新型组合填料塔处理抗生素废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展和人类对自身健康的关注度增加,医药工业迅速发展,与此同时伴随而来的是医药行业在药物生产的过程中排放出的废水的增加以及对环境造成的污染的加剧,这些消极的影响也给人类的生命健康带来了新的严重的威胁。因此探讨有效处理医药废水是非常有必要的。
     填料是废水生物接触氧化处理工艺的核心部分。根据生物接触氧化法对填料特性的要求,本论文创新设计、研制开发了性能优良的填料。本论文采用的新型阶梯环组合填料除具有耐磨、耐压、腐蚀性、机械性能好、无毒之外,还具有优良的布水布气性能和切割气泡的功能。以空间立体构型和半软性纤维相结合,可以得到性能优良的填料,此填料的空隙率为0.94,比表面积为382.9m~2·m~(-3),比阶梯环填料增大250.4 m~2·m~(-3)。
     实验测定了组合填料和阶梯环填料在清水和废水中的氧传递性能,通过数据拟合,得到了不同情况下的液相总体积传质系数和在20mg·L~(-1)废水中的液相总体积传质系数计算式。阶梯环填料: K_La=12.30q~(0.5605),组合填料:K_La=12.67q~(0.7927)。在相同曝气量下,后者的传质系数高于前者:在实验采用的曝气量1.0~(-1).8m~3·h~(-1)范围内,组合填料的液相总体积传质系数要比阶梯环填料的液相总体积传质系数大3.01%~(-1)8.07%。
     阶梯环填料塔与新型组合生物填料塔进行平行对比实验,阿莫西林模拟废水降解实验表明,降解过程中在新型阶梯环组合生物填料塔中阿莫西林的去除比在阶梯环填料塔中快。废水中的初始浓度、溶解氧、葡萄糖浓度和填料层高度对阿莫西林的去除有显著影响。在本实验所考察的参数范围内,最佳溶解氧浓度为5mg·L~(-1),最适宜葡萄糖浓度800mg·L~(-1),最佳处理时间为72h。
     正交试验的结果表明,影响阿莫西林在新型填料塔内的去除效果的因素的主次顺序为:溶解氧浓度>葡萄糖浓度>处理时间>阿莫西林浓度。实验范围内的最优组合为:20 mg·L~(-1)的阿莫西林,4mg·L~(-1)的溶解氧浓度,800mg·L~(-1)的葡萄糖浓度和72小时处理时间。各因素水平的变化对于结果的影响的显著程度为:溶解氧浓度和葡萄糖浓度高度显著,处理时间和阿莫西林浓度显著。
With the development of science and technology and the attention paid to health, medical industry develops rapidly. However, at the same time, wastewater from the process of manufacture medicine is increasing, thus the pollution to environment is more and more serious. All these negative impacts bring new and critical threatens to human being’s health. To sum up, it is of great necessary to do some research on treating medical wastewater.
     Packing is a key part of wastewater treatment in aerobic system. A novel combined packing of superior characteristics was developed in order to meet the requirement for the biological attaching oxidation process. Except for the wear-resisting、pressure-resisting、anticorrosion、good mechanics and avirulence, the combined packing is excellent in the function of dispersing liquid and air flow in packing tower and bubble cutting. The experiment shows that the combination of stereoscopic structure and semi-soft fiber will get a new packing with excellent characteristics. The parameters of new packing are that: the porosity is 0.94, specific surface area is 382.9 m~2·m~(-3).
     The dynamic curves of oxygen mass transfer were measured experimentally and the formulas for calculating liquid overall volumetric oxygen mass transfer coefficients in the novel style combing packing tower or in the ladder packing tower were obtained by fitting the experimental data. The formula for new style combined packing tower is K_La=12.30q~(0.5605), for Cascade Mini ring tower is K_La=12.67q~(0.7927). The comparison between the two formulas shows that at the same aeration flux, the latter K_La is bigger than the former one: under the condition of research, the aeration is 1.0~(-1).8m~3·h~(-1), thus the K_La for the latter one bigger than the former one is 3.01%~(-1)8.07%.
