钛合金电子束深熔焊传热传质及质量控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大厚度钛合金电子束焊接结构在航空航天工业中具有广阔的应用前景,但是目前在钛合金电子束深熔焊过程中极易出现钉尖缺陷,会显著降低接头性能,为了保证焊接质量,本文对钉尖缺陷的形成机理及其控制措施进行了研究。
     采用数值模拟的方法建立了钛合金电子束深熔焊温度场模型,计算结果表明,电子束焊接过程中升温降温速度极快,当焊接过程进入准稳态之后,温度场分布基本保持不变,熔池中心的峰值温度维持在3200℃左右。并利用热电偶测温和对比焊缝横截面形貌的方法对模拟结果进行了验证,模拟结果与试验数据吻合较好,证明了所建数值分析模型是正确的。
     在温度场计算结果的基础上,对钛合金电子束深熔焊的流场进行了计算,初步分析了熔池流场形成机理。研究表明,表面张力梯度、金属蒸汽反冲压力和流体静压力是熔池内液态金属流动的主要驱动力。熔池表面的流体在表面张力梯度的作用下运动最剧烈,其最大速度可达0.295m/s。随着熔深的加深,液态金属的运动逐渐减弱。以钨作为示踪元素,通过能谱分析研究了电子束深熔焊接头钨元素的分布情况,并进而分析了电子束深熔焊过程中,熔池内液态金属的流动和传质行为。最后,结合元素示踪试验和数值模拟结果,对电子束深熔焊熔池内流体流动规律进行了归纳总结。
     结合电子束深熔焊流场模型,对大厚度钛合金电子束焊接接头钉尖缺陷的形成机理进行了研究。结果表明,电子束脉动是形成钉尖缺陷的直接原因,高饱和蒸汽压金属蒸汽是形成钉尖缺陷的重要原因。对熔透实施精确控制,实现全熔透焊接,是解决电子束深熔焊钉尖缺陷出现的最有效方案。
     为了控制钉尖的产生,对钛合金电了束深熔焊熔透控制系统进行了研究。搭建了一套适合于电子束焊的彩色熔池图像视觉传感系统,实现了熔池图像的实时传感与采集。对熔池图像处理算法进行了研究,实现了熔宽的准确提取。根据试验数据,建立了钛合金电子束焊熔深的BP神经网络预测模型,能够根据焊接参数和熔宽预测熔深,可设计以熔宽为被控变量、电子束流为控制变量的模糊控制器。将BP神经网络模型和模糊控制器结合起来,建立钛合金电子束焊熔透控制系统模型,并对该模型进行了仿真试验,试验结果表明,所设计的控制系统动态性能和稳态性能良好。
The welded structure of electron beam welding of thick titanium alloy had broad application prospects in the aerospace industry, but now the process of electron-beam deep-penetration welding of titanium alloy easily occured the spiking defect, which will significantly reduce the performance of welded joint, so the forming mechanism and control measures of spiking defect were studied in order to ensure the quality of welding.
     The numerical analytic model of temperature field of electron-beam deep-penetration welding was establish in this paper, The calculated results of temperature field show that the cooling rate and heating rate are very fast in the process of electron beam welding, the distribution of temperature field is basically unchanged when the welding process entered into the quasi-steady-state, the peak temperature of center of molten pool was maintained at about3200"C.The simulated result was verified by the thermocouple and contrast of cross section of weld, the simulated result was well consistent to the experimental data, which verified the reliability of the finite element model.
