稻壳低温慢速热解机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻壳是重要的农业废弃物之一,仅中国每年就有约4000万吨的产量。作为一种可再生的生物质资源,稻壳通常用作燃料直接燃烧以提供热量,但利用品位相对较低。热解是目前生物质研究的热点技术之一,通过热解,可以将稻壳转化为高品位的可燃气和易存储、运输且能量密度高的焦油,以及工业上需求量很大的活性炭和具有高附加值的无定形二氧化硅。虽然,稻壳中无定形二氧化硅含量较高,但对热解温度较为敏感,因此,对稻壳进行低温慢速热解以获得更多的固相产物,并将气、液相产物作为副产品加以利用是一种合理的技术途径。目前针对稻壳低温慢速热解的试验和机理研究相对较少,热解反应过程和机理尚不明确,本学位论文围绕稻壳低温慢速热解展开了以下几个方面的工作:
     (1)原始稻壳基本特性研究
     从能源利用角度,建立了基于工业分析结果的生物质碳、氢和氧含量三元预测关系式;讨论了稻壳用量、氧弹氧压和苯甲酸添加量对稻壳热值测试结果的影响,提出了稻壳热值测试的参考方法。从低温慢速热解角度,考虑到稻壳粒径和堆积方式不同会对床层孔隙率和传热等特性产生影响,从而影响稻壳固定床低温慢速热解过程,对稻壳破碎产物——稻壳粉的堆积密度进行了测试,比较了不同粒径和不同堆积方式下稻壳粉堆积密度测试结果的差异,并分析了差异成因。
     (2)浸泡稻壳基本特性研究
     水浸泡预处理会对稻壳基本特性产生影响,从而影响稻壳固定床低温慢速热解过程以及固相产物特性。对浸泡前后稻壳的燃烧特性、收缩和卷曲特性以及稻壳灰中二氧化硅品质对灰化参数的敏感性进行深入研究,确定了经济的浸泡水量和浸泡时间,提出了稻壳热利用过程中的收缩和卷曲机理,指出了稻壳无定形二氧化硅合理的制备工况。
     (3)稻壳低温慢速热解动力学模型建立与产物预测研究
     出于工况优化的目的,建立合适的动力学模型对指导稻壳低温慢速热解具有十分重要的意义。综合考虑气、固相产物以及二次反应沉积系数,建立了改进的热解动力学模型,并以木块为对象验证了模型的准确性。最后,将该模型应用于稻壳低温慢速热解产物分布的预测,得到了稻壳热解产物随时间以及升温速率的变化规律。
     (4)稻壳固定床低温慢速热解试验研究
     设计并搭建了稻壳固定床低温慢速热解试验系统,在此基础上,深入研究了反应室压力、原料含水量、热解时间、氮气升温速率、氮气预热终温和预处理对稻壳固定床低温慢速热解过程的影响。通过工业分析、元素分析、比表面积测试、灰形貌分析和二氧化硅相态分析等手段讨论了不同热解条件对炭化稻壳特性的影响。
     (5)稻壳固定床低温慢速热解机理研究
     基于大量试验结果,提出了稻壳固定床低温慢速热解机理:在稻壳固定床低温慢速热解过程中,下层稻壳脱水过程蒸发的水分以及主要热解过程析出的可凝性气体均会在上层稻壳中冷凝,使得上层稻壳中的水分和焦油含量增加,脱水和主要热解过程所需时间延长。下层稻壳主要热解阶段释放的热量会沿层高传递给上层稻壳,从而缩短上层稻壳脱水和主要热解过程所需时间。同一层高稻壳完成热解所需时间主要受这两个因素的影响,在稻壳固定床低温慢速热解过程中,水分和焦油的凝结是决定性影响因素。在主要热解阶段,由于稻壳内外表皮二氧化硅的不均匀分布,随着挥发分的大量析出,稻壳发生收缩和卷曲。这会对床料的堆积特性产生显著影响,从而影响床层阻力和传热等特性,而这些特性的变化又会作用于稻壳的低温慢速热解过程。
     本文工作丰富了对稻壳基本特性以及稻壳固定床低温慢速热解反应机理的认识,所得研究结果可为稻壳固定床低温慢速热解装置的设计和应用提供指导和依据。
Rice husk which is one of the most important agricultural wastes has the annual output about 40 million tons in China. As a renewable bio-resource, rice husk is used as fuel for the direct combustion to provide heat. However, the use is of relatively low quality. Pyrolysis is one of the important technologies in the field of biomass research. Biomass can be effectively converted into gas with high quality, tar which is easy to storage, transport and with high energy density, as well as char and amorphous silica with great demand in industry by means of pyrolysis. Although rice husk has high content of amorphous silica, it is sensitive to the pyrolysis temperature. Therefore, it is more appropriate to prepare more solid product, as well as gaseous and liquid product as by-products with low temperature and slow heating rate pyrolysis. However, research efforts to the basic characteristics, as well as the mechanism of low temperature and slow heating rate pyrolysis of rice husk in fixed bed, are of relatively sparse, and there are still some problems to be resolved. This dissertation is focused on the following aspects:
     (1) The basic characteristics of original rice husk
     The new ternary prediction correlations based on the simple proximate analysis were developed to compute the elemental composition of biomass. The effects of sample mass, oxygen gauge pressure and mass ratio of rice husk and benzoic acid were discussed. Moreover, the suitable testing conditions for determining the heating value of rice husk were formulated. As the particle size and the accumulation of rice husk would affect the porosity and the heat transfer characteristics of bed materials, so as to affect the process of low temperature and slow heating rate pyrolysis of rice husk, the bulk density of different sizes of rice husk powders were measured. In order to explain the rule that the bulk density changed with particle size, the structures of rice husk powders were observed.
