焦化废水中苯酚降解菌的筛选与降解性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是焦化产品生产、消费、出口大国,由焦化废水的排放所造成的环境污染问题和焦化废水的治理技术已成为整个焦化行业发展的瓶颈。2010年我国积极推动焦化产业的优化升级,由扩大产能规模为主向高附加值焦化产品深加工为主、向“低碳”、“绿色”方向转变,焦化废水的深度处理受到高度重视。
     焦化废水含挥发酚、多环芳烃、杂环化合物、焦油等有机成分,还含有氰、硫、氨氮等无机化合物,成分复杂、色度高、毒性大,是典型的难生物降解处理的有机废水。2010年7月1日起执行的《炼焦工业污染物排放标准》(GB 16171-2011)规定COD直接排放限值,现有企业由原来的150 mg/L改为100 mg/L,新建企业由原来的100 mg/L改为50 mg/L,对COD的排放要求越来越严格。酚类物质作为COD的主要贡献物,其降解效率对于焦化废水的达标排放尤为重要。本文就此开展以下内容研究:
     1.从理论方面探讨了构建用于处理焦化废水的基因工程菌的必要性和可行性。仅从活性污泥中分离筛选得到的菌株,对焦化废水的降解能力往往有限,利用基因操作技术对筛选得到的菌株进行遗传学改造,能大幅提高降解酶的活性并扩大降解底物范围。在焦化废水中由于酚类物质相对于难降解的含氮杂环化合物物质有较高的降解率,所以拟通过构建基因工程菌,降低微生物之间的拮抗作用,提高降解效率,实现对酚类物质和含氮杂环物质的双重降解。
     2.以太原煤气化公司第二焦化厂废水处理车间的活性污泥作为菌源,选用两种不同的培养方案,利用不同的液体培养基,采用选择性富集培养技术、逐级提高苯酚浓度的菌株驯化方法,筛选方案(一)当苯酚浓度1800mg/L时筛选得到苯酚降解菌A1,筛选方案(二)当苯酚浓度2000mg/L时筛选得到苯酚降解菌C1、D2、D3。筛选得到的四株菌株均以苯酚为唯一碳源且对苯酚有较高的耐受力。
     3.对筛选得到的四株降酚菌,通过菌体的染色观察、菌落形态特征观察、常规的生理生化特征实验,初步鉴定菌株A1为球杆菌属、菌株C1为不动杆菌属、D2丛毛单胞菌属、D3新鞘脂菌属。同时由生物公司完成细菌16srDNA的分子鉴定,进一步鉴定A1为Acinetobacter baumannii(鲍曼不动杆菌),D2为Comamonas testosteroni(睾丸酮丛毛单胞菌),D3为Novosphingobium naphthalenivorans。
     4.通过对四株菌株在500mg/L、1000mg/L、1500mg/L、2000mg/L不同苯酚浓度的降解率的测定,发现菌株D2不同浓度下的降酚率均优于其他菌株。对菌株D2做环境因子对降酚率的影响实验,改变温度、酸碱度、摇床转速等环境条件探讨环境因子的改变对D2降酚率的影响,从而实现对D2降酚环境条件的优化。
     综上所述,本研究共筛选得到四株降酚菌,均对苯酚具有较高耐受力和降解力,可作为下一步构建焦化废水基因工程菌的受体菌的备选菌株,其中菌株A1并不是常见的降酚菌,丰富了降酚菌的微生物资源。通过菌株D2环境影响实验,优化了其降酚条件,对焦化废水活性污泥处理实践提供了数据参考。
China is the main country of the coking production, coking consumption and coking export. However, the outdated production techniques and equipments seriously polluted the water environment. In 2010, something has been done toactively promote the optimization and upgrading of coking industry in China. It is planned and ruled that the development mode would change from the mainly expanding capacity to the higher-valued coking products in the way of "low carbon" and "green" direction. The coking wastewater treatment are paid more attentions.