     The flow field of titanium-alloy electron-beam deep-penetration welding was calculated on the base of established finite element model of temperature field, the formation mechanism of flow field was preliminary analyzed. The study shows that the gradient of surface tension hydrostatic pressure and recoil pressure of metal vapor are the most important driving forces of flow of liquid metal, and the flow of liquid metal in the surface of molten pool was the most violent, the maximum flow rate is0.295m/s, the flow of liquid metal gradually waned with the increase of penetration. The tungsten element was selected as the tracer, and the EDS analysis was used to measure the distribution of tungsten element in the electron-beam deep-penetration welded joints, and the flow and mass-transfer behavior of liquid metal of molten pool was further analyzed in the process of electron-beam deep-penetration welding, finally the tracer experiments and numerical simulated results were combined to summarize the flow law of fluid of molten pool of the electron-beam deep-penetration welding.
     Combining the flow-field model of the electron-beam deep-penetration welding, the spiking defect of thick titanium-alloy electron-beam welded joint was studied. The study shows that the pulse of electron beam is the direct cause of forming spiking, the metal vapor with high saturated vapor pressure is the important cause of forming spiking. The precise control of penetration to achieve full-penetration welding is the most effective solution of the spiking defect of the electron-beam deep-penetration welding.
     The quality control system of titanium-alloy electron-beam deep-penetration welding was studied in order to control the spiking defect. A set of visual sensing system of colored image of molten pool was fabricated which is suitable to electron beam welding, the system achieved the real-time sensing of the molten-pool image. The edge-detection algorithm of molten-pool image was developed, the clearly edge of molten pool was obtained by the program, which created the condition for the further extraction of molten width. A suit of extracting program of molten width was developed to extract exactly the molten width. A predictable model of BP neural network of penetration of titanium-alloy electron-beam welding was established according to the experimental data, which could predict the penetration by the welding parameters and molten width. The fuzzy controller was designed, its controlled variable was the molten width, its control variable was the electron beam current. The model of BP neural network and the fuzzy controller were combined to establish the control system model of penetration of titanium-alloy electron-beam welding, and the simulation experiment was carried out, the results show that the dynamic performance and the steady-state performance of designed control system are eminent.
引文
[1]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业进展,2004,21(5):19-24.
    [2]Boyer R R.An overview on the use of titanium in the aerospace industry[J].Materials Science and Engineering:A,1996,213(1-2):103-114.
    [3]罗国珍.钛的研究发展评述[J].稀有金属材料与工程,1993,22(5):19-28.
    [4]李兴无,沙爱学,张旺峰,储俊鹏,马济民.TA15合金及其在飞机结构中的应用前景[J].钛工业进展,2003,20(4):90-94.
    [5]文华里.世界钛生产技术与钛用途开发新动向[J].轻金属,1997(8):4-7.
    [6]Sun Z C,Yang H,Han G J,Fan X GA numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy[J].Materials Science and Engineering:A,2010,527(15):3464-3471.
    [7]Liu L M,Du X,Zhu M l,Chen G Q.Research on the microstructure and properties of weld repairs in TA15 titanium alloy[J].Materials Science and Engineering:A,2007,445-446:691-696.
    [8]赵明书,郭福,毛智勇,李晋炜.TA15钛合金电子束焊平行焊缝的获得方法[J].新技术新工艺,2009(2):105-107.
    [9]李行志,胡树兵,肖建中,王亚军,李清华,籍龙波.TA15钛合金电子束焊接接头不同区域的疲劳裂纹扩展行为研究[J].航空材料学报,2010,30(1):52-55.
    [10]张秉刚,王廷,陈国庆,刘成来,刘玉龙.大厚度TC21钛合金电子束焊接试验[J].焊接学报,2009,30(11):5-8.
    [11]于澜.TA15钛合金构件TIG焊接过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2007.
    [12]赵明书.TA15钛合金电子束焊缝成分调控与接头力学性能研究[D].北京:北京工业大学,2008.
    [13]张剑平.Til7合金电子束焊接接头组织与性能研究[D].大连:大连交通大学,2007.
    [14]高飞.钛及钛合金材料的焊接技术[J].石油化工建设,2006,28(4):38-42.
    [15]徐洁洁.TC4钛合金激光焊接接头组织性能研究[D].北京:北京工业大学,2009.
