吸附—催化臭氧氧化协同降解液相有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸附-催化臭氧氧化技术是水处理高级氧化技术的重要分支,该体系由吸附、臭氧氧化和催化氧化组成。本文分别采用活性炭和膨润土作为吸附剂,以硝基酚污染物和低浓度微污染源水为处理对象,对该体系的工艺参数、反应机理、吸附剂改性、有机污染物降解途径以及反应动力学模型等方面进行了系统的研究。
     采用活性炭吸附-催化臭氧氧化处理硝基酚模拟污染物。考察了该体系的处理效果,反应各因素对体系的影响,并发现pH是影响体系的重要参数。系统的考察了pH值对吸附、臭氧氧化和活性炭吸附-催化臭氧氧化的影响,并进行了三者的性能对比,证实了臭氧、活性炭在污染物去除中的协同效应,协同因子由pH4.0时的0.8增加到pH 10.0时的1.3。研究发现,活性炭吸附-催化臭氧氧化体系在酸性条件下以吸附-氧化再生反应过程为主,反应主要围绕着活性炭表面发生;而在碱性条件下主要为催化氧化反应过程,污染物的氧化反应主要在液相中进行。建立了吸附、氧化、再生的反应动力学模型,该模型较好的预测了污染物在体系中的降解过程,为工业化应用提供了理论指导。
     采用高压脉冲液电等离子体对活性炭进行表面改性研究。液电等离子体改性过程扩展了活性炭的孔结构,并改变了活性炭表面官能团的分布。在无气体氛围下进行的改性过程更能显著增加活性炭表面的酚羟基浓度,从而提升活性炭对水中硝基酚的吸附能力,吸附容量由原炭的254.9 mg/g增加到304.0 mg/g。改性后的活性炭强化了吸附-催化氧化体系中的吸附作用,有效的提升了污染物的处理效率。
     针对微污染源水中天然有机物和芳香化合物共存的特点,开发了新型的膨润土吸附-催化臭氧氧化体系。该体系一方面充分利用膨润土对天然有机物的吸附作用,减少了其对自由基的捕获;另一方面在体系中产生了大量的活性物质HO·自由基,促进了芳香化合物的降解。膨润土吸附-催化臭氧氧化体系克服了其他高级氧化技术处理微污染源水的缺点,实现了水中天然有机物和芳香有机化合物的同时高效去除。
Adsorption-catalytic ozonation process is a novel alternative to Advanced Oxidation Technologies (AOTs). It is composed of adsorption, ozonation and catalytic oxidation. In our work, Activated Carbon (AC) and Bentonite are selected as adsorbents in this process to degrade nitrophenol wastewater and slightly-polluted potable water. This paper investigates operation parameters; reaction mechanism; carbon modification and reaction kinetic model.
     Firstly, the process is utilized in degrading p-nitrophenol (PNP) wastewater by using AC as adsorbent. Treating efficiency and effect of operation parameters are investigated. PH is found to be the key parameter. Based on the optimized condition, comparison among adsorption, ozonation and adsorption-catalytic ozonation process is comprehensively investigated, and synergistic effects between ozone and AC are found, and the synergistic factor is increased from 0.8 at pH 4.0 to 1.3 at pH 10.0. The reaction mechanism of the adsorption-catalytic ozonation process is clarified. At acidic conditions, adsorption predominated in organics removal. The pollutants are congregated from aqueous to AC surface, and AC experiences an oxidation regeneration process. The reactions mainly take place on AC surface. At basic conditions, catalytic oxidation contributed primarily, and the reactions take place in aqueous phase. A corresponding adsorption-oxidation-regeneration kinetic model for the process is established. The model can acceptably simulate and predict the way of containment removal for further industrial applications.
     To improve adsorbility of AC and removal of organics in the adsorption-catalytic ozonation process, modification of AC by pulsed high-voltage electrohydraulic discharge non-thermal plasma is investigated. The modification process extends AC's pore structure and redistributes its surface functional groups. Specially, the modification process in absence of gas introduces phenolic groups on AC surface, resulting in a considerable increase of the adsorbility of nitrophenol. The maximum adsorption capacity is increased from 254.9 mg/g to 304.0 mg/g. The modified AC enhances the adsorption effect in the adsorption-catalytic ozonation process, resulting in a promoted nitrophenol removal.