     (2) The basic characteristics of leached rice husk
     Leaching will affect the characteristics of rice husk, which indirectly affect the process of pyrolysis of rice husk. In this section, the effects of leaching procedure on the combustion characteristics, the shrinkage and crispation characteristics, as well as the phase of silica in rice husk ash were studied. The economical water application rate and leaching duration were proposed. The mechanisms of the shrinkage and crispation or rice husk were developed. The reasonable preparation conditions for amorphous silica were proposed.
     (3) Modeling and product prediction of low temperature and slow heating rate pyrolysis of rice husk
     For the purpose of operating conditions optimization, it is of significance to develop an appropriate kinetic model to guide the process of the low temperature and slow heating rate pyrolysis of rice husk. Therefore, the new kinetic model which considering gaseous products and deposition coefficient was developed. The accuracy of model was verified by comparing the simulated results with the experimental and the simulated results reported in literatures for wood. The model was applied to predict the products distribution for three kinds of rice husk. As a result, the variation of products yields, including primary and secondary solid and gaseous products, changes with pyrolysis temperature and heating rate was obtained.
     (4) Experimental study of low temperature and slow heating rate pyrolysis of rice husk in fixed bed
     The fixed bed reactor for performing the low temperature and the slow heating rate pyrolysis of rice husk was designed and then installed. Subsequently, a series of experiments were carried out in order to discuss the effects of inlet and outlet pressure of reactor, water content of rice husk, pyrolysis time, heating rate of nitrogen, preheated final temperature of nitrogen and leaching treatment on the pyrolysis characteristics of rice husk. Furthermore, the effects of pyrolysis conditions on properties of carbonized rice husk were discussed by means of proximate and ultimate analysis, specific surface area analysis, ash morphology analysis, as well as silica phase analysis.
     (5) Mechanism of low temperature and slow heating rate pyrolysis of rice husk in fixed bed
     The mechanism of low temperature and slow heating rate pyrolysis of rice husk in fixed bed was proposed based on a series of experimental results. In the process of low temperature and slow heating rate pyrolysis of rice husk in fixed bed, the evaporated free water and the escaped condensable gas from the lower rice husk layer will condense in the upper rice husk layer. Therefore, the contents of water and tar increase in the upper rice husk layer, which leads to the major extension of time required for the pyrolysis process. Moreover, the heat released in the main pyrolysis stage will passed along to the upper rice husk layer, which reduces the dehydration and the primary pyrolysis time. In the low temperature and the slow heating rate pyrolysis of rice husk in fixed bed, water and tar condensation is the decisive factor which affect the pyrolysis time. In the main pyrolysis process, as the silica is uneven inside and outside the epidermis of rice husk, the rice husk shrinks and crisps with a large number of volatile substances in the rice husk escape. It will affect the resistance and the heat transfer characteristics of the rice husk in fixed bed. Moreover, these changes will act on the properties of low temperature and slow heating rate pyrolysis of rice husk.
     This work enriches the understanding of the basic characteristics and the mechanism of low temperature and slow heating rate pyrolysis of rice husk. The results provide guidance for designing the equipment for the low temperature and slow heating rate pyrolysis of rice husk.
引文
[1]袁振宏,吴创之,马隆龙等.生物质能利用原理与技术.北京:化学工业出版社,2005.
    [2]周显青.稻谷精深加工技术.北京:化学工业出版社,2006.
    [3]Kapur T, Kandpal TC, Garg HP. Electricity generation from rice husk in Indian rice mills:potential and financial viability. Biomass and Bioenergy,1996,10 (5/6): 393-403.