    [16]袁双喜,沙庆涛,徐培麒.钛合金电子束焊接的研究进展[J].航空制造技术,2009(9):51-53.
    [17]杜鑫,刘黎明,宋刚,王敏,杨磊.TA15钛合金接头补焊组织特征分析[J].焊接学报,2005,26(2):45-48.
    [18]Saresh N,Gopalakrishna P M,Mathew J.Investigations into the effects of electron beam welding on thick Ti-6A1-4V titanium alloy[J].Journal of Materials Processing Technology,2007,192-193:83-88.
    [19]Barreda J L,Santamaria F,Azpiroz X,Irisarri A M,Varona J M.Electron beam welded high thickness Ti6A14V plates using filler material of similar and different composition to the base plate[J].Vacuum,2001,62:143-150.
    [20]Galatolo R,Lanciotti A.Fatigue crack propagation in residual stress fields of welded plates[J].International Journal of Fatigue,1997,19(l):43-49.
    [21]Li S K,Xiong B Q,Hui S X. Effects of cooling rate on the fracture properties of TA15 ELI alloy plates[J].RARE METALS,2007,26(l):33-38.
    [22]Zhu J C,Wang Y,Liu Y,Lai Z H,Zhan J J.Influence of deformation parameters on microstructure and mechanical properties of TA15 titanium alloy[J].TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA,2007,17(S1):490-494.
    [23]周志刚,熊亮同.TA 15钛合金自动TIG焊工艺试验研究[J].航天制造技术,2006(5):15-17,31.
    [24]赵海涛,周荣林.BT20钛合金电弧超声T1G焊接头疲劳性能分析[J].焊接,2008(1):38-41.
    [25]吴新强.TC4钛合金电子束焊接数值模拟及接头组织与性能[D].南京:南京航空航天大学,2011.
    [26]李玉龙,杨瑾,禹业晓.钛及钛合金钎焊特点及现状[J].金属铸锻焊技术,2011,40(9):130-133,136.
    [27]Zhang Y,Sato Y S.Microstructural characteristics and mechanical properties of Ti-6A1-4V friction stir welds[J].Materials Science and Engineering,2008, 485(1-2):448-455.
    [28]刘志颖,廖志谦,郭晓辉,贾晓飞.TA2中厚板等离子弧横焊工艺研究[J].稀有金属材料与工程,2008,37(3):306-309.
    [29]朱秀军,熊建钢,黄安国,李志远,胡强.钛合金TC4的激光焊接[J].电焊机,2004,34(9):13-16.
    [30]付鹏飞,黄锐,刘方军,左从进.TA12钛合金电子束焊接组织性能及残余应力分析[J].焊接学报,2007,28(2):82-84
    [31]陈志勇,王清江,刘建荣,李玉兰,杨锐,李晋炜,刘方军.Ti-60钛合金电子束焊接接头高温下的失效与变形行为[J].金属学报,2008,44(3):263-271.
    [32]刘会杰.周利.高熔点材料的搅拌摩擦焊接技术[J].焊接学报,2007,28(10):101-104.
    [33]Wei P S,Chuang K C,Ku J S,DebRoy T.Mechanisms of spiking and humping in keyhole Welding[J].IEEE Transactions on Components, Packaging and Manufacturing Technology.2012,2(3):383-394.
    [34]Tsukamoto S, Irie H. Melting process and spiking phenomenon in electron beam welding[J]. Transactions of the Japan Welding Society,1993,24(1):18-23.
    [35]Wei P S, Chuang K C, DebRoy T, Ku J S. Scaling of spiking and humping in keyhole welding[J]. Journal of Physics D:Applied Physics,2011,44(24):1-11.
    [36]Tong H,Giedt W H. Radiographs of the electron beam welding cavity[J].Review of Scientific Instruments,1969,40(10):1283-1285.