     Bentonite adsorption-catalytic ozonation process is investigated as a method of concurrent remove natural organic matters (NOM) and synthetic organic compounds (SOCs) from slightly-polluted potable water. Bentonite adsorbs or enmeshes NOM, which lowers its HO·scavenger effect. On the other hand, Fe~(3+) addition in this process promotes HO·generation, resulting in an enhancement in SOCs removal. The Bentonite adsorption-catalytic ozonation process remedies the drawbacks of AOTs in slightly-polluted water treatment, and realizes concurrent removal of NOM and aromatic containment.
引文
[1]国家环境保护总局.中国环境状况公报:综述.北京:国家环境保护总局.2006.1-3.
    [2]吕锡武,严煦世.饮用水水源污染现状与去除污染技术的进展.城市环境与城市生态.1990,3(1):44-48.
    [3]黄晓东,王占生.微污染水源水净化新技术.环境污染与防治.1998,20(3):35-38.
    [4]许建华,杨人隽,王喜宝.水的特种处理.同济大学出版社.1989,16-29.
    [5]郝小龙.高压脉冲等离子体放电技术催化降解有机污染物的研究[浙江大学博士学位论文].杭州,浙江大学,2007,2-24.
    [6]许保玖.当代给水与废水处理原理.北京:清华大学出版社.1983,16-39.
    [7]严煦世,范瑾初.给水工程(第4版).北京:中国建筑工业出版社.1999,73-162.
    [8]张自杰,林荣忱,金儒霖.排水工程(第四版).北京:中国建筑工业出版社.2000,168-229.
    [9]金兆丰,徐竟成.城市污水回用技术手册.北京:化学工业出版社.2003,29-66.
    [10]李冬,韩敏.活性炭吸附在废水处理中的应用.洛阳理工学院学报:自然科学版.2008,18(1):33-36.
    [11]王玉亭.活性炭吸附法治理恶臭污染.抚顺石油化工研究院院报.1996,9(2):41-51.
    [12]刘闯,李永峰,林永波.活性炭处理印染废水的研究.上海工程技术大学学报.2008,22(3):206-210.
    [13]金相灿,贺凯,卢少勇,胡小贞,李胜男.4种填料对氨氮的吸附效果.湖泊科学.2008,20(6):755-760.
    [14]陈浩,赵杰.凹凸棒与酸化凹凸棒对Pb(Ⅱ)和Zn(Ⅱ)的选择吸附性差异.材料工程.2008,10:154-157.
    [15]范延臻,王宝贞.怀炭表面化学.煤炭转化.2000,23(4):26-30.
    [16]范延臻,王宝贞,王琳,余敏.改性活性炭对有机物的吸附性能.环境化学. 2001,20(5):444-448.
    [17]林冠烽,牟大庆,程捷,黄彪.活性炭再生技术研究进展.林业科学.2008,44(2):150-154.
    [18]曾雪玲,唐晓东,卢涛.活性炭再生技术的研究进展.四川化工.2008,4:11-15.
    [19]Alvarez P. M., Beltran F. J., Gomez-Serrano V., Jaramillo J., Rodriguez E. M. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research. 2004, 38(8): 2155-2165.
    [20]曾秀琼.柱撑蒙脱石的制备表征及其在废水处理中的应用[浙江大学博士学位论文].杭州,浙江大学,2003,3-36.
    [21]郭新锋,黎艳,王娟芳,王晓军.几种测定膨润土阳离子交换容量方法的比较.工业计量.2008,18(1):10-12.
    [22]韩秀山.膨润土(蒙脱石)阳离子交换容量CEC的测定.矿产保护与利用.2007.3:20-20.
    [23]李梦耀,王莉平,车红荣.改性提高膨润土阳离子交换容量研究.地球科学与环境学报.2005,27(3):30-32.
    [24]王宜鑫,林亚萍,刘静,赵斌,赵海涛,封克.膨润土对富营养化水体中磷的吸附特征.安徽农业科学.2006,34(24):6549-6550.
    [25]Anoop K., Viraraghavan T. Use of Immobilized Bentonite in Removal of Heavy Metals from Wastewater. Journal of Environmental Engineering. 1998, 124: 1020-1024.