    [4]刘广成,许成军.浅谈稻壳炉的设计与应用.江苏锅炉,2007(2):26-27.
    [5]Gupta VK, Mittal A, Jain R, Mathur M, Sikarwar S. Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husks. Journal of Colloid and Interface Science,2006 (303):80-86.
    [6]Lakshmi UR, Srivastava VC, Mall ID, Lataye DH. Rice husk ash as an effective absorbent:Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environment Management,2009 (90):710-720.
    [7]Kalderis D, Koutoulakis D, Paraskeva P, Diamadopoulos E, Otal E, Valle JO, Fernandez-Pereira C. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal,2008 (144): 42-50.
    [8]Yalcin N, Sevinc V. Studies on silica obtained from rice husk. Ceramics International, 2001 (27):219-224.
    [9]Huang S, Jing S, Wang J, Wang Z, Jin Y. Silica white obtained from rice husk in fluidized bed. Power Technology,2001 (117):232-238.
    [10]Rozainee M, Ngo SP, Salema AA, Tan KG, Ariffin M, Zainura ZN. Effect of fluidizing velocity on the combustion of rice husk in a bench-scale fluidized bed combustor for the production of amorphous rice husk ash. Bioresource Technology,2008 (99): 703-713.
    [11]刘杨.糠醛渣与稻壳共热解的研究.东北电力学院,2005.
    [12]Demirbas A. Biomass resources facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management,2001 (42):1357-1378.
    [13]Natarajan E, Nordin A, Rao AN. Overview of combustion and gasification of rice husk in fluidized bed reactors. Biomass and Bioenergy,1998,14 (5/6):533-546.
    [14]Krishnarao RV, Subrahmanyam J, Kumar TJ. Studies on the formation of black particles in rice husk silica ash. Journal of the European Ceramic Society,2001 (21): 99-104.
    [15]Mansaray KG, Ghaly AE. Thermal degradation of rice husks in nitrogen atmosphere. BioresourceTechnology,1998 (65):13-20.
    [16]盛奎川,蒋成球,钟建立.农林废弃物热解的实验研究.农业工程学报,1997,13(1):149-152.
    [17]蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性试验研究.农业工程学报,2007,23(1):188-191.
    [18]王擎,孙佰仲,刘杨,胡爱娟,孙键.糠醛渣与稻壳混合物的共热解特性研究.农业工程学报,2005,21(9):151-154.
    [19]Islam MN, Ani FN. Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bioresource Technology,2000 (73):67-75.
    [20]Wang Y, Zhang S, Zhang Y, Xie H, Deng N, Chen G. Experimental studies on low-temperature pyrolysis of municipal household garbage — temperature influence on pyrolysis product distribution. Journal of Hazardous Materials,2005 (B126):128-140.
    [21]Ayllon M, Aznar M, Sanchez JL, Gea G, Arauzo J. Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal. Chemical Engineering Journal,2006 (121):85-96.
    [22]Demirbas A. Effect of temperature on pyrolysis products from biomass. Energy Sources,2007 (29):329-336.
    [23]Ates F, Isikdag MA. Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel,2009 (88):1991-1997.
    [24]Onay O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Processing Technology,2007 (88):523-531.
    [25]Luo Z, Wang S, Liao Y, Zhou J, Gu Y, Cen K. Research on biomass fast pyrolysis for liquid fuel [J]. Biomass and Bioenergy,2004 (26):455-462.
    [26]Home PA, Williams PT. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel,1996 (75):1051-1059.
    [27]Garcia-Perez M, Wang XS, Shen J, Rhodes MJ, Tian F, Lee W-J, Wu H, Li C-Z. Fast pyrolysis of oil mallee woody biomass:Effect of temperature on the yield and quality of pyrolysis products. Industrial & Engineering Chemistry Research,2008 (47): 1846-1854.
    [28]Wang P, Zhan S, Yu H, Xu X, Hong N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresource Technology,2010 (101): 3236-3241.
    [29]Westerhog RJM, Brilman D WF, van Swaaij WPM, Kersten SRA. Effect of temperature in fluidized bed fast pyrolysis of biomass:Oil quality assessment in test units. Industrial & Engineering Chemistry Research,2010 (49):1160-1168.
    [30]Putun E, Uzun BB, Piitun AE. Fixed-bed catalytic pyrolysis of contton-seed cake: Effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresource Technology,2006 (97):701-710.
    [31]Demirbas A. The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Processing Technology, 2007 (88):591-597.
    [32]Debdoubi A, Elamarti A, Colacio E, Blesa MJ, Hajjaj H. The effect of heating rate on yields and compositions of oil products from esparto pyrolysis. International Journal of Energy Research,2006 (30):1243-1250.