    [37]Tong H,Giedt W H. A dynamic interpretation of electron beam welding[J].Welding journal,1970,49(6):259-266.
    [38]Armstrong R E. Control of spiking in partial penetration electron beam welds[J]. Welding journal,1970,49(8):382-388.
    [39]Tsukamoto S, Irie H. Effect of molten metal behavior on melting process in electron beam welding-A study on electron beam welding phenomena[J].Quarterly Journal of the Japan Welding Society,1991,9(3):348-354.
    [40]Tomida S. Sasaki A, Kanayama H. Electron beam welding for thick aluminium alloys[J]. Welding International,1999,13(2):102-107.
    [41]张文钺.焊接传热学[M].北京:机械工业出版社,1989.
    [42]莫春立,于少飞,钱百年,国旭明.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96.
    [43]李开泰,黄艾香,杨庆怀.有限元方法及其应用[M].西安:西安交通大学出版社,1992.
    [44]胡美娟,刘金合.12mmm厚钛合金平板电子束焊接的数值模拟[J].中国有色金属学报,2007,17(10):1622-1626.
    [45]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [46]王焕定,焦兆平.有限单元法基础[M].北京:高等教育出版社,2002.
    [47]顾立志.铝合金筒体焊接温度场和应力应变场的三维数值模拟[D].天津:天津大学,2005.
    [48]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [49]董湘怀.材料加工理论与数值模拟[M].北京:高等教育出版社,2005.
    [50]周远远,于治水.焊接熔池数值模拟的研究现状[J].华东船舶工业学院学报(自然科学版),2003,17(2):65-69.
    [51]郑振太,吕会敏,张凯,单平,胡绳荪.熔化焊焊接热源模型及其发展趋势[J].焊接,2008(4):3-6.
    [52]WEI P S, SHIAN M D.Three-dimensional analytical temperature field around the welding cavity produced by a moving distributed high-intensity beam[J].Journal of heat transfer,1993,115(4):848-856.
    [53]Goldak J,Chakravarti A,Bibby M.A new finite model for welding heat source[J].Metallurgical and Materials Transactions B,1984,15(2):299-305.
    [54]吴甦,赵海燕,王煜,张晓宏.高能束焊接数值模拟中的新型热源模型[J].焊接学报,2004,25(1):91-94.
    [55]胡美娟.12mm厚TC4钛合金板电子束焊接温度场应力场三维有限元数值模拟[D].西安:西北工业大学,2005.
    [56]杨建国,张学秋,陈绪辉.电子束焊在整体叶盘中的应用及有限元热源模型进展[J].焊接,2011(1):50-56.
    [57]赵明.全熔透GTAW熔池形态数值模拟精度的改进[D].济南:山东大学,2006.
    [58]Tsai M C,Kou S.Electromagnetic-Force-Induced Convection in Weld Pools With a Free Surface.A Model Is Developed to Predict Heat Transfer, Fluid Flow and Pool Shape in GTAW[J].WeldingJournal,1990,69(6):241-246.
    [59]Kou S,Wang Y H.Three-dimensional convection in laser melted pools[J].Metallurgical and Materials Transactions A,1986,17(12):2265-2270.
    [60]Arata Y,Tomie M, Abe N, Yao X Y.Observation of Molten Metal Flow during EB Welding[J].Transactions of JWRI,1987,16(1):13-16.
    [61]Wang H,Shi Y W,Gong S L.Effect of pressure gradient driven convection in the molten pool during the deep penetration laser welding[J] Journal of Materials Processing Technology,2007,184(1-3):386-392.
    [62]王宏.激光深熔焊过程的流体动力学研究[D].北京:北京工业大学,2007.
    [63]叶晓虎,陈熙.激光加热熔池流动和传热的分区数值模拟[J].中国激光,2002,29(9):855-858.
    [64]Chan C,Mazumder J,Chen M M.A two-dimensional transient model for convection in laser melted pool[J].Metallurgical and Materials Transactions A,1984, 15(12):2175-2184.
