嵌岩桩竖向承载机理及承载力计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嵌岩桩是我国桥梁、港口及建筑工程中采用较多的基础型式之一,如何合理确定嵌岩桩的竖向承载力一直是工程界所关注的重要问题之一。本文考虑三维应力状态下岩石的强度特性,对嵌岩桩的承载机理及竖向承载力的确定方法进行深入系统地研究,具有重要的理论与工程实际意义。
     本文首先深入探讨了嵌岩桩的承载机理,通过对桩侧阻力和桩端阻力的各种计算模式及其影响因素的分析,对现行各种确定嵌岩桩竖向承载力的方法进行了深入分析,在此基础上,针对现行各方法不计桩端岩层应力分布或岩层厚度的缺陷,采用铁摩辛柯弹性理论导得了岩层顶板应力分布,再结合源于岩石三维应力本构模型的修正Drucker-Prager强度准则,提出一种确定嵌岩桩竖向承载力的新方法,其能考虑第二主应力和第三主应力对岩石强度的影响,并采用MATLAB编制出相应的计算程序,将其应用于潭邵高速公路某跨渠桥基嵌岩桩工程实例,计算结果表明,该方法切实可行,且能清楚地反映岩层顶板随荷载增大而逐步破坏的全过程。最后本文将桩端以下岩层划分为3种岩性、4种跨度、6种厚度共72种情况,用Marc有限元程序对每一种情况进行了弹塑性分析,采用岩层塑性区分布情况和桩端位移的双重标准来确定嵌岩桩竖向承载力,根据计算结果提出将岩层的破坏形态可划分为三类,和通常所定义的冲切破坏、剪切破坏和弯拉破坏相比更能反映岩层的破坏特征和过程。此外,对岩性、岩层跨度、岩层厚度三种因素对嵌岩桩竖向承载力的影响以及与岩层三类破坏之间的关系进行了一定的探讨,获得了一些定性的结论和规律。
The rock-socketed piles are one of the most used foundations in constructions of bridges, ports and buildings in our country. How to rationally determine the vertical load-bearing capacity of rock-socketed piles is one of the most important questions in engineering. Considering the characters of the rock strength in three-dimension stress state, the load-bearing mechanics and the methods of determining the vertical load-bearing capacity of rock-socketed piles have been deeply system studied, that has important signification in theory and engineering.Firstly, through deeply discussing of the load-bearing mechanics of rock-socketed piles and every calculating mode and effecting factors of the side friction resistance and the end resistance of piles, the actual methods of determination the vertical load-bearing capacity of rock-socketed piles were analyzed. Aimed at the defect of the actual methods which do not consider the stress distributing in the rock mass at the end of rock-socketed pile or the thickness of the terrance, using Timoshenko elastic theory deduces the stress distributing in the rock mass. Combining with the modified Drucker-Prager failure criterion which derived from three-dimension stress rock constitutive model, a new method for determining the vertical load-bearing capacity of rock-socketed piles was put forward, which can consider the effect on the rock strength by the second principle stress and the third principle stress. Corresponding calculating program was compiled using MATLAB and applied to an engineering example of rock-socketed piles bridge foundation in Tan-Shao expressway. The result shows that this method was feasible and correct and can explicitly show the whole terrance failure process as the load added. Finally, the terrance at the end of the pile was sorted 72 classes including different three kind of rocks, different four kind of spans and different six kind of thicknesses. Every instance was elastic-plastic analyzed by Marc software, the vertical load-bearing capacity of rock-socketed piles was determined by double standards of the plastic area distribution and the displacement of the pile bottom. Base on calculating results, three terrance failure modes are put forward. Compared with the usual punching shear failure, shear failure and flexural failure, that can more clearly reflect the terrance failure characters and process. Furthermore, investigated the affections of the vertical load-bearing capacity of rock-socketed pile effected by the three factors of rock