    [33]Sensoz S. Slow pyrolysis of wood barks from Pinus Brutia Ten. and product compositions. Bioresource Technology,2003 (89):307-311.
    [34]Onay O, Kockar OM. Fixed bed pyrolysis of rapeseed(Brassica napus L.). Biomass and Bioenergy,2004 (26):289-299.
    [35]Guerrero M, Ruiz MP, Alzueta MU, Bilbao R, Millera A. Pyrolysis of eucalyptus at different heating rates:studies of char characterization and oxidative reactivity. Journal of Analytical and Applied Pyrolysis,2005 (74):307-314.
    [36]Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiate pine char structure and apparent gasification reactivity. Fuel,2005 (84): 1328-1334.
    [37]Biagini E, Tognotti L. Characterization of biomass chars:Reactivity and morphology of chars obtained in different conditions. International Journal of Energy for A Clean Environment,2005 (6):439-457.
    [38]Demirbas A. Pyrolysis of ground beech wood in irregular heating rate conditions. Journal of Analytical and Applied Pyrolysis,2005 (73):39-43.
    [39]Demirbas A. Effect of irregular heating rates on pyrolysis yields from hazelnut shell. Energy Sources,2005 (27):501-508.
    [40]Williams PT, Home A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis,1995 (31):39-61.
    [41]Carlson TR, Vispute TP, Huber GW. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. Chem Sus Chem,2008 (1):397-400.
    [42]Lei H, Ren S, Julson J. The effects of reaction temperature and time and particle size of corn stover on micro ware pyro lysis. Energy & Fuels,2009 (23):3254-3261.
    [43]nsoz S, Can M. Pyrolysis of pine (Pinus Brutia Ten.) chips:1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources,2002 (24): 347-355.
    [44]Ekinci E, Citiroglu M, Putun E, Love GD, Lafferty CJ, Snape CE. Effect of lignite addition and steam on the pyrolysis of Turkish oil shales. Fuel,1992 (71):1511-1514.
    [45]Patel M, Karera A, Prasanna P. Effect of thermal and chemical treatments on carbon and silica contents in rice husk. Journal of Materials Science,1987(22):2457-2464.
    [46]Feng Q, Yamamichi H, Shoya M, Sugita S. Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment. Cement and Concrete Research,2004 (34):521-526.
    [47]Jenkins BM, Bakker RR, Wei JB. On the properties of washed straw. Biomass and Bioenergy,1996,10 (4):177-200.
    [48]Jenkins BM, Baxter LL, Miles Jr TR, Miles TR. Combustion properties of biomass. Fuel Processing Technology,1998 (54):17-46.
    [49]Jenkins BM, Williams RB, Bakker RR, Blunk S, Yomogida DE, Carlson W, Duffy J, Bates R, Stucki K, Tiangco V. Combustion of leached rice straw for power generation. Proceeding of the Fourth Biomass Conference of the Americas,1999: 1357-1363.
    [50]Turn SQ, Kinoshita CM, Ishimura DM. Removal of inorganic constituents of biomass feedstocks by mechanical dewatering and leaching. Biomass and Bioenergy,1999, 12 (4):241-252.
    [51]Teng H, Wei Y-C. Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Industrial & Engineering Chemistry Research,1998 (37):3806-3811.
    [52]Dayton DC, Jenkins BM, Turn SQ, Bakker RR, Williams RB, Belle-Oudry D, Hill LM. Release of inorganic constituents from leached biomass during thermal conversion. Energy & Fuels,1999 (13):860-870.
    [53]Di Blasi C, Branca C, D'Errico G. Degradation characteristics of straw and washed straw. Thermochimica Acta,2000 (364):133-142.
    [54]Di Blasi C, Branca C. The effects of water leaching on the isothermal degradation kinetics of straw. Industrial & Engineering Chemistry Research,2000 (39): 2169-2174.
    [55]Arvelakis S, Vourliotis P, Kakaras E, Koukios EG. Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion. Biomass and Bioenergy,2001 (20):459-470.
    [56]Arvelakis S, Gehrmann H, Beckmann M, Koukios EG. Effect of leaching on the ash behavior of olive residue during fluidized bed gasification. Biomass and Bioenergy, 2002 (22):55-69.
    [57]Arvelakis S, Gehrmann H, Beckmann M, Koukios EG. Agglomeration problems during fluidized bed gasification of olive-oil residue:evaluation of fractionation and leaching aspre-treatment. Fuel,2003 (82):1261-1270.
    [58]Arvelakis S, Gehrmann H, Beckmann M, Koukios EG. Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments. Biomass and Bioenergy,2005 (28):331-338.