     The experimental results in new style combined packing tower parallel with Cascade Mini ring tower indicate that: the degradation of Amoxicillin simulated wastewater in the new style combined packing tower is faster than that in the Cascade Mini ring tower. Factors such as the initial concentration, dissolved oxygen concentration, glucose concentration and packing height have great influence on the degradation of Amoxicillin. In the parameters this experiments considered, best aeration flux is 4mg·L~(-1), best glucose concentration is 800mg·L~(-1), best treating time is 72h.
     The results of orthogonal test shows the sequence of factors which affect the remove of Amoxicillin in new style packing tower is: dissolved oxygen > concentration of glucose > treating time > initial concentration of Amoxicillin. The optimal combination is: when the initial concentration of Amoxicillin is 20mg·L~(-1), the dissolved oxygen is 4mg·L~(-1), glucose concentration is 800mg·L~(-1), and the treating time is 72h. The notability of variation of each factor level is: dissolved oxygen and concentration of glucose are highly notable, treating time and the initial concentration of Amoxicillin are moderately notable.
引文
[1]黄建华.粤去年废污水排放量递减3.4%[N].广州日报, 2009,08,12, A13
    [2]佘宗莲,田由芸.厌氧-好氧序列间歇式反应器处理生物制药废水的研究[J].环境科学研究, 1998, 18(2): 19
    [3]陆永生,华彬,施利毅.含制药残叶废水的梳理工艺研究[J].上海环境科学, 1999, 18(5): 223
    [4]张丽杰,陈建中.抗生素制药废水的处理研究,有色金属[J]. 2003,55:143-146
    [5]李城宽.制药行业中污水处理技术及实践[J].江苏环境科技, 2007, 20(3): 32-33
    [6]张统.污水处理工艺及工程方案设计[M].北京:中国建筑工业出版社,2002: 12-15
    [7]刘守强,周淑梅,韩德全.抗生素生产的环境效应分析[J].医药工程设计, 2006, 27(3): 18-20
    [8] Kate p. langton , Peter J. F. Henderson, Richard B. Herbert. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism [J]. Nat. Prod. Rep., 2005, 22: 439-451
    [9] Koplin D. W.. Pharmaeuticals, hormones, and other orgnic wastewater contaminates in U.S. streams, 1999-2000: A National Reconnaissance[J]. Environmental Science and Technology, 2002, 36(6): 1202-1211
    [10] J?rg E. Drewes, Laurence S. Shore. Concerns about Pharmaceuticals in Water Reuse, Groundwater Recharge, and Animal Waste [M]. Americal Chemical Society, Washington DC, 2001: 206-228
    [11] Jones O. A., Voulvoulis N., Lester J. N.. Human pharmaceuticals in wastewater treatment processes[J]. Critical Reviews in Environmental Science Technology, 2005, 35(5): 401-427
    [12] Halling Sorensen B., Nors Nielsen S., Lanzky P. F., et al. Occurrence, Fate and Effects of Phameceutical Substances in the Environment-A Review[J]. Chemosphere, 1998, 36(2): 357-393