    [26]孙长顺,金奇庭,郭新超,刘新宇,薛峰.无机柱撑膨润土对有机锡废水中锡的吸附研究.环境污染与防治.2007,29(10):749-753.
    [27]任广军,翟玉春,宋恩军,张春丽.Fe-Al柱撑膨润土吸附染料酸性大红的性能.染料与染色.2007,44(4):54-55,30.
    [28]李益民,张华,李海洋.羟基金属柱撑膨润土吸附氟的性能研究.环境污染与防治.2006,28(1):1-4.
    [29]任广军,翟玉春,宋恩军,张春丽,王昕.水中硝基苯在柱撑膨润土上的吸附行为.化工学报.2004,55(11):1833-1836.
    [30]孙洪良,朱利中.表面活性剂改性的螯合剂有机膨润土对水中有机污染物和重金属的协同吸附研究.高等学校化学学报.2007,28(8):1475-1479.
    [31]邵振华,周明华,雷乐成.有机膨润土吸附分离一体化技术处理酸性橙Ⅱ染料废水.环境科学学报.2005,25(5):655-660.
    [32]姜勇,李国芝,汤红妍,魏学锋,蔡青青,董铁有.两种沸石吸附废水中磷污染物的研究.河南科技大学学报:自然科学版.2008,29(5):94-96.
    [33]周芳,周荣敏,郝凌云,沈惠霞,王阳.沸石微波改性及其吸附废水中氨氮性能的研究.安全与环境工程.2008,15(3):65-68.
    [34]赵玉华,张旭,常启雷,于海华,李惠丽.改性沸石去除水中氨氮的试验分析.沈阳建筑大学学报:自然科学版.2008,24(4):641-645.
    [35]姚冬梅,赵杉林,商丽燕,付春香,李萍.天然高分子吸附剂吸附水中的Cu~(2+)和Ni~(2+).辽宁石油化工大学学报.2006,26(1):42-44.
    [36]蔡佳亮,黄艺,郑维爽.生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展.农业环境科学学报.2008,27(4):1297-1305.
    [37]蔡佳亮,黄艺,礼晓.生物吸附剂对污染物吸附的细胞学机理.生态学杂志.2008,27(6):1005-1011.
    [38]Legube B., Karpel Vel Leitner N. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today. 1999, 53(1): 61-72.
    [39]曹卫华.生物接触氧化一臭氧氧化工艺处理香精香料废水系统设计.西南给排水.2004,26(2):18-20.
    [40]缪晡,沈江.臭氧氧化处理抗肿瘤抗生素生产废水在工程中的应用.医药工程设计.1995,4:39-42.
    [41]Carbajo M., Beltran F. J., Gimeno O., Acedo B., Rivas F. J. Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst. Applied Catalysis B: Environmental. 2007, 74(3-4): 203-210.
    [42]李来胜,祝万鹏,李中和.催化臭氧化吸附技术去除难降解污染物.中国给水排水.2002,18(5):23-25.
    [43]Gimeno O., Carbajo M., Beltran F. J., Rivas F. J. Phenol and substituted phenols AOPs remediation. Journal of Hazardous Materials. 2005, 119(1-3): 99-108.
    [44]Vogna D., Marotta R., Napolitano A., Andreozzi R., d'Ischia M. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H_2O_2 and ozone. Water Research. 2004, 38(2): 414-422.
    [45]Latifoglu A., Gurol M. D. The effect of humic acids on nitrobenzene oxidation by ozonation and O_3/UV processes. Water Research. 2003, 37(8): 1879-1889.
    [46]Tezcanli-G(u|¨)yer G., Ince N. H. Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. Ultrasonics. 2004, 42(1-9): 603-609.
    [47]Benitez F. J., Beltran-Heredia J., Acero J. L., Gonzalez T. Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H_2O_2/UV radiation. Water Research. 1996, 30(7): 1597-1604.
    [48]Ruppert G., Bauer R., Heisler G. UV-O_3, UV-H_2O_2, UV-TiO_2 and the photo-Fenton reaction - comparison of advanced oxidation processes for wastewater treatment. Chemosphere. 1994, 28(8): 1447-1454.