    [59]Jensen PA, Sander B, Dam-Johansen K. Removal of K and Cl by leaching of straw char. Biomass and Bioenergy,2001 (20):447-457.
    [60]Bakker RR, Jenkins BM, Williams RB. Fluidized bed combustion of leached rice straw. Energy & Fuels,2002 (16):356-365.
    [61]Davidsson KO, Korsgren JG, Pettersson JBC, Jalid U. The effects of fuel washing techniques on alkali release from biomass. Fuel,2002 (81):137-142.
    [62]陈东雨,刘荣厚.预处理棉花秆的热解动力学研究.农业机械学报,2007,38(6):95-99.
    [63]王树荣,廖艳芬,刘倩,骆仲泱,岑可法.酸洗预处理对纤维素热裂解的影响.燃料化学学报,2006,34(2):179-183.
    [64]谭洪,王树荣.酸预处理对生物质热裂解规律影响的实验研究.燃料化学学报,2009,37(6):668-672.
    [65]Andreoli M, Luca GT, Seo ESM. Characteristics of rice husks for chlorination reaction. Materials Letters,2000 (44):294-298.
    [66]Liou T-H, Chang F-W, Lo J-J. Pyrolysis kinetics of acid-leached rice husk. Industrial & Engineering Chemistry Research,1997 (36):568-573.
    [67]Grohmann K, Torget R, Wright J, Himmel M. Dilute acid pretreatment of biomass. Solar Energy Research Institute,1987:B12-B38.
    [68]辛芬.预处理对生物质热解特性影响的实验研究.华中科技大学,2006.
    [69]LiouT-H, Chang F-W. The nitridation kinetics of pyrolyzed rice husk. Industrial & Engineering Chemistry Research,1996 (35):3375-3383.
    [70]Jenkins BM, Mannapperuma JD, Bakker RR. Biomass leachate treatment by reverse osmosis. Fuel,2003 (81):223-246.
    [71]Jensen PA, Dam-Johansen K, Wojtowicz MA, Serio MA. TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy & Fuels,1998,12 (5):929-938.
    [72]Miles TR, Miles Jr TR, Baxter LL, Bryers RW, Jenkins BM, Oden LL. Alkali deposits — Found in biomass power plants — A preliminary investigation of their extent and nature. National Renewable Energy Laboratory,1995.
    [73]Bamford CH, Crank J, Malan DH. The combustion of wood — Part Ⅰ. Proceedings of the Cambridge Philosophical,1946 (42):166-182.
    [74]Dupont C, Boissonnet G, Seiler J-M, Gauthier P, Schweich D. Study about the kinetic processes of biomass steam gasification. Fuel,2007 (86):32-40.
    [75]Stamm AJ. Thermal degradation of wood cellulose. Industrial and Engineering Chemistry,1956 (48):413-417.
    [76]Tran DQ, Rai C. Pyrolytic gasification of bark. AIChE Symposium Series,1979(75): 41-49.
    [77]Ward SM, Braslaw J. Experimental weight loss kinetics of wood pyrolysis under vaccum. Combustion and Flame,1985,61(3):261-269.
    [78]陈冠益.生物质热解试验与机理研究.浙江大学,1998.
    [79]Tinney ER. The combustion of wooden dowels in heated air. Symposium (International) on Combustion,1965 (10):925-930.
    [80]Kanury M. Thermal decomposition kinetics of wood pyrolysis. Combustion and Flame,1972 (18):75-83.
    [81]Pyle DL, Zaror CA. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chemical Engineering Science,1984(39):147-158.
    [82]Roberts AF, Clough G. Thermal decomposition of wood in an inert atmosphere. Symposium (International) on Combustion,1963 (9):158-166.
    [83]Panton RL, Rittmann JG. Pyrolysis of a slab of porous material. Symposium (International) on Combustion,1971 (13):881-891.
    [84]Havens JA, Hashemi HT, Brown LE, Welker JR. A mathematical model of the thermal decomposition of wood. Combustion Science and Technology,1972 (5):91-98.
    [85]Kung HC. A mathematical model of wood pyrolysis. Combustion and Flame,1972 (18):185-195.
    [86]Kung HC, Kalelkar AS. On the heat of reaction in wood pyrolysis. Combustion and Flame,1973 (20):90-103.
    [87]Kansa EJ, Perlee HE, Chaiken RF. Mathematical model of wood pyrolysis including internal forced convection. Combustion and Flame,1977 (29):311-324.
    [88]Lee CK, Chaiken RF, Singer JM. Charring pyrolysis of wood in fires by laser simulation. Symposium (International) on Combustion,1976 (16):1459-1470.