    [13] Holten-Lützhoft , Halling-Sorensen H. C.. Occurrence, fate and effects of pharmaceutical substances in the environment [J]. Arch. Environ. Contam. Toxico, 1999, 36: 1-6
    [14] Dijck P. V., Van de Voorde H.. Sensitivity of environmental microorganism toantimicrobial agents [J]. Appl. Environ. Microbiol., 1976, 31: 332-336
    [15] Daughton C. G., Ternes T. A.. Pharmaceuticals and personal care products in the environment: Agents of subtle change? [J]. Environmental Health Perspectives, 1999, 107: 907-938
    [16] J.M. Brown, J. G. Niedercorn. Antibiotics [J]. Industrial and Engineering Chemistry, 1952, 44(3): 468-472
    [17] Isidori M., Lavorgna M., Nardelli A., et al. Toxic and genotoxic evaluation of six antibiotics on non-target organisms [J]. Sci. Total Environ, 2005, 345: 87-98
    [18] Sujung Park, Kyungho Choi. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems [J]. Ecotoxicology, 2008, 17: 526-538
    [19] Marta Carballa, Francisco Omil, Juan M. Lema, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant [J]. Water Research, 2004(38): 2918-2926
    [20] Thomas Ternes, Jennifer Kormos, Manoj Schulz. Occurrence and afate of pharmaceuticals in the environment [J], Environmental Risk Assessment for Human Pharmaceuticals, 2009 (189): 16-36
    [21] H?verstad T, Carlstedt-Duke B., Lingaag E., et al. Influence of oral intake of seven different antibiotics on faecal short-chain fatty acid excretion in healthy subjects [J]. Scand J Gastroenterol, 1986, 21: 997-1003
    [22] Berger K., Petersen B., Buening Pfaue H.. Persistence of drugs occurring in liquid manure in the food chain [J]. Arch Lebensmittelhygiene, 1986, 37(4): 99-102
    [23]王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报, 2006, 26(1): 265-270
    [24] Hirsch R., Ternes T., Haberer K., et al. Occurrence of antibiotics in the aquatic environment[J]. The Science of Total Environment, 1999, 225: 109-118
    [25] Davidson J.. Genetic exchange between bacteria in the environment[J]. Plasmid, 1999, (42): 73-91
    [26]王路光,朱晓磊,王靖飞,等.环境水体中的残留抗生素及其潜在风险[J].工业水处理, 2009, 29(5): 10-14
    [27] Jones O. A., Voulvoulis N., Leste J. N.. Human pharmaceuticals in wastewater treatmentprocesses [J]. Critical Reviews in Environmental Science and Technology, 2005, 35(5): 401-427
    [28] European Federation of Animal Health (FEDESA). Antibiotic use in farm animals does not threaten human health?[M]. FEDESA/FEFANA Press release, Brussels, Belgium, 2001: 167-169