    [49]Pera-Titus M., Garcia-Molina V., Bafios M. A., Gim(?)nez J., Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental. 2004, 47(4): 219-256.
    [50]Hayashi J. I., Ikeda J., Kusakabe K., Morooka S. Decomposition rate of volatile organochlorines by ozone and utilization efficiency of ozone with ultraviolet radiation in a bubble-column contactor. Water Research. 1993, 27(6): 1091-1097.
    [51]Al-Hayek N., Dot M. Oxydation des phenols par le peroxyde d'hydrogene en milieu aqueux en presence de fer supporte sur alumine. Water Research. 1990, 24(8): 973-982.
    [52]Al-Hayek N., Eymery J. P., Dote M. Catalytic oxidation of phenols with hydrogen peroxide : enStructural study by Mossbauer spectroscopy of the catalysts Fe/Al_2O_3 and Fe-Cu/Al_2O_3. Water Research. 1985, 19(5): 657-666.
    [53]李来胜,祝万鹏,李中和.催化臭氧化去除水中氯乙酸的研究.上海环境科学.2002,21(5):282-284.
    [54]Fujita H., Izumi J., Sagehashi M., Fujii T., Sakoda A. Adsorption and decomposition of water-dissolved ozone on high silica zeolites. Water Research. 2004, 38(1): 159-165.
    [55]Fujita H., Izumi J., Sagehashi M., Fujii T., Sakoda A. Decomposition of trichloroethene on ozone-adsorbed high silica zeolites. Water Research. 2004, 38(1): 166-172.
    [56]Mckay G., Mcaleavey G. Ozonation and carbon adsorption in a three-phase fluidised bed for colour removal from peat water. Chemical Engineering Research & Design. 1988, 66:531-536
    [57]Lin S. H., Lai C. L. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds. Water Research. 2000, 34(3): 763-772.
    [58]Sanchez-Polo M., Rivera-Utrilla J. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon. 2003, 41(2): 303-307.
    [59]G(u|¨)l S., (O|¨)zcan (O|¨)., Erbatur O. Ozonation of C.I. Reactive Red 194 and C.I. Reactive Yellow 145 in aqueous solution in the presence of granular activated carbon. Dyes and Pigments. 2007, 75(2): 426-431.
    [60]Beltran F. J., Garcia-Araya J. F., Giraldez I. Gallic acid water ozonation using activated carbon. Applied Catalysis B: Environmental. 2006, 63(3-4): 249-259.
    [61]Faria P. C. C., Orfao J. J. M., Pereira M. F. R. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Research. 2005, 39(8): 1461-1470.
    [62]Beltran F. J., Pocostales P., Alvarez P., Oropesa A. Diclofenac removal from water with ozone and activated carbon. Journal of Hazardous Materials. 2009, 163(2-3): 768-776.
    [63]Alv(?)rez P.M. Garc(?)a-Araya J. F., Beltr(?)n F. J., Gir(?)ldez I., Jaramillo J., G(?)mez-Serrano V. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon. 2006, 44(14): 3102-3112
    [64]隋铭皓,马军.臭氧/活性炭对硝基苯的去除效果研究.中国给水排水.2001,17(10):70-73.
    [65]张彭义,余刚.臭氧/活性炭协同降解有机物的初步研究.中国环境科学.2000,20(2):159-162.
    [66]丁春生,缪佳,秦树林,高亮.臭氧/活性炭/紫外光联用处理几种高浓度有机废水影响因素.环境科学学报.2008,28(3):496-501.
    [67]Lin S. H., Wang C. H. Industrial wastewater treatment in a new gas-induced ozone reactor. Journal of Hazardous Materials. 2003, 98(1-3): 295-309.
    [68]Beltr(?)n F. J., Rivas F. J., Fern(?)ndez L. A., (?)lvarez P. M., Montero-de-Espinosa R.. Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon Industrial Engneering Chemical Research. 2002, 41(25): 6510-6517.
    [69]S(?)nchez-Polo U. Von G., Rivera-Utrilla J. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research. 2005, 39(14): 3189-3198
    [70]Kasprzyk-Hordern B., Ziolek M., Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental. 2003, 46(4): 639-669.