    [89]Broido A, Nelson MA. Char yield on pyrolysis of cellulose. Combustion Flame,1975 (24):263-268.
    [90]Broido A. Kinetics of solid-phase cellulose pyrolysis, Thermal uses and properties of carbonhydrates and lignin.172nd National Meeting of the American Chemical Society, 1976:19-36.
    [91]Bradbury AGW, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science,1979 (23):3271-3280.
    [92]余春江.生物质热解机理和工程应用研究.浙江大学,2000.
    [93]Shafizadeh F, Bradbury AGW. Thermal degradation of cellulose in air and nitrogen at low temperatures. Journal of Applied Polymer Science,1979 (23):1432-1442.
    [94]Shafizadeh F. Introduction to pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis,1982 (3):283-305.
    [95]Liden AG, Berruti F, Scott DS. A kinetic model for the production of liquids from the flash pyrolysis of biomass. Chemical Engineering Communications,1988 (65): 207-221.
    [96]Rao TR, Sharma A. Pyrolysis rates of biomass materials. Energy,1988,23 (11): 973-978.
    [97]Shafizadeh F, Chin PPS. Thermal determination of wood. ACS Symposium Series, 1977 (43):57-81.
    [98]Thurner F, Mann U. Kinetic investigation of wood pyrolysis. Industrial and Engineering Chemical Process Design and Development,1981 (20):482-488.
    [99]Chan WCR, Kelbon M, Krieger BB. Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 1985 (64):1505-1513.
    [100]Font R, Marcilla A, Verdu E, Devesa J. Kinetics of the pyrolysis of almond shells and almond shells impregnated with CoCl2 in a fluidized bed reactor and in a Pyroprobe 100. Industrial and Engineering Chemistry Research,1990 (29):1846-1855.
    [101]Koufopanos CA, Maschio G, Lucchesi A. Kinetic modelling of the pyrolysis of biomass and biomass components. The Canadian Journal of Chemical Engineering, 1989 (67):75-84.
    [102]Koufopanos CA, Papayannakos N. Modelling of the pyrolysis of biomass particles— Studies on kinetics, thermal and heat transfer effects. The Canadian Journal of Chemical Engineering,1991 (69):907-915.
    [103]Babu BV, Chaurasia AS. Modeling for pyrolysis of solid particle:kinetics and heat transfer effects. Energy Conversion and Management,2003 (44):2251-2275.
    [104]Babu BV, Chaurasia AS. Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass. Energy Conversion and Management,2003 (44):2135-2158.
    [105]Babu BV, Chaurasia AS. Parametric study of thermal and thermodynamic properties on pyrolysis of biomass in thermally thick regime. Energy Conversion and Management, 2004 (45):53-72.
    [106]Babu BV, Chaurasia AS. Heat transfer and kinetics in the pyrolysis of shrinking biomass particle. Chemical Engineering Science,2004 (59):1999-2012.
    [107]Babu BV, Chaurasia AS. Dominant design variables in pyrolysis of biomass particles of different geometries in thermally thick regime. Chemical Engineering Science,2004 (59):611-622.
    [108]Babu BV, Chaurasia AS. Pyrolysis of biomass:improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Conversion and Management,2004 (45):1297-1327.
    [109]Babu BV. Biomass pyrolysis:a state-of-the-art review. Biofuels, Bioproducts and Biorefining,2008,2 (5):393-414.
    [110]Srivastava VK, Jalan RK. Predictions of concentration in the pyrolysis of biomass materials — Ⅰ. Energy Conversion and Management,1994 (35):1031-1040.
    [111]Srivastava VK, Sushil, Jalan RK. Predictions of concentration in the pyrolysis of biomass materials — Ⅱ. Energy Conversion and Management,1996(37):473-483.
    [112]Chaurasia AS, Kulkarni BD. Most sensitive parameters in pyrolysis of shrinking biomass particle. Energy Conversion and Management,2007 (48):836-849.
    [113]Jalan RK, Srivastava VK. Studies on pyrolysis of a single biomass cylindrical pellet kinetic and heat transfer effects. Energy Conversion and Management,1999 (40): 467-494.
    [114]Sadhukhan AK, Gupta P, Saha RK. Modelling and experimental studies on pyrolysis of biomass particles. Journal of Analytical and Applied Pyrolysis,2008(81):183-192.
    [115]Sadhukhan AK, Gupta P, Saha RK. Modelling of pyrolysis of large wood particles. Bioresource Technology,2009 (100):3134-3139.
    [116]Maclean JL, Dawe DC, Hardy B, Hettel GP. Rice Almanac (Third Edition). Philippines:International Rice Research Institute (IRRI),2002.