     Coking wastewater mainly contains phenol, polycyclic aromatic hydrocarbons, heterocyclic compounds, tar and other organic compounds except for cyanide, sulphide, high concentrations of NH3-N and other inorganic compounds. Due to the complicated compositions, heavy chromaticity and strong toxicity, the coking wastewater is a typical organic wastewater difficult to treat. Since July 1,2010, the implementation of coking industry emission standards (GB 16171-2011) provides the limits of direct discharge of COD, for the existing factory is from 150 mg/L to 100 mg/L, the new enterprise from 100 mg/L to 50 mg/L. Clearly, phenolic substances as the main contribution of COD, their degradation efficiency has the direct relation with meeting the requirements of the coking wastewater discharge standards. For this purpose, it is investigated the treatment process and selected the bacteria to degradate the phenolic substances in this thesis. The details is as follows:
     1. It theoretically discusses the necessity and feasibility of constructing gene engineering bacteria to degrade the coking wastewater effectivly. The capacity of activated sludge strains isolated to degrade the coking wastewater is often limited. The use of genetic technique for genetic transformation strains obtained can significantly increase the degradation enzyme activity and expand the scope of the degradation substrate. The phenolic compounds has higher degradation rate than nitrogen heterocyclic compounds in the coking wastewater during the microbial degradation process, while gene engineering bacteria reduce the antagonism among microorganisms, increase the degradation efficiency and get the double degradation of phenolic compounds and heterocyclic substances.
     2. Activity sludge from Taiyuan Coal Gasification Company's second coke plant is served as the bacterial source. Two training programs are developed bydifferent liquid medium, selective enrichment culture technology and the increase of phenol concentration. In the screening program (1), when phenol concentration is 1800 mg/L we get phenol degradation bacterium A1; in the screening program (2) when phenol concentration is 2000 mg/L we get phenol degradation bacterium C1, D2 and D3. These four strains screened have higher tolerance to phenol and take phenol as sole carbon source.
     3. By the means of biomass staining, colony morphology observation, investigation of physiological and biochemical characteristics, these four phenol degrading bacteria were identified. A1 is as Sphaerobacter, C1 as Acinetobacter, D2 as Comamonas and D3 as Novosphingobium. Biotechnology company (Genolab Biotech Co.,Ltd.) was commissioned to do 16s rDNA molecular identification, C1 is Acinetobacter baumannii, D2 is Comamonas testosteroni and D3 is Novosphingobium naphthalenivorans.
     4. Four strains in different phenol concentration 500mg/L, 1000mg/L, 1500mg/L and 2000mg/L were determined the efficiency of phenol degradation. It was found that strain D2 had better results than the other three. D2 strain was further selected and studied the environmental factors on the rate of phenol degradation experiments, such as temperature, pH and rotation speed. The optimization of environmental conditions was.
     In summary, four strains of phenol degrading bacteria has been screened out during this study. All of them have higher tolerance and better degradation ability for phenol. All of these can be as the candidate recipient strain in constructing genetic engineering strain using in the coking wastewater degration. In addition to, Strain A1 is not a common strain as usually we used, that means it can enrich microbial resources for phenol cracking. Through the environmental impact experiments, the environmental conditions of strain D2 have been optimized in the process of degradation of phenol. It provides data as reference for coking wastewater treatment by activated sludge.
引文
[1]吴高明.焦化废水(液)物化处理技术研究[D].武汉:华中科技大学,2006.
    [2]肖勇强.氨氮测定影响因素探讨[J].水资源保护,2004,20(1):30-32.
    [3]国家标准.水质石油类和动植油的测定红外光度法.GB/T 16488-1996.
    [4]俞杰.水中挥发酚和油类测定的几点体会[J].水处理技术,2000,26(5):307-310.
    [5]马微.国内氰化物测定法近况[J].环境科学与技术,2005,28(z1):173-176.
    [6]白杰.总氰化物测定中应注意的几个问题——异烟酸—吡唑啉酮光度法[C].科技、工程与经济社会协调发展.2004:
    [7]国家环境保护局.水和废水监测分析方法.2002,中国环境科学出版社:北京.