    [29] Roman H., T. Thomas, H. Klaus, et al. Occurrence of antibiotics in the aquatic environment[J]. The Science of the Total Environment, 1999, 225(1-2): 109-118
    [30] Kümmerer K.. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources-a review[J]. Chemosphere, 2001, 45(6-7): 957-969
    [31] G. Mascolo, L. Balest, D.Cassano, et al. Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment [J]. Bioreource Technology, 2010 (101): 2585-2591
    [32] Kümmerer K., A. Al-Ahmad, V. Mersch-Sundermann. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test[J]. Chemosphere, 2000, 40(7): 701-710
    [33] El-Gohary F. A., S. I. Abou-Elela, H. I. Aly. Evaluation of biological technologies for wastewater treatment in the pharmaceutical industry [J]. Water Science and Technology, 1995, 32(11): 13-20
    [34]买文宁.生物化工废水处理技术及工程实例[M].北京:化学工业出版社, 2003:46-52
    [35] C. C. Lee, George L. Huffman, Richard P. Nalesnik. Medical waste management [J]. Environ. Scin. Technol., 1991, 25(3): 360-363
    [36]张杰,相会强,徐桂芹.抗生素生产废水治理技术进展[J].哈尔滨建筑大学学报, 2002, 35(2): 44-48
    [37] Yeole T. Y., Gadre R. V., Ranade D. R.. Biological treatment of a pharmaceutical waste[J]. Indian: J. Environ. Healh, 1996, 38: 95
    [38]巩有奎,张林生.抗生素废水处理研究进展[J].工业水处理, 2005, 25(12): 1-5
    [39]马寿权,韦巧玲.抗生素制药生产废水治理研究[J].重庆环境科学, 1995, 17(6):23-27
    [40]秦向春,陈繁忠,叶恒朋,等.超高浓度抗生素废水预处理试验[J].环境工程, 2006, 24(2): 20-23
    [41]赵月龙,祈佩时,杨云龙.高浓度难降解有机废水处理技术综述[J].四川环境, 2006, 25(4): 98-103
    [42]姚彦红,林波.抗生素制药废水的污染特点及处理研究进展[J].江西化工, 2008(4): 33-35
    [43]曾丽璇,张秋云,刘佩红,等.抗生素制药废水处理技术进展[J].安全与环境工程, 2005, 12(4): 62-65
    [44]胡思贤,许江涛,刘国华.抗生素生产废水处理技术[J].河南科技, 2008(10): 68-69]
    [45] Maria C. M., Alvim-Ferraz, Sérgio A. V.. Incineration of Different Types of Medical Wastes: Emission Factors for Particulate Matter and Heavy Metals[J]. Environ. Sci. Technol., 2003, 37: 3152-3157
    [46]丁彩梅.抗生素工业废水处理技术的研究进展[J].医药工程设计, 2006, 27(2): 65-68
    [47]刘石生,丘泰球.超声在废水处理中的应用[J].应用声学, 2001, 20(2): 43-46
    [48] Cataldo Franco. Ultrasound-induced cracking and pyrolysis of some aromatic and naphthentic hydrocarbons[J]. Ultrasonics Sonochemistry, 2000, 7(1): 35-43
    [49] Z. Laughrey, Zachary, Bear, et al. Aqueous sonolytic decomposition of polycyclic aromatic hydrocarbons in the presence of additional dissolved species[J]. Ultrasonics Sonochemistry, 2001, 22(3): 84-87
    [50] Goskonda, Sridevi, James Catallo, et al. Sonochemical degradation of aromatic organic pollutants[J]. Waste Management, 2002, 22(3): 351-356
