制药废水的铁碳微电解-Fenton联合工艺预处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废水的排放不仅浪费了宝贵的资源,而且将废水排入江河中还会造成严重的环境污染。白藜芦醇生产废水是一种浓度高,生物毒性较大、成分复杂的医药生产废水,很难对其进行直接的生化处理。如何通过预处理降低有机物浓度特别是难降解有机物浓度、降低废水毒性、改变水质条件是直接影响生化处理效果的关键所在。为了提高废水的生化性,改变废水中污染物性质,以便后续生物处理,本课题采用铁炭微电解—Fenton氧化法对白藜芦醇生产废水进行预处理,通过单因素实验和正交分析获得了对该类废水处理的各种工艺参数与主要影响因素,同时建立了最佳组合工艺,并通过价格核算得出了该预处理工艺的成本。
     根据铁炭微电解的基本原理,本课题选择废铁屑与活性炭粉作为铁炭微电解材料,对白藜芦醇生产废水进行了预处理,并对其主要影响因素进行了单因素实验研究及正交分析,讨论了电解时间、铁炭投加量、pH值、铁炭比等因素对该废水COD去除率的影响。研究结果表明:当体系pH 2.5,电解时间3小时,铁炭比(体积比)2:3,铁炭投加量1300g/L,在此条件下铁炭微电解对废水中COD的去除率可高达到83.8%。正交分析结果表明:电解时间是影响铁炭微电解方法的主要因素,各主要影响因素对铁炭微电解效果的影响大小依次为电解时间>铁炭投量>pH>铁炭比。
     本实验选取30%双氧水和硫酸亚铁溶液作为Fenton试剂配制材料,通过单因素和正交实验,对Fenton试剂处理白藜芦醇生产废水的主要影响因素进行了研究并得出了最佳工艺条件。主要影响因素包括:pH、氧化时间、Fe~(2+)/H_2O_2摩尔比、H_2O_2加量等。研究结果表明:Fenton氧化法对该废水处理的最佳工艺条件为pH 3.5,氧化时间40分钟,Fe~(2+)/H_2O_2摩尔比为2:45、氧化剂(30%H_2O_2)加入量27mL/L,此时COD去除率可达到52%左右。正交分析结果表明,对Fenton氧化工艺影响最大因素是pH;通过拟合可知COD去除率与pH值的变化呈显著的线性关系,这与反应过程中H_2O_2的分解产生活性.OH的定速步骤有直接关系。在各主要因素中对Fenton氧化过程影响的大小依次是:pH> Fe~(2+)/H_2O_2摩尔比>H_2O_2加量。
     通过前期研究可以发现,经铁炭微电解处理后的白藜芦醇生产废水其COD值仍然较高,为了进一步降低白藜芦醇生产废水COD值,减轻后继生化处理构筑物的负荷,加快有机物降解,本研究在铁炭微电解处理基础上,采用后续Fenton氧化法对该废水进行了强化处理。首先将原废水pH调至2.5,加入体积比为2:3的铁炭1300g/L,电解3小时;将微电解后的出水pH调至3.5,加入H_2O_2 8mL/L作为氧化剂,同时加入20%Fe~(2+)溶液约0.74mL/L作催化剂,氧化40分钟,调pH至8.5~9,实验结果表明:经过该组合工艺预处理后其废水COD去除率可高达96%,出水水质澄清,COD降到1200mg/L左右,异味基本去除,无悬浮颗粒,达到了生化处理要求。
The discharge of wastewater not only results in a waste of valuable resources, but also causes serious environmental pollution if the wastewater is sent into rivers. Wastewater of resveratrol production is a pharmaceutical wastewater, which has characteristics with high concentration, high bio-toxic and complexity of components. Generally, it should be pretreated before the biological treatment. The key points of pretreatment which directly affect the effect of biological treatment are how to reduce the concentration of organics, especially the refractory organics, remove or reduce toxicity, and change the water qualities. In order to improve the biodegradability of the wastewater, change the property of pollutants in wastewater, so as to make the following treatment much easier, iron-carbon micro-electrolysis followed by Fenton oxidation method was used in the pretreatment research in this paper. Firstly, the process parameters and main factors were obtained through the pretreatment experiments of the wastewater. Then, based on the research of the combined process, the optimum experimental conditions of the combined process were determined. Finally, the pretreatment cost was obtained through the price calculation of the basic processes.