    [117]Champagne ET. Rice:Chemistry and Technology (Third Edition). St. Paul, Minnesota: American Association of Cereal Chemists Inc,2004.
    [118]Ma J, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature,2006 (440):688-691.
    [119]Ma J, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Murata Y, Yano M. An efflux transporter of silicon in rice. Nature,2007 (448):209-213.
    [120]Stroeven P, Bui DD, Sabuni E. Ash of vegetable waste used for economic production of low to high strength hydraulic binder. Fuel,1999 (78):153-159.
    [121]Jauberthie R, Rendell F, Tamba S, Cisse I. Origin of the pozzolanic effect of rice husks. Construction and Building Materials,2000 (14):419-423.
    [122]Park B-D, Wi SG, Lee KH, Singh AP, Yoon T-H, Kim YS. Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass and Bioenergy,2003 (25):319-327.
    [123]Takahashi N, Kato Y, Isogai A, Kurata K. Silica distribution on the husk epidermis at different parts of the panicle in rice (Oryza sativa L.) determined by X-ray microanalysis. Plant Production Science,2009,9 (2):168-171.
    [124]张文绪.水稻颖壳结构和化学成分研究.作物学报,1999,25(5):591-595.
    [125]陆坤权,刘寄星.颗粒物质(上).物理化学学报,2004,33(9):629-635.
    [126]刘荣厚,牛卫生,张大雷.生物质热化学转换技术.北京:化学工业出版社,2005.
    [127]朱锡锋.生物质热解原理与技术.合肥:中国科学技术大学出版社,2006.
    [128]GB/T 212-2008.煤的工业分析方法.
    [129]ASTM D 1102-84 (2007). Standard test method for ash in wood.
    [130]张军,范志林,林晓芬,徐益谦.灰化温度对生物质灰特征的影响.燃料化学学报,2004,32(5):547-551.
    [131]ASTM E 871-82 (2006). Standard test method for moisture analysis of particulate wood fules.
    [132]Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel,2007 (86): 1710-1719.
    [133]Vakkilainen EK. Estimation of elemental composition from proximate analysis of black liquor. Paper J A PUU-Paper Timber,2000 (82):450-454.
    [134]Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel,2002 (81):1051-1063.
    [135]Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel,2005 (84):487-494.
    [136]Demirbas A. Calculation of higher heating values of biomass fuels. Fuel,1997 (76): 431-434.
    [137]Grotkjaer T, Dam-Johansen K, Jensen AD, Glarborg P. An experimental study of biomass ignition. Fuel,2003 (82):825-833.
    [138]Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z. Combustion of agricultural residues. Pro Energy Combust Sci,2000,26 (1):1-27.
    [139]Thipkhunthod P, Vissanu M, Rangsunvigit P, Kitiyanan B, Siemanond K, Pirksomboom T. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel,2005 (86):849-857.
    [140]Demirbas A. Relationships between lignin contents and heating values of biomass. Energy Convers Manage,2001 (42):183-188.
    [141]Kathiravale S, Yunus MNM, Sopian K, Samsuddin AH, Rahman RA. Modeling the heating value of municipal solid waste. Fuel,2003 (82):1119-1125.
    [142]Sheng CD, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy,2005 (28):499-507.
    [143]Cordero T, Marquez F, Mirasol R, Rodriguez JJ. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel,2001 (80): 1567-1571.
    [144]Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta,2005 (544):191-198.
    [145]Patel SU, Kumar BJ, Badhe YP, Sharma BK, Saha S, Biswas S. Estimation of gross calorific value of coals using artificial neural networks. Fuel,2007 (86):334-344.
    [146]孙培锋,李晓东,池涌,严建华.城市生活垃圾热值预测的研究.能源工程,2006(5):39-42.
    [147]矫常命,蔡均猛,何芳.应用神经网络方法预测生物质的热值.可再生能源,2006(2):25-27.
    [148]于海华,臧靖时,张国生.应用径向基函数网络预测煤发热量.黑龙江大学自然科学学报,2003,20(1):71-74.
    [149]苏伟,陈刚.应用人工神经网络方法预测煤的发热量.广东电力,1999,12(5):14-16.
    [150]Sakiyama M, Kiyobayashi T. Micro-bomb combustion calorimeter equipped with an electric heater for aiding complete combustion. Journal of Chemical Thermodynamics, 2000 (32):269-279.
    [151]Nunez-Regueira L, Rodriguez-Anon JA, Proupin-Castineiras J, Vilanova-Diz A, Montero-Santovena N. Determination of calorific values of forest waste biomass by static bomb calorimetry. Thermochimica Acta,2001(371):23-31.
    [152]GB 5186-85.生物质燃料发热量测试方法.