    [51]郭佳,张渊明,杨骏,等.光催化氧化降解制药废水中头孢曲松钠的研究[J].生态科学, 2008, 27(6): 446-451
    [52]王春平,马子川. Fenton试剂处理青霉素废水实验研究[J].重庆环境科学, 2003,25(12): 25-27
    [53]潘志强.土霉素、麦迪霉素废水的化学气浮处理[J].工业水处理, 1991,11(1): 24-26]
    [54]胡思贤,许江涛,刘国华.抗生素生产废水处理技术[J].河南科技, 2008(10): 68-69]
    [55]吴敦虎,李鹏,王曙光,等.混凝法处理制药废水的研究[J].水处理技术, 2000, 26(1): 53-55
    [56] MARIA C.M.ALVIM-FERRAZ, SéRGIO A.V. AFRONSO. Incineration of DifferentTypes of Medical Waste: Emission Factors for Particulate Matter and Heavy Metals[J]. Enviro. Sci. Technol, 2003,37:3152-3157
    [57] YANGSHENG LIU, LANLAN MA, YUSHAN LIU, et al. Investigation of Novel Incineration Technology for Hospital Waste[J]. Enviro. Sci. Technol, 2006,40: 6411-6417
    [58] Study questions medical incineration emissions data[J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003,1: 278-279
    [59] B.R. STANMORE, C.CLUNIES ROSS. An Empirical Model for the De Novo Formation of PCDD/F in Medical Waste Incinerators [J]. Enviro. Sci. Technol, 2000,34: 4538-4544
    [60]徐扣珍,陆文雄,宋平,等.焚烧法处理氯霉素生产废水[J].环境科学, 1998, 19(4): 69-71
    [61]郑玉峰,王向建,黄相国,等.光降解制药废水的研究[J].环境保护科学, 2002,28: 16-18
    [62]张林生,杨广平.水杨酸废水纳滤处理中操作压力的影响[J].水处理技术, 2005, 31(6): 76-78
    [63]徐又一,石灯水,王剑鸣,等.环保领域中聚丙烯中空纤维膜-生物反应器的研究[J]膜科学与技术. 2000, 20(4): 26
    [64]朱安娜,吴卓,荆一凤,等.纳滤膜分离洁霉素生产废水的试验研究[J].膜科学与技术, 2000,20(4): 47
    [65] Heuer H., Krogerrecklenfort E., Wellington E. M. H., et al. Gentamicin resistence genes in environmental bacteria: presence,and transter [J]. FEMS Microbiol, Ecol., 2002, 42:289-302
    [66] Kummerer K.. Resistance in the environment [J]. Antimicrob. Chemother, 2004, 54: 311-320
    [67]全学军,林治华,周悦钢.微生物在废水处理中的应用进展[J].重庆工学院学报, 2003, 17(1): 8-11
    [68]谭智,汪大翠,张伟烈.深井曝气工艺处理高浓度制药废水[J].环境污染与控制, 1993, 15(6): 6-8
    [69]张统,张志仁. SBR处理四环素废水试验研究[J].第三届全国污水处理技术交流会.北京, 1997: 189-192
    [70]罗国维,杨丹青,林世光.投菌生物接触氧化法处理洁霉素废水的机理研究[J].环境科学, 2000, 15(6): 20-33
    [71]张林生,俞汝华.高浓度有机废水的生物流化床处理[J].江苏石油化工学院学报, 1994, 6(2): 25-30
    [72]杨军,陆正禹,胡纪萃,等.抗生素工业废水生物处理技术的现状与展望[J].环境科学, 1997, 18: 83-86
    [73] MOHAMMAD M. AMIN, JULIE L. ZILLES, STEPHEN CHARBONNEAU, et al. Influence of the Antibiotic Erythromycin on Anaerobic Treatment of a Pharmaceutical Wastewater [J]. Environ. Sci. Technol., 2006, 40: 3971-3977
    [74]陈宏,王敦球,张学洪.厌氧-SBR工艺处理制药废水工程实践[J].桂林工学院学报, 2003, 23(1): 79-81
    [75]买文宁.抗生素废水生物处理的试验研究[J].河南科学, 2002, 20(1): 74-78
    [76]李向军.“厌氧+好氧”工艺在抗生素污水处理工程中应用[J].技术园地, 2007, 9: 65-68
    [77]姜安玺,李德强,相会强,等.水解酸化-生物接触氧化工艺在抗生素废水处理中的应用[J].安全与环境学报, 2002, 2(2): 3-6