     Based on the basic principles of iron-carbon micro-electrolysis, iron scrap and activated carbon powder were used as materials of micro-electrolysis to pretreat the wastewater of resveratrol production. Orthogonal and single-factor experiment methods were used to get the key factors affecting the process, the factors, such as electrolysis time, the iron-carbon dosage, pH, iron-carbon ratio and so on, which affect COD removal rate of the wastewater were discussed. The results showed that under the conditions of pH 2.5, electrolysis time was 3 hours, iron-carbon ratio (volume ratio) was 2:3, iron-carbon dosage was 1300g/L, COD removal rate of the wastewater reached 83.8%. Orthogonal analysis results showed that the order of various main factors affecting the effect of the iron-carbon electrolysis was electrolysis time > iron-carbon dosage> pH> iron-carbon ratio.
     In this study, 30% hydrogen peroxide and ferrous sulfate solution were selected as the materials of Fenton reagent, through single factor and orthogonal experiments, the main factors of treatment of resveratrol wastewater by Fenton reagent were studied and the optimum conditions were obtained, The main factors included pH, oxidation time, Fe~(2+) / H_2O_2 molar ratio, H_2O_2 dosage and so on. The results showed that pH3.5, oxidation time was 40 minutes, molar ratio of Fe~(2+) and H_2O_2 was 2:45, oxidant dosage (30% H_2O_2) was 27mL/L were determined as the optimum conditions of the Fenton oxidation process, under these conditions, COD removal rate reached 52%. pH as the most important factor has been determined by orthogonal experiments,COD removal rate and pH changes showed a significant linear relationship by fitting, which had direct relationship with the fixed speed steps of H_2O_2 decomposition to produce activity .OH. The order of various main factors affecting the effect of the Fenton oxidation process was pH> Fe~(2+) / H_2O_2 molar ratio > H_2O_2 dosage.
     Through preliminary studies, we could see that COD of the resveratrol production wastewater still stayed high after the iron-carbon micro-electrolysis treatment, in order to further reduce the COD value of the wastewater, reduce the load of equipments in subsequent biological treatment, and accelerate the degradation of organic matter, in this study, iron-carbon micro-electrolysis treatment followed by Fenton oxidation treatment was used to enhance the treatment result of the wastewater. The results showed that, by adjusting the original waste water’s pH to 2.5, adding iron-carbon 1300g/L with the volume ratio 2:3, and after electrolysis for 3 hours, adjusting water’s pH to 3.5, then adding 8mL/L H_2O_2 as the oxidant, while adding additional 20% Fe~(2+) solution about 0.74 mL/L as catalyst, at last, after oxidation for 40 minutes, adjusting water’s pH to 8.5 ~9, then COD removal rate reached 96% . After the pretreatment process, the water became clarification, COD reduced to about 1200mg/L, the odor was basically removed and no suspended particles were observed, achieving the requirement of biological treatment.