    [71]李兰延,赵谌琛,魏宁.功能化活性炭研究进展综述.煤炭加工与综合利用.2007,5:33-38.
    [72]Takaoka M., Yokokawa H., Takeda N. The effect of treatment of activated carbon by H_2O_2 or HNO_3 on the decomposition of pentachlorobenzene. Applied Catalysis B: Environmental. 2007, 74(3-4): 179-186.
    [73]Li Y. H., Lee C. W., Gullett B. K. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption. Fuel. 2003, 82(4): 451-457.
    [74]Chen J. P., Wu S., Chong K.-H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption. Carbon. 2003, 41(10): 1979-1986.
    [75]Shim J. W., Park S. J., Ryu S.-K. Effect of modification with HNO_3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon. 2001, 39(11): 1635-1642.
    [76]Chingombe P., Saha B., Wakeman R. J. Surface modification and characterisation of a coal-based activated carbon. Carbon. 2005, 43(15): 3132-3143.
    [77]Oliveira L. C. A., Silva C. N., Yoshida M. I., Lago R. M. The effect of H_2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H_2O_2 decomposition. Carbon. 2004, 42(11): 2279-2284.
    [78]Domingo-Garcia M., Lopez-Garzon F. J., Perez-Mendoza M. Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon. Journal of Colloid and Interface Science. 2000, 222(2): 233-240.
    [79]Liu G., Ma J., Li X., Qin Q. Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments. Journal of Hazardous Materials. In Press.
    [80]Rie N., Yoko N., Naoto O., Michio I. Modification of pore structure in activated carbons by heat treatment with thermoplastic resins. New Carbon Materials, 2006, 21(4): 289-296.
    [81]唐恩凌,张静,刘明石.低温等离子体技术在材料表面改性中的应用.电工材料.2008,3:38-41.
    [82]程抗,王祖武,左蓉,周烨,车垚,杨毅.等离子体改性对活性炭纤维表面化学结构的影响.炭素.2008,3:15-19.
    [83]Boudou J. P., Paredes J. I., Cuesta A., Martinez-Alonzo A., Tascon J. M. D. Oxygen plasma modification of pitch-based isotropic carbon fibres. Carbon. 2003, 41(1): 41-56.
    [84]Huang H. C., Ye D. Q., Huang B.-C. Nitrogen plasma modification of viscose-based activated carbon fibers. Surface and Coatings Technology. 2007, 201(24): 9533-9540.
    [85]Lee D., Hong S. H., Paek K. H., Ju W. T. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment. Surface and Coatings Technology. 2005, 200(7): 2277-2282.
    [86]Lei L., Zhang Y., Zhang X., Shen Y. Using a novel pulsed high-voltage gas-liquid hybrid discharge continuous reactor for removal of organic pollutant in oxygen atmosphere. Journal of Electrostatics. 2008, 66(1-2): 16-24.
    [87]张轶.高压脉冲气液混合放电降解对氯苯酚的研究[浙江大学博士学位论文].杭州,浙江大学,2008,26-42.
    [88]Ma J., Sui M., Zhang T., Guan C. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Water Research. 2005, 39(5): 779-786.
    [89]Zhou Y. R., Zhu W. P., Liu F. D., Wang J. B., Yang S. X. Catalytic activity of Ru/Al_2O_3 for ozonation of dimethyl phthalate in aqueous solution. Chemosphere. 2007, 66(1): 145-150.
    [90]周云瑞.微污染源水催化臭氧化中催化剂和反应器的研究[清华大学博士学位论文].北京,清华大学,2007,26-36.
    [91]Faria P. C, C., Orfao J. J. M., Pereira M. F. R. A novel ceria-activated carbon composite for the catalytic ozonation of carboxylic acids. Catalysis Communications. 2008, 9(11-12): 2121-2126.
    [92]Waterlot C., Couturier D., Rigo B. Montmorillonite-palladium-copper catalyzed cross-coupling of methyl acrylate with aryl amines. Tetrahedron Letters. 2000, 41(3): 317-319.
    [93]Perathoner S., Vaccari A. Catalysts based on pillared interlayered clays for the selective catalytic reduction of NO. Clay Minerals. 1997, 32(123-134.