    [8]Pomerantz N., Ladizhansky Y, Korin E., Waisman M., Daltrophe N., Gilron J. Prevention of Scaling of Reverse Osmosis Membranes by Zeroing" the Elapsed Nucleation Time. Part I. Calcium Sulfate [J]. Industrial & engineering chemistry research,2006,45(6):2008-2016.
    [9]于静洁.废水BOD5测定的探讨[J].环境科学与技术,2008,31(7):80-83.
    [10]陈月华.生物毒性测试法的研究与应用[D].天津:天津大学,2010.
    [11]胡耀铭,陈正夫.化学衍生化/GC/MS鉴定焦化废水中羧酸化合物[J].环境监测管理与技术,1995,7(001):32-33.
    [12]任源,韦朝海,吴超飞,吴锦华,谭展机.生物流化床A/O^2工艺处理焦化废水过程中有机组分的GC/MS分析[J].环境科学学报,2006,26(011):1785-1791.
    [13]孔令东,姜成春.焦化废水中有机污染物的GC—MS法测定[J].给水排水,1994,20(004):48-50.
    [14]陈艳,陈华圣,姚瑞平,刘翠霞,汪厚植,张铭金. GC/MS测定氧化钛光催化降解焦化废水中的有机物[J].第十五次全国色谱学术报告会文集(上册),2005.
    [15]赵大传,杨厚玲.用GC/MS联用分析焦化厂蒸氨废水中的有机物组成[J].中 国环境监测,1996,12(005):30-32.
    [16]徐杉,宁平. GC/MS法分析焦化废水中的有机污染物[J].云南化工,2002,29(005):32-34.
    [17]孙剑辉,冯精兰,孙瑞霞. GC—MS分析碱法草浆造纸废水中的有机污染物组成[J].中国环境监测,2005,21(001):53-55.
    [18]胡江泳,王占生.某炼油厂饮用水中有机污染物的GC/MS分析研究[J].环境科学与技术,1994,(002):5-9.
    [19]陈慧,戴晖. GC/MS法分析焦化废水中微量有机污染物[J].环境科学与技术,2002,25(003):30-31.
    [20]张烈文,穆守权,刘振庄.再生胶废水中有机物的GC/MS/DS定性分析[J].质谱学报,1985,4:26-32.
    [21]薛慧峰,赵家林,赵旭涛,曹兰花,任月英,胡之德.丁苯橡胶废水中有机物的定性分析[J].分析化学2006,34:141-144.
    [22]赵立军,郭磊,陈进富,郭春梅,靳炜.抗生素废水的GC-MS分析与显色物质的初步确定[J].环境工程学报,.2009,3(010):1830-1834.
    [23]韦朝海,朱家亮,吴超飞,吴海珍,卢彬,李国宝,陈金贵.焦化行业废水水质变化影响因素及污染控制[J].化工进展,2011,1:225-232.
    [24]任源,韦朝海,吴超飞,李国保.焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报,2007,27(7):1094-1102.
    [25]杨业玲,谷志强,王建泰,王凯,李天增,侯广智.焦化废水深度处理回用技术进展[J]. WATER & WASTEWATER ENGINEERING, 2010,36(1):229-233.
    [26]蔺起梅,杨小红.焦化废水处理技术的应用与研究进展[J].环境研究与监测,2006,19(4):40-43.
    [27]乔元梅,任艳霞.焦化废水处理方法综述[J].过滤与分离,2007,17(003):46-48.
    [28]赖鹏,赵华章,倪晋仁.硫酸铁混凝剂处理焦化废水A/O工艺出水的研究[J].中 国环境科学,2008,28(3):215-219.
    [29]江白茹,张瑜.脉冲放电等离子体处理焦化废水技术研究[J].工业安全与环保,2005,31(1):16-20.
    [30]李东伟,高先萍,蓝天. UV-Fenton试剂处理焦化废水的研究[J].水处理技术,2008,34(010):42-45.
    [31]陈新宇.催化超临界水氧化技术处理焦化废水的应用研究[D].天津:天津大学,2007.
    [32]王真,杨勇,王珲,陈秉倪.电化学氧化法降解焦化废水的研究[J].上海化工,2008,33(010):1-3.