引文
[1] 桩基工程手册编写委员会.桩基工程手册.北京:中国建筑工业出版社,1995,1-2
    [2] 刘金砺.桩基础设计与计算.北京:中国建筑工业出版社,1990,3-7
    [3] 赵明华.桥梁桩基与检测.北京:人民交通出版社,2000,1-7
    [4] 赵明华,徐学燕.基础工程.北京:高等教育出版社,2003,82-100
    [5] 赵明华,王贻荪.土力学与基础工程.长沙:湖南科学技术出版社,1996,184-194
    [6] 赵明华,王贻荪.土力学与基础工程.武汉:武汉工业大学出版社,2000,187-190
    [7] 刘金砺.桩基设计施工与检测.北京:中国建材工业出版社,2001,164-166
    [8] 黄强.桩基工程若干热点技术问题.北京:中国建材工业出版社,1996,13-23
    [9] 刘松玉,季鹏,韦杰.大直径泥质软岩嵌岩灌注桩的荷载传递性状,岩土工程学报,1998,20(4):58-61
    [10] 郑必勇,刘祖春.嵌岩桩承载力的岩土因素分析与探讨,江苏建筑,2001,(1):51-53
    [11] 赵明华,曹文贵,刘齐建等.按桩顶沉降控制嵌岩桩竖向承载力的方法.岩土工程学报,2004,26(1):67-71
    [12] 赵明华,曹文贵,何鹏祥等.岩溶及采空区桥梁桩基桩端岩层安全厚度研究.岩土力学,2004,25(1):64-68
    [13] 赵明华,袁腾方,黎莉等.岩溶区桩端持力岩层安全厚度计算研究.公路,2003,(1):124-128
    [14] 宰金珉,宰金璋,高层建筑基础与设计,中国建筑工业出版社,1993,143-156
    [15] 史佩栋,梁晋瑜.嵌岩桩竖向承载力的研究.岩土工程学报,1994,16(4):32-39
    [16] 吕福庆,吴文,姬晓辉.嵌岩桩静载试验结果的研究与讨论.岩土力学,1996,17(1):84-96
    [17] 董金荣,林胜天,戴一鸣.大口径钻孔灌注桩荷载传递性状.岩土工程学报,1994,16(6):123-131
    [18] 王国民.软岩钻孔灌注桩的荷载传递性状.岩土工程学报,1996,18(2):99-103
    [19] Chun F L. Load transfer behavior of Rock Socketed Piles. Journal of Geotechnical Engineering, 1989, 115 (6): 176-181
    [20] McVay M C, Williams R C. Design of socketed drilled shafts in limestone, Journal of Geotechnical Engineering, 1992, 118 (10): 194-197
    [21] Vogan R W. Discussion on friction and end bearing tests on bed rock for high capacity socket design. Can. Geotech. J, 1977, (14): 156-158
    [22] Osterberg J D, Gill S A. Load transfer mechanism for piers socketed in hard soils or rock. Montreal P Q, 1973, (3): 235-262
    [23] Rowe R K, Bells P J N. A theoretical study of pile-rock socket behavior Proceedings of International Conference on Structural Foundations on rock. Sydney, 1980, (5): 253-264
    [24] Rowe R K, Armitage H. Theoretical solutions for axial deformation of drilled in rock. Can. Geotech. J, 1987, (24): 114-125
    [25] Donald I B, Sloan S W, Chiu H K. Theoretical analyses of rock socketed piles. Proceedings of International Conference on Structural Foundations on rock. Sydney, 1980, (8): 303-316
    [26] Leong E C, Randolph M F. Finite element modeling of rock-socketed piles. Int. J. for Numerical and Analytical Methods in Geo mechanics, 1994, (18): 25-47
    [27] 刘树亚.嵌岩桩理论研究和设计中的几个问题.岩土力学,1999,20(4):86-92
    [28] W. JOHNSTON, T. S. K. LAM, A. F. WILLIAMS, Constant normal stiffness direct shear testing for socketed pile design in weak rock. Geotechnique, 1995, 37 (1): 83-89
    [29] Ian.W. Johnston, Thomas S K L. Shear behavior of regular triangular concrete rock joints-analysis. Journal of Geotechnical Engineering, 1989, 115 (5): 63-68
    [30] B. TNDRARATNA, A. HAQUE, AZIZ. Shear behavior of idealized in filled joints under constant normal stiffness. Geotechnique, 1998, 49 (3): 331-355
    [31] 中国建筑科学研究院主编.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1995,26-47
    [32] 中华人民共和国建设部主编.建筑地基基础设计规范(GB50007-2002).北京:中国建筑工业出版社,2003,68-79
    [33] 中华人民共和国交通部主编.公路桥涵与基础设计规范(JTJ024-85).北京:人民交通出版社,1994,75-81