    [78]杨晓伟,钱大益. 6-APA生产废水处理的生产性试验研究[J].环境科学与管理, 2009, 34(5): 97-99
    [79]于宏兵,杜军,李景新,等.水解酸化-二段式接触氧化处理生物制药废水[J].环境工程, 2005, 23(2): 9-11
    [80] Güender B., Krauth K.. Replacement of secondary clarification by membrane separation-results with tubular, plate and hollow fiber modules [J]. Water Sci. Technol., 1999, 40(4-5): 311-320
    [81]白玲,蓝伟光.废水处理中膜生物反应器的研究进展[J].膜科学与技术, 2008, 28(1): 91-96
    [82]黄其明. PW膜-生物反应器法处理制药发酵废水[J].工业用水与废水, 2001, 32(5): 49-51
    [83]吴光豪.膜-生物反应器处理高浓度有机废水[J].今日科技, 2000, 9: 13
    [84]吴宗义,吴鑫.膜生物反应器的工程应用进展[J].山西建筑, 2009, 35(18): 158-159
    [85]相震,陈淑娟,王连军,等.膜生物反应器联合工艺处理合成制药废水的中试[J].环境科学与技术, 2005, 28(4): 99-102
    [86]梅丽,杨平,尚书勇,等.膜生物反应器在制药废水处理的研究进展[J].河南化工, 2004, 10: 1-4
    [87]刘燕群,周宜开,谭佑铭.处理氯霉素废水优势菌的筛选[J].环境污染治理技术与设备, 2003, 4(4): 43-45
    [88]李尔炀,史乐文,周希圣,等.工程菌处理制药废水[J].水处理技术, 2001, 27(5): 287-289
    [89]李向东,冯启言,于洪锋.基因工程菌在制药废水处理中的应用[J].工业水处理, 2008, 28(8): 70-72
    [90]安燕.磁性填料在含酚废水好氧生物处理中应用及酪胺酸酶磁效应研究[D].广州:华南理工大学博士学位论文,2007:4-7
    [91]沈耀良,黄勇,赵丹,等.固定化微生物废水处理技术[J].北京:化学工业出版社,2002:2
    [92] Lesslie C P,Glen T Daigger,Henry C Lim著;张锡辉,刘勇弟译.废水生物处理[M].北京:化学工业出版社,2003,1:52-53,225-253,612-624
    [93] Miller Cass T. Multiphase Flow and Transport Modeling in Heterogeneous Porous Media: Challenges and Approaches [J].Advances in Water Resources,1998,21(2):77-120
    [94]国家环境保护局编.生物接触氧化处理废水技术[M].北京:中国环境科学出版社,1989
    [95]王广金.流化床反应器微生物固定化载体多孔膜微囊制备与性能研究[D].成都:四川大学,2005:8-15
    [96]郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用[M].北京:化学工业出版社,2005,14-17
    [97]李建政,任南琪.污染控制微生物生态学[M].哈尔滨:哈尔滨工业大学出版社,2005: 20-27
    [98]夏北成.环境污染物生物降解[M].北京:化学工业出版社, 2002
    [99]王祥三.水污染控制工程[M].武昌:武汉大学出版社, 2007
    [100]陈发生.微生物[M].哈尔滨:黑龙江人民出版社, 1975
    [101]许保玖,龙腾锐.当代给水与废水处理[M].北京:高等教育出版社,2000
    [102]赵颖,样凤林,张兴文.新型材料在曝气生物滤池中的应用研究进展[J].工程建设与设计, 2004, 12: 36-37
    [103]纪荣平,吕锡武,李先宁,等.三种人工介质对太湖水质的改善效果[J].中国给水排水, 2005, 21(6): 4-7
    [104]陆继来,任洪强,李富果,等.典型生物填料的表面结构及净化效能[J].给水排水, 2009,35(11): 179-182
    [105]孙红梅,杨小丽,陆继来,等.微生物水处理中生物填料的应用研究[J].安全与环境工程, 2008,(4): 55-59
    [106]张启磊,孙毅,赵群.曝气生物滤池填料的研究进展[J].中国环境管理干部学院学报, 2008,18(4): 72-74
    [107]王英伟,史雪廷,张洪敏.填料在曝气生物滤池中的应用与研究进展[J].中国新技术新产品: 2010, 7: 4
    [108] K. Semkov, N. Solev, R. Popov. Axial mixing in liquid phase in packed columns with honeycomb structured packing [J]. Bulgarian Chemical Communications, 1993, 31(1): 403-414
    [109]纪荣平.人工介质对太湖水源地水质改善效果及机理研究[D].南京:东南大学,博士学位论文, 2005
    [110]丁原红,洪华生,熊小京,等.生物接触氧化预处理微污染源水[J].水处理技术, 2002, 28(3): 169-171