    [94]Pai S. G., Bajpai A. R., Deshpande A. B., Samant S. D. Benzylation of arenes in the presence of Montmorillonite K10 modified using aqueous and acetonitrile solutions of FeCl_3. Journal of Molecular Catalysis A: Chemical. 2000, 156(1-2): 233-243.
    [95]魏光涛,廖丹葵,唐艳葵,童张法.铁交联膨润土-H_2O_2处理糖蜜酒精废水的研究.广西师范大学学报:自然科学版.2008,26(3):61-64.
    [96]刘颖,李益民,温丽华,侯可勇,李海洋.纳米氧化铁/膨润土催化剂的制备、表征及复相光降解罗丹明B的研究.光谱学与光谱分析.2006,26(10):1939-1942.
    [97]Carriazo J., Gu(?)lou E., Barrault J., Tatibou(?)t J. M., Molina R., Moreno S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today. 2005, 107-108: 126-132.
    [98]Carriazo J., Gu(?)lou E., Barrault J., Tatibou(e|¨)t J. M., Molina R., Moreno S. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe. Water Research. 2005, 39(16): 3891-3899.
    [99]Carriazo J. G., Guelou E., Barrault J., Tatibou(e|¨)t J. M., Moreno S. Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Applied Clay Science. 2003, 22(6): 303-308.
    [100]Carriazo J. G., Molina R., Moreno S. A study on Al and Al-Ce-Fe pillaring species and their catalytic potential as they are supported on a bentonite. Applied Catalysis A: General. 2008, 334(1-2): 168-172.
    [101]Carriazo J. G., Centeno M. A., Odriozola J. A., Moreno S., Molina R. Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General. 2007, 317(1): 120-128.
    [102]Wang G. S., Hsieh S. T., Hong C. S. Destruction ofhumic acid in water by UV light-catalyzed oxidation with hydrogen peroxide. Water Research. 2000, 34(15): 3882-3887.
    [103]Shen J. M., Chen Z. L., Xu Z. Z., Li X. Y., Xu B. B., Qi F. Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. Journal of Hazardous Materials. 2008, 152(3): 1325-1331.
    [104]Lindsey M. E., Tarr M. A., Inhibition of Hydroxyl Radical Reaction with Aromatics by Dissolved Natural Organic Matter. 2000, 34(3): 444-449.
    [105]万鹰昕,刘丛强,刘建军,傅平青.溶液化学对高岭土吸附腐殖酸影响的实验研究.农业环境科学学报.2003,22(2):178-180.
    [106]秦庆东,刘可,马军,杨忆新.臭氧/沸石工艺处理水中硝基苯的机理探讨.环境科学.2007,28(10):2203-2207.
    [107]秦庆东,马军,刘可,杨忆新.臭氧/沸石工艺处理水中硝基苯的效能研究.环境科学.2007,28(4):766-771.
    [108]王楠,鲍治宇,董延茂.纳米级TiO_2/沸石/UV催化臭氧化水中苯酚的研究.苏州科技学院学报:工程技术版.2008,21(1):23-28.
    [109]Dong Y., Yang H., He K., Wu X., Zhang A. Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone. Applied Catalysis B: Environmental. 2008, 82(3-4): 163-168.
    [110]中华人民共和国城镇建设行业标准.臭氧发生器(CJ/T 3028.1-94).1994.
    [111]Bader H., Hoign J. Determination of ozone in water by the indigo method. Water Research. 1981, 15(4): 449-456.
    [112]Eisenberg G. M., Colorimetric Determination of Hydrogen Peroxide. Industrial & Engineering Chemistry Analytical Edition. 1943, 15(5): 327-328.
    [113]方晶云,王立宁,马军,陈忠林,梁涛.藻细胞及胞外分泌物对三卤甲烷生成势的影响.中国给水排水.2006,(z1):419-424.
    [114]Grymonpre D. R., Finney W. C., Locke B. R. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison. Chemical Engineering Science. 1999, 54(15-16): 3095-3105.
    [115]Boehm H. P. Chemical Identification of Surface Groups. Advances in catalysis. 1966, 16: 179-274.
