-ies,1986.28:41
    [73]Watanabe K. Hino S. Takahashi N, et al. Effects of exogenous phenol-degrading bacteria on performance and ecosystem of activated-sludge.J Fermentation and Bioengineering.1996.82(3): 291
    [74]CristianoN., Marcello Z., Marina R., et al. Development ofparticlebased biofilms fordegradation ofxenobiotic organic compounds. Water Res.,2005,39:2495-2504
    [75]Wang J. L., Quan X.C., Wu L.B., et al. Bioaugmentation as a tool to enhance the removal of refractory compound in coke plant wastewater[J]. Process Biochem..2002,38:777-781
    [76]Shi H.C.. LiuH.. Wang J.L.. et al. Removal of 2.4-dichlorophenol in a conventional activated sludge systemthrough bioaugmentation[J]. Process Biochem..2004,39:1701-1707
    [77]Satoh H., Okabe S., YamaguchiY. K.. et al. Evaluation of the impact of bioaugmentation and biostimulationby in situ hybridization and microelectrode. Water Res..2003.37:2206-2216
    [78]Boon N., Top E. M., VerstraeteW.. et al. Bioaugmentation as a tool to protect the structure and function of anactivated-sludgemicrobial community against a 3-chloroaniline shock load. App.l Environ. Microbio.l,2003.3:1511-1520
    [79]Saravanance R. MurthyD V S, KrishnaiahK. Treatmentof antiosmotic drug based pharmaceutical effluent in anupflow anaerobic fluidized bed system[J]. Waste Manage-men.2001.21(6): 563-568
    [80]许玫英.曾国驱,蔡小伟.等.扑热息痛高效降解菌的选育及其生物强化效果.环境科学学报,2003.23(3):391-395

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700