    [111]梅翔,陈洪斌,高廷耀,等.微污染水源水生物接触氧化工艺的启动与运行情况的调试[J].给水排水, 1996, 22(8): 15-20
    [112]艾恒雨,汪群慧,谢维民,等.接触氧化工艺中生物填料的发展及应用研究[J].给水排水, 2005, 31(2): 88-92
    [113]周海峰,詹伯君,王剑军[J].中国给水排水, 2000, 16(6): 36-38
    [114]季民,刘卫华,周菁,等.微污染水生物陶粒滤池预处理研究[J].工业用水与废水, 2003, 34(6): 22-25
    [115]桑军强,王占生.生物陶粒滤池预处理官厅水库水的试验研究[J].环境科学与技术, 2003, 26(4): 31-34
    [116]王亮,王磊,李风亭,等.生物活性炭技术在水处理中的应用与发展[J].工业水处理, 2007, 27(7): 1-4
    [117]李璇,吕锡武,朱光灿.臭氧-生物活性炭工艺处理黄浦江微污染原水的中试研究[J].水处理技术, 2007, 33(11): 53-56
    [118]张可欣.生物活性炭工艺处理黄河微污染源水研究[J].西安科技大学学报, 2006, 26(3): 366-368
    [119]蒋战洪.污水处理用填料的种类、性能和发展趋势[J].环境污染与防治,1994, 16(4): 13-16
    [120]葛绪广,王国祥,郭长城,等.仿沉水植物填料对水体悬浮泥沙的截留作用[J].人民黄河, 2007, 29(10): 55-58
    [121]张小东,陈季华,奚旦立.生态填料在微污染水体中的应用[J].水处理技术, 2008, 34(1): 56-58
    [122]孙家珍,陈书玉.上海夏长浦(试验段)水质治理研究[J].中国市政工程, 2006, (4): 52-54
    [123]张凡.生物亲和亲水活性磁种填料的制备及其在废水生物降解中的应用[D].广州:华南理工大学,硕士学位论文, 2004
    [124] Kümmerer K., Steger-Hartmann T., Mayer M.. Biodegradability of the antitumour agent ifosfamide and ite occurrence in hospital effluents and communal sewage[J]. Water Research, 1997, 31(11): 2705-2710
    [125] Maier W. J., Behn V. C., Gate C. D.. Simulation of the Tricking Filter Process [J]. Engrs. Div. ASCE. 1967, 93(4): 91-112
    [126] Kuenen J. G., Jorgensen B. B., Revsbech N. P.. Oxygen Microprofiles of Tricking Filter Biofilms [J]. Water Res., 1986, 20(12): 1589-1598
    [127]戴干策,任德呈,范自晖.传递现象导论[M].第二版,北京:化学工业出版社,2008: 189-207
    [128] Gostomski Peter A. et al. Water Content Dynamics in Biofiltraon: the Role of Humidity and Microbial Heat Generation [J]. Journal of The Air and Waste Management Association, 1997, 47(9): 936-944
    [129] Zhu S. et al. Impacts of Reynolds Number on Nitrification Biofilm Kineties [J]. Aquacultural Engineering, 2001, 24(3): 213-229
    [130] Hu Yu-shu, et al. Virtual Node Method for Handling Well Bore Boundary Conditions in Modeling Multiphase Flow in Porous and Fracture Media [J].Water Resources Research, 2000, 36(3): 807-814
    [131] Mysliviwiee M. J. et al. Dynamie Volume-averaged Model of Heat and Mass TransportWithin a Compost Biofilter: Model Development [J]. Biotechnology and Bioengineering, 2001, 5(4): 282-294
    [132]张自杰.排水工程[M].第四版.北京:中国建筑工业出版社, 1999: 25-29
    [133] Irvine, R L and Moe W M. Period biofilter operation for enhanced performance during unsteady-state loading conditong[J]. Wat.Sci.& Tech,2001,43(3):231-239
    [134] Costerton, J.W., K-J Cheng, et al. Bacterial biofilms in nature and disease [J]. 1987, Annual Review of Microbiology, 41: 435-464