    [116]Valdes H., Sanchez-Polo M., Rivera-Utrilla J., Zaror C. A., Effect of Ozone Treatment on Surface Properties of Activated Carbon. Langmuir. 2002, 18: 2111-2116.
    [117] Beltran F. J., Rodriguez E. M., Romero M. T. Kinetics of the ozonation of muconic acid in water. Journal of Hazardous Materials. 2006, 138(3): 534-538.
    [118] Huang J., Zhou Y., Huang K., Liu S., Luo Q., Xu M. Adsorption behavior, thermodynamics, and mechanism of phenol on polymeric adsorbents with amide group in cyclohexane. Journal of Colloid and Interface Science. 2007, 316(1): 10-18.
    [119] Hoigne J., Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds, water research. 1983, 17(2): 173-183.
    [120] Beltran F. J., Rivas F. J., Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water. Water Research. 2005, 39(15): 3553-3564.
    [121] Beltran F. J., Gomez-Serrano V., Duran A. Degradation kinetics of p-nitrophenol ozonation in water. Water Research. 1992, 26(1): 9-17.
    [122] L(?)szl(?) K., Tomb(?)cz E., Novak C. pH-dependent adsorption and desorption of phenol and aniline on basic activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 306(1-3): 95-101.
    [123] Kumar A., Kumar S., Kumar S., Gupta D. V. Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: Equilibrium and kinetics. Journal of Hazardous Materials. 2007, 147(1-2): 155-166.
    [124] Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon. 2004, 42(1): 83-94.
    [125] Terzyk A. R Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. Journal of Colloid and Interface Science. 2003, 268(2): 301-329.
    [126] Luo R, Nieh T. G., Schwartz A. J., Lenk T. J. Surface characterization of nanostructured metal and ceramic particles. Materials Science and Engineering A. 1995, 204(1-2): 59-64.
    [127] Rincon M. E., Trujillo-Camacho M. E., Cuentas-Gallegos A. K., Casillas N. Surface characterization of nanostructured TiO_2 and carbon blacks composites by dye adsorption and photoelectrochemical studies. Applied Catalysis B: Environmental. 2006, 69(1-2): 65-74.
    [128] Zhang X., Zhou M., Lei L. Enhancing the concentration of TiO_2 photocatalyst on the external surface of activated carbon by MOCVD. Materials Research Bulletin. 2005, 40(11): 1899-1904.
    [129]Li F., Wang Y., Wang D., Wei F. Characterization of single-wall carbon nanotubes by N_2 adsorption. Carbon. 2004, 42( 12-13): 2375-2383.
    [130]Hoign(?) J. Inter-calibration of OH radical sources and water quality parameters. Water Science & Technology. 1997, 35(4): 1-8.
    [131]杜瑛珣.Fenton体系联用生物流化床处理酚类废水研究[浙江大学博士学位论文].杭州,浙江大学,2007,16-46.
    [132]Oturan M. A., Peiroten J., Chartrin P., Acher A. J. Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method. Environmental Science & Technology. 2000, 34(16): 3474-3479.
    [133]Legrini O., Oliveros E., Braun A. M. Photochemical processed for water treatment. Chemical Review. 1993, 93: 671-689.
    [134]Bessadok A., Marais S., Roudesli S., Lixon C., Metayer M. Influence of chemical modifications on water-sorption and mechanical properties of Agave fibres. Composites Part A: Applied Science and Manufacturing. 2008, 39(1): 29-45.
    [135]Lu C. L., Xu S. P., Gan Y. X., Liu S. Q., Liu C. H. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon. 2005, 43(11): 2295-2301.
    [136]Wang Q., Liang X., Qiao W., Liu C., Liu X., Zhang R., Ling L. Modification of polystyrene-based activated carbon spheres to improve adsorption of dibenzothiophene. Applied Surface Science. 2009, 255(6): 3499-3506.
    [137]Cbiang H. L., Huang C. P., Chiang P. C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere. 2002, 47(3): 257-265.
    [138]Lei L., Li X., Zhang X. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology. 2008, 58(3): 359-366.
    [139]Jung M. W., Ahn K. H., Lee Y., Kim K. P., Rhee J. S., Tae Park J., Paeng K. J. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchemical Journal. 2001, 70(2): 123-131.