引文
[1]国家环保局《全国环境统计公报(2005)》
    [2]国家环保局《全国环境统计公报(2006)》
    [3]国家环保局《全国环境统计公报(2007)》
    [4]国家环保局《全国环境统计公报(2008)》
    [5]田玲,王九思,李玉金.水处理絮凝剂的絮凝原理及其研究进展[J].甘肃教育学院学报(自然科学版),2004,18(1):54.57
    [6]张洪升,刘娟昉,邓军,翟学东.混凝剂的研究现状与展望[J].中国科技博览,2009,09:39
    [7]吴桐,姜创,刘军海.污水处理絮凝剂的研究现状[J].化工科技市场,2009,32(7):21-25
    [8]仪晓玲,马自俊,张锁兵.无机硅类絮凝剂研究进展[J].精细与专用化学品,2009,10(17):29-32
    [9]朱家伟.制药废水预处理试验研究[J].化学工程师,2010,(4):25~26
    [10]何延青,吴永强.混凝法预处理高浓度制药废水的研究[J].中国农村水利水电,2008,(4): 66-68
    [11]吴敦虎,李鹏.混凝法处理制药废水[J].水处理技术,2000,26(1):53~56
    [12]潘涛.混凝法以及混凝一吸附组合法对制药废水的处理[J].海峡药学,2010,22(2):20-23
    [13]罗亚田,曾勇辉,张列宇等.高浓度中药制药废水的处理研究[J].工业水处理,2006,26( 12):57-59
    [14]孙家寿,石眺霞,张立娟.累托石层孔材料处理制药废水研究[J].非金属矿,2004,27( 3):40-41
    [15]唐艳葵,童张法,李仲民等.微波制备有机膨润土用于生化中药废水处理尾水脱色的试验[J].桂林工学院学报,2007,27(3):382~385
    [16] H. Gulays. Process for the Removal of Recalcitrant Organics from Industrial Wastewater[J]. Water Science and Technology,1997,36(2): 9-16
    [17]吴惠明,李锦文,陈永亨.铊的活性炭吸附分离-紫外分光光度法测定[J].广州大学学报,2006, 5(3): 18-21
    [18]毕顺利,李慧.制约粉末活性炭吸附技术应用的相应解决办法[J].黑龙江科技信息,2010,9:56
    [19] LU Xiu-guo, LIU Yan, ZHANG Pan, RAO Ting. Study on treatment of acidic black 10B dye wastewater by chemical oxidation and adsorption of activated carbon fixed bed[J]. Journal of Environmental Science and Engineering, 2009,07:11-13
    [20]赵庆良,蔡萌萌,刘志刚.气浮-活性污泥工艺处理制药废水[J].中国给水排水,2006,22(1):77-79
    [21]李向东,冯启言,于洪锋.气浮-水解-好氧工艺处理制药废水[J].环境工程,2005, 23(3):17~18
    [22]马文鑫,陈卫中,任建军等.制药废水预处理技术探索[J].环境污染与防治,2001,23(2):87-89
    [23]陈曦.吹脱-厌氧-好氧串联工艺处理化学合成制药废水[J].水处理技术,2008,34(5):43.45
    [24]赵艳,赵英武,陈晗.头孢抗生素制药废水处理工程设计[J].给水排水,2006,32(1):54.56
    [25]王方园,盛贻林.甲红霉素、环丙沙星医药生产废水处理工程[J].重庆环境科学,2000,25(12):117-118
    [26]钟世安,李宇萍,周春山等.减压膜蒸馏法处理多酚类制药废水的研究[J].工业水处理,2003,23(4):44.16
    [27]刘峰,张兰英,刘鹏等.混凝和膜分离联用处理制药废水二级出水中试试验[J].吉林大学学报2008,38( 3):469-471
    [28]周涛,马青兰,陈宏平等.复合生物反应器处理化学合成类制药废水研究[J].工业用水与废水,2010,41(2):42-45
    [29]温学军.电解-SBR联合处理高盐高浓度制药废水工艺技术研究.学位论文.浙江大学. 2010
    [30]张月锋,金一中,徐灏.电解阳极间接氧化法处理制药废水的研究[J].工业水处理,2002,22( 11):22-24
    [31]李颖.电解-CASS工艺处理制药废水工艺研究与设计[J].环境工程,2003,21(1):33.34
    [32]欧丹,吕建伟.铁炭微电解预处理合成制药废水研究[J].给水排水,2009,35(8):316-318
    [33]肖利平,李胜群,周建勇.微电解—厌氧水解酸化—SBR串联工艺处理[J].工业水处理,2000,20(11):25-27