    [135] Prakash S. M., S. K. Gupta. Biodegradation of tetrachloroethylene in upflow anaerobic slusge blanket reactor [J]. Bioresource Technology, 2000, 72: 47-54
    [136] Quensenш, John F., J. M. Tiedje, et al. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments [J]. Science, 1988, 242: 752-754
    [137]陈坚.环境生物技术应用于发展[M].北京:中国轻工业出版社,2001: 54-68
    [138]池振明.微生物生态学[M].济南:山东大学出版社,1999:38-42
    [139]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社, 2000:25-37
    [140]林力.生物整治技术进展[J].环境科学, 1997, 18(3): 67-71
    [141]徐亚同,史家樑,张明.污染控制微生物工程[M].北京:化学工业出版社, 2001:47-53
    [142]张锡辉.高等环境化学与微生物原理及应用[M].北京:化学工业出版社, 2001:29-32
    [143]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社, 2000:66-70
    [144]刘秋英,王菊荣.紫外分光光度法测定阿莫西林胶囊含量.青岛医药卫生, 2001, 33(3): 229-230
    [145]吴增绵.阿莫西林胶囊中间体含量快速、经济检验方法的研究,医学信息, 2006, 19(7) : 1225-1226
    [146]卢海波,李航,杨莲芝.紫外分光光度法快速测定阿莫西林含量[J].四川医学, 2000, 21(4): 344
    [147]安登魁.药物分析.济南:济南出版社,1992
    [148]王莉.浅谈阿莫西林的应用及不良反应[J].海峡药学, 2010, 22(12): 301-302
    [149]赵军.阿莫西林不良反应的分析[J].中国现代应用药学杂志, 2003, 20(6): 528-529
    [150]陈兆坤,胡昌勤.头孢菌素类抗生素的降解机制[J].国外医药抗生素分册, 2004, 25(6): 249-252
    [151] Sunkara G., Navarre C. B., Kompella U. B.. Influence of pH and temperature on kinetics of ceftiofur degradation in aqueous solutions [J]. J. Pharm. Pharmacol, 1999, 51: 249-251
    [152] Zajac M., Siwek J., Muszalska M.. The mechanism of ceftazidime degradation in aqueous solutions [J]. Acta. Pol. Pharm., 1998, 55: 275-279
    [153] Banerjee G..Treatment of pheolic wasterwater in RBC reactor[J].Water Res.1997,31:705-714
    [154]刘玉婷.环境检测实验[M].北京:化学工业出版社, 2007.7:57-59
    [155]陈雷,王艺.填料传质性能对废水生物反应处理工艺的影响研究[J].环境污染与防治, 2007, 29(8): 612-615
    [156]赵静野,郑晓萌,高军.曝气充氧中氧总传质系数的探讨[J].北京建筑工程学院学报, 2006, 22(01): 11-17
    [157] Rachmann A , Beard V L , M cCarty P L. Performance characteristics of the anaerobic baffled reactor [ J ]. Wat. Res. 1985, 19 (1) : 99-106
    [158] Rachmann A , Beard V L , M cCarty P L. Comparison of fixed film reactors with a modified sludge blanket reactor [J ]. Pollut. Technol. Rev., 1983, 10: 384-402
    [159]赵丹,王承武,沈耀良,等. ABR的水动力学及污泥特性[J].环境工程, 2001, 19 (2) : 12-15
    [160]王存政,李建萍,黄继国,等. ABR反应器基质降解动力学有关参数的试验研究[J].吉林大学学报(地球科学版), 2004, 34: 149-151
    [161]席宏波,杨琦,尚海涛,等.非降解菌的降解特性及酶促反应动力学研究[J].地学前缘, 2008, 15(6): 169-176
    [162]吴蔓莉,聂麦茜,王晓昌,等.蒽和菲的酶促降解条件及动力学特性[J].环境化学, 2007, 26(3): 314-317
    [163]潘学敏.球片状新型组合生物填料塔处理氯苯废水的特征研究[D].广州:华南理工大学硕士学位论文, 2009: 58-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700