    [153]DD CEN/TS 14918:2005. Solidfuels—Method for the determination of calorific value.
    [154]GB/T 213-2008.煤的发热量测定方法.
    [155]莫晓树,罗平,刘军伟.苯甲酸作助燃剂氧弹法测定浓黑液的发热量.化学世界,1999(3):153-156.
    [156]王运华,孙传庆,梁鸿.苯甲酸助燃氧弹量热法测定高燃点物质的燃烧热.石河子大学学报(自然科学版),2002(6):167-169.
    [157]曹冲.苯甲酸助燃法测定煤的弹筒发热量的研究.当代化工,2008(37):386-388.
    [158]刘本才,张秀成,王玉峰.用Microsoft Excel处理氧弹法燃烧热的实验数据.计算机与应用化学,2008(25):1243-1247.
    [159]刘伟,鲁文荣.氧弹热量计热值误差测量结果的不确定度评定.计量与测试技术,2008(35):60.
    [160]田艳茹.氧弹热量计热容量测定结果的不确定度评定.计量与测试技术,2009(39):91-92,96.
    [161]ASTM E 871-82 (2006). Standard test method for moisture analysis of particulate wood fuels.
    [162]Houston DF. Rice:chemistry and technology. St. Paul MN:American Association of Cereal Chemists,1972,301.
    [163]Hu S, Xiang J, Sun L, Xu M, Qiu J, Fu P. Characterization of char from rapid pyrolysis of rice husk. Fuel Processing Technology,2008 (89):1096-1105.
    [164]Bryden KM, Hagge MJ. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel,2003 (82):1633-1644.
    [165]Papadikis K, Gu S, Bridgwater AV. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors:Modelling the impact of biomass shrinkage. Chemical Engineering Journal,2009 (149):417-427.
    [166]Fang M, Yang L, Chen G, Shi Z, Luo Z, Cen K. Experimental study on rice husk combustion in a circulating fluidized bed. Fuel Processing Technology,2004 (85): 1273-1282.
    [167]Vempati RK, Musthyala SC, Mollah MYA, Cocke DL. Surface analyses of pyrolysed rice husk using scanning force microscopy. Fuel,1995 (74):1722-1725.
    [168]Sun L, Gong K. Silicon-based materials from rice husks and their applications. Industrial and Engineering Chemistry Research,2001 (40):5861-5877.
    [169]Paya J, Monzo J, Borrachero MV, Mellado A, Ordonez LM. Determination of amorphous silica in rice husk ash by a rapid analytical method. Cement and Concrete Research,2001 (31):227-231.
    [170]Hamdan H, Muhid MNM, Endud S, Listiorini E, Ramli Z.29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites. Journal of Non-Crystalline Solid,1997 (211):126-131.
    [171]Nair DG, Fraaij A, Klaassen AAK, Kentgens APM. A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research,2008 (38):861-869.
    [172]刘荣厚.生物质热裂解特性及闪速热裂解试验研究.沈阳农业大学,1997.
    [173]方曹明.生物质催化热解特性研究.上海交通大学,2010.
    [174]李建芬.生物质催化热解和气化的应用基础研究.华中科技大学,2010.
    [175]Ertas M, Alma MH. Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a fixed-bed reactor: Charaterization of bio-oil and bio-char. Analytical and Applied Pyrolysis,2010 (88):22-29.
    [176]Park DK, Kim SD, Lee SH, Lee JG. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology,2010 (101): 6151-6156.
    [177]Schroder E. Experiments on the pyrolysis of large beechwood particles in fixed beds. Analytical and Applied Pyrolysis,2004 (71):669-694.
    [178]Saravanakumar A, Haridasan TM, Reed TB. Flaming pyrolysis model of the fixed bed cross draft long-stick wood gasifier. Fuel Processing Technology,2010(91):669-675.
    [179]Luo S, Xiao B, Hu Z, Liu S, Guan Y, Cai L. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor. Bioresource Technology,2010 (101):6517-6520.
    [180]Razuan R, Chen Q, Zhang X, Sharifi V, Swithenbank J. Pyrolysis and combustion of oil palm stone and palm kernel cake in fixed-bed reactors. Bioresource Technology, 2010 (101):4622-4629.
    [181]李进良,李承曦,胡仁喜等.精通Fluent6.3流场分析.北京:化学工业出版社,2009.
    [182]周俊杰,徐国权,张华俊.FLUNET工程技术与实例分析.北京:中国水利水电 出版社,2010.
    [183]杨世铭,陶文铨.传热学(第四版).北京:高等教育出版社,2006.
    [184]周霭如,官士鸿.Visual Basic程序设计教程.北京:清华大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700