    [140]Hamdaoui O., Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part Ⅱ. Models with more than two parameters. Journal of Hazardous Materials. 2007, 147(1-2): 401-411.
    [141] Hao X., Zhou M., Xin Q., Lei L. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water. Chemosphere. 2007, 66(11): 2185-2192.
    [142] Wen Y. Z., Jiang X. Z. Pulsed Corona Discharge-Induced Reactions of Acetophenone in Water. Plasma Chemistry and Plasma Processing. 2001, 21(3): 345-354.
    [143] Zhang Y., Zhou M., Lei L. Degradation of 4-chlorophenol in different gas-liquid electrical discharge reactors. Chemical Engineering Journal. 2007, 132(1-3): 325-333.
    [144] Demirbas E., Kobya M., Sulak M. T. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon. Bioresource Technology. 2008, 99(13): 5368-5373.
    [145] Tsai J. H., Chiang H. M., Huang G. Y., Chiang H. L. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. Journal of Hazardous Materials. 2008, 154( 1 -3): 1183-1191.
    [146] Cordero T., Rodr(?)guez-Mirasol J., Bedia J., Gomis S., Yustos P., Garc(?)a-Ochoa F., Santos A. Activated carbon as catalyst in wet oxidation of phenol: Effect of the oxidation reaction on the catalyst properties and stability. Applied Catalysis B: Environmental. 2008, 81(1-2): 122-131.
    [147] Valdes H., Zaror C. A. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach. Chemosphere. 2006,65(7): 1131-1136.
    [148] Zhang X., Lei L. Effect of preparation methods on the structure and catalytic performance of TiO_2/AC photocatalysts. Journal of Hazardous Materials. In Press.
    [149] Sreethawong T., Chavadej S. Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst. Journal of Hazardous Materials. In Press.
    [150] Bose P., Reckhow D. A. The effect of ozonation on natural organic matter removal by alum coagulation. Water Research. 2007, 41(7): 1516-1524.
    [151] He P. J., Xue J. F., Shao L. M., Li G. J., Lee D. J. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill. Water Research. 2006, 40(7): 1465-1473.
    [152]Jung A. V., Chanudet V., Ghanbaja J., Lartiges B. S., Bersillon J. L. Coagulation of humic substances and dissolved organic matter with a ferric salt: An electron energy loss spectroscopy investigation. Water Research. 2005, 39(16): 3849-3862.
    [153]Tomaszewska M., Mozia S. Removal of organic matter from water by PAC/UF system. Water Research. 2002, 36(16): 4137-4143.
    [154]Li X. Z., Li F. B., Fan C. M., Sun Y. P. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO_2 mesh photoelectrode. Water Research. 2002, 36(9): 2215-2224.
    [155]Taralunga M., Mijoin J., Magnoux P. Catalytic destruction of chlorinated POPs-Catalytic oxidation of chlorobenzene over PtHFAU catalysts. Applied Catalysis B: Environmental. 2005, 60(3-4): 163-171.
    [156]Musialik-Piotrowska A., Mendyka B. Catalytic oxidation of chlorinated hydrocarbons in two-component mixtures with selected VOCs. Catalysis Today. 2004, 90(1-2): 139-144.
    [157]Thullner M., Schafer W. Modeling of a Field Experiment on Bioremediation of Chlorobenzenes in Groundwater. Bioremediation Journal. 1999, 3(3): 247-267.
    [158]赵振业,孙伟,章诗芳,肖贤明.活性炭对不同有机物吸附性能的影响.水处理技术.2005,31(1):23-25.
    [159]张效正.膨润土的胶体性质及化学反应的研究.江苏理工大学学报:自然科学版.1994,15(4):95-98.
    [160]Abuzaid N. S., Bukhari A. A., Al-Hamouz Z. M. Ground water coagulation using soluble stainless steel electrodes. Advances in Environmental Research. 2002, 6(3): 325-333.
    [161]Netpradit S., Thiravetyan P., Towprayoon S. Application of waste metal hydroxide sludge for adsorption of azo reactive dyes. Water Research. 2003, 37(4): 763-772.
    [162]Xu L., Zhu L. Structures of hexametbonium exchanged bentonite and the sorption characteristics for phenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007, 307(1-3): 1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700