    [34]周健,齐建华,何强等.铁炭微电解生物组合工艺处理制药废水研究[J].中国给水排水,2010,26(21):109-112
    [35]宋勇,于海涛.微电解-水解酸化-SBR工艺处理化学制药废水[J].中国给水排水,2009,25(23):102-103
    [36] M.Ravina, L.Campanella, J. Kiwi. Accelerated Mineralization of the Drug Diclofenac Via Fenton Reactions in a Concentric Photo- reactor[J]. Water Research, 2002,36 (14) :3553. 3560
    [37]彭人勇,杨秀娟. O3/H_2O_2预处理某制药厂嘧啶废水的研究[J].工业水处理, 2010,30(12):73.76
    [38]秦伟伟,肖书虎,宋永会. O3/UV协同氧化处理黄连素制药废水[J].环境科学研究, 2010,23(7):877-880
    [39]徐高田,秦哲,校华等.纳米Ti02光催化-SBR联合工艺处理制药废水[J].环境科学学报,2008,28(7):1314.1319
    [40]王绍文.高浓度有机废水处理技术与工程应用[M].冶金工业出版社. 2003:131
    [41]戴启洲,蔡少卿,王家德.臭氧-生物法处理制药废水[J].中国给水排水,2010,26(10):122-123
    [42]乌锡康.有机化工废水治理技术[M].北京:化学工业出版社. 1999:333.339
    [43]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社. 2004:124~130
    [44]王贞. Fenton-厌氧工艺处理合成制药废水的研究.学位论文.西南交通大学. 2010
    [45]肖继波,张阁尧,王汉道.铁炭内电解处理山核桃加工废水试验研究[J]. 2010中国环境科学学会学术年会论文集(第三卷):2814
    [46]张亚静,应金英,陈晓锋.铁炭内电解法处理印染废水[J].环境污染与防治, 2000,05(22):33.36
    [47]罗立新,韦亚东,安青等.曝气铁炭内电解法处理垃圾渗滤液工艺研究[J].科技导报,2007,21(25):43.46
    [48]鲍立新,李建政,刘莹等.铁炭内电解法预处理安普霉素生产废水[J].哈尔滨工业大学学报,2007,06(39):884.886
    [49]房晓萍.微电解复合工艺处理工业废水的研究进展[J]..安徽化工,2007,33(3):11-14
    [50]刘立华,郑雅杰,龚竹青.聚合铁盐絮凝剂的研究进展与发展趋势[J].现代化工,2002 ,10(12):18-21
    [51] E.Neyens, J..Baeyens. A review of classic Fenton’s peroxidation as an advanced oxidationtechnique[J]. Journal of Hazardous Materials, 2003,98:33–50
    [52]龚跃鹏,徐鑫煤.微电解-Fenton氧化组合预处理苯胺废水的研究[J].工业水处理,2008,28(9):51-53
    [53]王丽婷.钻井废水酸化-内电解-Fenton-混凝工艺研究.学位论文.重庆大学. 2009
    [54]陶长元,向赞,刘仁龙.微波和微波Fenton组合法处理渗滤液的对比[J].辽宁石油化工大学学报,2006,26(4):18~20
    [55]钟理,陈建军.高级氧化处理有机污水技术进展[J].工业水处理,2002,22(1):1-4
    [56]周煜. Fenton、光Fenton氧化处理剩余污泥研究.学位论文.湖南大学. 2010
    [57]常文贵,张胜义.高级氧化技术中羟基自由基产生的机理[J].安庆师范学院学报,2004,10(4):24~26
    [58] Huan-Jung Fanb, Shiuh-Tsuen Huanga, Wen-Hsin Chungc. Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediateseparation and identification[J]. Journal of Hazardous Materials,2009,171 : 1032–1044
    [59] H. GALLARD, J. DELAAT. Kinetc modeling of Fe(III)/H_2O_2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Wat. Res. ,2000,34(12):3107-3116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700