    [33]段连钧,刘杰,谷兆全,乔蕴虹,陆晓岚,童德馨,徐鸿德.传统活性污泥工艺升级改造的设计优化研究[J].中国给水排水,2010,26(11):43-47.
    [34]李文英,花吉锋,荆洁颖,李静.移动床生物膜反应器中两种填料氧传质性能的比较[J].太原理工大学学报,2010,41(5):487-492.
    [35]荆洁颖,李文英.移动床生物膜反应器污水处理工艺的研究现状及展望[J].煤化工,2008,36(4):23-29.
    [36]Park D., Lee D.S., Kim Y.M., Park J.M. Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility [J]. Bioresource Technology,2008,99(6):2092-2096.
    [37]董蓓.焦化废水深度处理回用预处理工艺研究[D].武汉:武汉科技大学,2009.
    [38]刘昌林.焦化废水处理技术应用现状与发展[C].2008年海水淡化与废水利用技术研讨会论文集.2008:
    [39]刘虹.紫外辐射和生物膜组合降解苯酚废水的研究[D].上海:上海师范大学,2009.
    [40]杨素亮.高效苯酚降解菌的分离纯化及He-Ne激光诱变育种研究[D].天津:天津大学,2005.
    [41]张月澜,刘桂萍,陈晓霞.含酚工业废水生物降解技术研究进展[C].第三届沈 阳科学学术年会论文集.2006:
    [42]刘春芳.固定化细胞技术处理化工废水研究进展[J].石化技术与应用,2003,21(1):67-72.
    [43]何泽超,章杰,宋昊,梁川.固定化细胞处理含酚废水[J].四川大学学报(工程科学版),2005,37(6):61-65.
    [44]张黎,魏炜,袁雅姝,冯思琦.固定化微生物技术处理含酚废水的研究现状[J].环境保护与循环经济,2009,29(8):43-47.
    [45]张谨华,李鹏丽,王婧人,李彩虹,杨秀清.苯酚降解菌DF51的分离鉴定、降解特性及其固定化的研究[J].中国农学通报,2009,25(24):410-416.
    [46]宋昊.降酚菌及其固定化细胞处理含酚废水的研究[D].成都:四川大学,2004.
    [47]刘桂萍,魏剑峰,刘长风,王瑾.固定化细胞流化床处理含酚废水的研究[J].环境科学与技术,2010,33(5):147-151.
    [48]蔡健,吴恒喜,肖建军,何水.HSB高效菌种在焦化废水处理中的应用[J].武钢技术,2009,47(3):5-8.
    [49]宋昊,何泽超.降酚菌株的固定化细胞处理含酚废水的性能研究[J].环境污染治理技术与设备,2005,6(9):37-41.
    [50]Saravanan P., Pakshirajan K., Prabirkumar Saha. Biodegradation of phenol and m-cresol in aculture predominantly Pseudomonas sp.batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial [J]. Bioresource Technology,2008,99 (18):8553-8558.
    [51]Bai J., Wen J.P, H.M.Li, KKK. Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis [J]. Process Biochemistry,2007,42(4): 510-517.
    [52]Juang Ruey-Shin, Tsai Shang-Yuan. Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate [J]. Biochemical Engineering Journal,2006,31(2):133-140.
    [53]Kumar Arinjay, Kumar Shashi, Kumar Surendra. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194 [J]. Biochemical Engineering Journal,2005,22(2):151-159.
    [54]Wei Gehong, Yu Jianfu, Zhu Yuhua, Chen Weimin, Wang Li. Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region [J]. Journal of Hazardous Materials,2008,151(1): 111-117.
    [55]Arutchelvan V., Kanakasabai V., Elangovan R., Nagarajan S., Muralikrishnan V. Kinetics of high strength phenol degradation using Bacillus brevis [J]. Journal of Hazardous Materials,2006,129(1-3):216-222.
    [56]Bayramoglu Gulay, Gursel Ihsan, Tunali Yagmur, Arica M. Yakup. Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets [J]. Bioresource Technology,2009, 100(10):2685-2691.