    [34] 铁道部第三勘测设计院.铁路桥涵设计规范(TBJ2-96).北京:中国铁道出版社,1996,63-75
    [35] 刘兴远,郑颖人,林文修.关于嵌岩桩理论研究的几点认识.岩土工程学报, 1998,20(5):118-119
    [36] 明可前.嵌岩桩的受力机理分析.岩土力学,1998,19(1):65-69
    [37] 林天健,熊厚金,王利群.桩基础设计指南.北京:中国建筑工业出版社,1999,446-451
    [38] Bells P J N, Turner R M. Elastic solutions for the design and analysis of rock-socketed piles. Can. Geotech. J. 1979, (16): 481-487
    [39] 江舟,张宏胜.桩体负摩阻力分析及其对桩承载力的影响.地下空间,2003,23(4):362-364
    [40] 徐志英.岩石力学(第三版).北京:水利电力出版社,1993,4-20
    [41] 沈明荣.岩体力学.上海:同济大学出版社,1999,65-71
    [42] 刘建刚,杨炳寿,关于大直径嵌岩灌注桩桩型的探讨,江苏建筑,1995,(2):39-42
    [43] 刘建刚,王建平.嵌岩桩的嵌固效应及载荷试验P~s曲线特征分析.工业建筑,1995,25(5):41-48
    [44] 李大营.关于嵌岩桩承载力的讨论.电力勘测,1994,(2):29-32
    [45] 刘利民.桩极限侧阻力取值的几个问题.西部探矿工程,2001,72(5):5-6
    [46] 石名磊,邓学钧,刘松玉.桩侧摩阻力工作机理与预测的研究.工业建筑,2003,23(10):36-40
    [47] 李发明,陈竹昌,刘利民.桩侧阻力的几种退化效应简述.土工基础,1998,12(1):41-52
    [48] 闫蓉,张扬.大直径嵌岩桩(墩)嵌岩侧阻力取值影响因素的探讨.辽宁工学院学报,1998,18(3):16-18
    [49] 阳吉宝.超长桩荷载传递机理研究.岩土工程技术,1997,(1):25-29
    [50] 罗惟德.单桩承载机理分析与载荷—沉降曲线的理论推导.岩土工程学报,1990,12(1):35-44
    [51] 朱金颖.层状地基中桩静载试验数据的拟合分析.岩土工程学报,1998,20(3):34-39
    [52] 佐滕悟.基桩承载力机理.土工技术,1965,20(1):1-5
    [53] 陈龙珠,梁国钱,朱金颖.桩轴向荷载-沉降曲线的一种解析算法.岩土工程学报,1994,16(6):30-38
    [54] 房卫民,赵明华,苏检来.由沉降量控制桩竖向极限承载力的分析.中南公路工程,1999,24(2):23-25
    [55] Coyle H M, Reese L C. Load transfer for axially loaded piles in clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92 (2): 1-26
    [56] Kraft L M, Focht J A, Amerasinghe S F. Friction capacity of piles driven into clay. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107 (11): 1521-1541
    [57] 刘利民.关于嵌岩桩桩端阻力计算的一些问题.地下空间,1997,17(2):70-76
    [58] 王波涛,唐萍,郭玉林.利用岩体Hoek-Brown强度准则确定嵌岩桩桩端阻力的探讨.四川建筑科学研究,2000,26(3):49-51
    [59] Delpak R, Omer J R, Robinson R B, Load/settlement Prediction for Large diameter Bored Piles in Marcia Mudstone, Proc. Instn. Civ. Engrs, Geotech. Engng, 2000, 14 (3): 201-224
    [60] 郑剑雄.软质岩石桩桩端岩石变形破坏机理的研究.福建建筑,2000,(1):41-43
    [61] 工程地质手册编写委员会.工程地质手册.北京:中国建筑工业出版社,1992,141-145
    [62] 中华人民共和国建设部主编.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002,42-44
    [63] Seed H B, Reese I C. The action of soft clay along friction pile. Trans ASCE, 1955, (122): 731-754
    [64] 曹汉志.桩的轴向荷载传递及荷载-沉降曲线的数值计算方法.岩土工程学报,1986,8(6):37-48
    [65] Delpak R, Omer J R, Robinson R B, Load/settlement Prediction for Large diameter Bored Piles in Marcia Mudstone, Proc. Instn. Civ. Engrs, Geotech. Engng, 2000, 14 (3): 201-224
    [66] 牛晓荣,应芬芳.建筑结构构造设计手册.北京:中国建筑工业出版社,1995,334-343
    [67] RADHAKRIHNAN R, IEUNG C F. Load transfer behavior of rock-socketed piles. Journal of Geotechnical Engineering ASCE, 1989, 115 (6): 755-768
    [68] HORRATH R G, KENNEY T C. Shaft resistance of rock-socketed drill piers. Proc Sym Deep Found, ASCE National Conven-lion, Atlanta, USA, 1979, 182-214
    [69] 谢和平.岩石混凝土损伤力学.徐州:中国矿业大学出版社,1990,1-29
    [70] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory. Int. J. Solids Structures, 1982, 18 (7): 551-562
    [71] 唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993:11-30
    [72] 曹文贵.岩石损伤软化统计本构模型之研究.岩石力学与工程学报,1998,17(6):628-633

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700