    [57]Chen Bor-Yann, Chen Wen-Ming, Chang Jo-Shu. Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis [J]. Journal of Hazardous Materials,2007,139(2):232-237.
    [58]Juang Ruey-Shin, Chung Tsuey-Ping, Wang Maw-Ling, Lee Duu-Jong. Experimental observations on the effect of added dispersing agent on phenol biodegradation in a microporous membrane bioreactor [J]. Journal of Hazardous Materials,2008, 151(2-3):746-752.
    [59]Wang Ying, Tian. Ye, Han Bin, Zhao Hua-bing, Bi Jian-nan, Cai Bao-li. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12 [J]. Journal of Environmental Sciences,2007,19(2):222-225.
    [60]Liu Y. J., Zhang A. N., Wang X. C. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03 [J]. Biochemical Engineering Journal,2009,44(2-3):187-192.
    [61]Feng W., Wen J.P., Liu C.Y. Modeling of local dynamic behavior of phenol degradation in an internal loop airlift bioreactor by yeast Candida tropicalis [J]. Biotechnology and Bioengineering,2007,92(2):251-264.
    [62]Chen Bor-Yann, You Jun-Wei, Hsieh Ya-Ting, Chang Jo-Shu. Feasibility study of exponential feeding strategy in fed-batch cultures for phenol degradation using Cupriavidus taiwanensis [J]. Biochemical Engineering Journal,2008,41(2):175-180.
    [63]刘广金,张袖丽.苯酚高效降解菌的筛选及其降解特性的研究[J].现代农业科 技,2007,(011):202-202.
    [64]王凌华.新型降酚菌Arthrobacter nicotianae PI-7和Klebsiella sp.P8-14的分子生态学监测方法的研究[D].上海:上海交通大学,2002.
    [65]袁利娟,姜立春,彭正松,阮期平.高效降酚菌Bacillus sp.JY01的固定化及降解特性研究[J].环境科学与技术,2010,33(4):49-54.
    [66]贾振华. Ralstonia metallidurans CH34降解苯酚的研究[D].石家庄:河北师范大学,2005.
    [67]吴志国.固定化抗重金属菌种R.metallidurans CH34降解苯酚的研究[D].天津:河北工业大学,2005.
    [68]肖毅. Alcaligenes sp.strain NyZ215中邻硝基酚降解的分子生物学研究[D].武汉:中国科学院武汉病毒研究所,2008.
    [69]周德平.少动鞘氨醇单胞菌ZX4儿茶酚2,3-双加氧酶基因的克隆与表达[J].上海农业学报,2007,23(2):7-10.
    [70]郭杨.基因工程菌处理重金属及难降解废水的研究现状及进展[C].首届全国微生物污染防治监测新技术与环境安全管理研讨交流会论文集.2008:
    [71]蔡颖,赵肖为,邓旭,李清彪,卢英华,尹涛烽.基因工程菌生物富集废水中重金属镉[J].水处理技术,2006,32(1):26-31.
    [72]李向东,冯启言,于洪锋.基因工程菌在制药废水处理中的应用[J].工业水处理,2008,28(8):70-73.
    [73]丁华,金若菲,周集体.基因工程菌在厌氧膜生物反应器中对偶氮染料废水的脱色[J].环境工程学报,2007,1(3):25-30.
    [74]谢珊,刘俊新,李琳,乔传令.利用基因工程菌BL21处理有机磷混合农药废水的研究[J].环境工程学报,2008,2(7):869-876.
    [75]谢珊.基因工程菌和自然菌协同处理有机磷农药废水的研究[D].北京:中国科 学院生态环境研究中心,2008.
    [76]吴高明,刘汉杰,陆晓华.活性污泥法处理焦化废水COD不达标原因分析[J].环境科学与技术,2008,(001):62-64.
    [77]荆洁颖.移动床生物膜反应器对焦化废水脱碳除氮研究[D].太原:太原理工大学,2009.
    [78]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [79]焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23S rDNA间区[J].微生物学通报,2001,(1):83-96.
    [80]张彤,方汉平.微生物分子生态技术:16S rRNA/DNA方法[J].微生物学通报,2003,30(2):97-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700