    [65]Picasso M,Hoadley A F A.Finite element Simulation of laser surface treatments including convection in the melt pool[J].International Journal of Numerical Methods for Heat & Fluid Flow,1994,4(1):61-83.
    [66]张亚斌.基于Fluent的铝合金电子束深熔焊三维流场数值模拟[D].哈尔滨:哈尔滨工业大学,2007.
    [67]商雪.铝合金电子束焊接过程中熔池演变的数值模拟[D].哈尔滨:哈尔滨工业大学,2011.
    [68]刘巍巍.基于电子束焊接匙孔流场行为的热源模型建立及验证[D].哈尔滨:哈尔滨工业大学,2010.
    [69]郭绍庆,李晓红,毛唯,颜鸣皋.GH909电子束焊接温度场的有限元分析[J].航空材料学报,2000,20(3):98-101.
    [70]凌泽民,周上棋,徐楚韶,郝金玺,程雄文.电子束焊功率密度分布与温度场关系的研究[J].焊接,1999(5):16-19.
    [71]吴会强,冯吉才,何景山,张秉刚Ti3Al金属间化合物电子束深熔焊接过程数值模拟 [J].焊接学报,2005,26(2):1-4.
    [72]高建成.焊接熔池相变传热特性及流体动力学分析[D].北京:北京工业大学,2009.
    [73]Arata Y,Abe E,Fujisawa M.A study on dynamic behaviors of electron beam welding (report I)-The observation by a fluoroscopic method[J].Transactions of JWR1,1976, 5(1):1-9.
    [74]周琦,刘方军.电子束深熔焊熔质密度分布与熔池流动行为[J].焊接学报,2001,22(5):17-20.
    [75]Weber C W,Funk E R,McMaster R C.Penetration mechanism of partial penetration Electron Beam Welding[J].Welding Journal,1972,51(2):90-94.
    [76]石玗.铝合金脉冲MIG机器人焊接智能控制系统研究[D].兰州:兰州理工大学,2005.
    [77]陈善本,娄亚军,赵冬斌,吴林.脉冲GTAW熔池动态过程模糊神经网络建模与控制[J].自动化学报,2002,28(1):1-9.
    [78]Nagarajan S,Banerjee P,Chen W H,Chin B A.Control of the welding process using infrared sensors[J].IEEE Transactions on Robotics and Automation,1992,8(l):86-93.
    [79]Rokhlin S I,Guu A C.Computerized Radiographic Sensing and Control of an Arc Welding Process[J].Welding Journal,1990,69(3):83-95.
    [80]薛诚.铝合金MIG焊熔池与熔滴过渡信息视觉检测与分析[D].兰州:兰州理工大学,2008.
    [8]]闫志鸿,张广军,邱美珍,高洪明,吴林.脉冲熔化极气体保护焊熔池图像的检测与处理[J].焊接学报,2005,26(2):37-40.
    [82]陈善本,陈文杰,林涛.脉冲GTAW熔池动态过程的辨识模型[J].焊接学报,2001,21(3):24-28.
    [83]武俊峰,薛雨,王强,陈善本.脉冲GTAW焊过程辩识及PID控制[J].电机与控制学报,2002,6(1):71-73,91.
    [84]娄亚军.基于图象传感的脉冲GTAW熔池动态过程的智能控制方法研究[D].哈尔滨:哈尔滨工业大学,1999.
    [85]李士凯,陈茂爱,武传松.脉冲GMAW熔滴过渡动态过程的解析模型[J].焊接学报,2004,24(4):26-30.
    [86]Zhang Y M,Wu L,Walcott B,Chen D H.Determining Joint Penetration in GTAW with Vision Sensing of Weld Face Geometry[J].Welding Journal,1993,72(10):463-469.
    [87]Zhang Y M,Kovacevic R,Wu L.Dynamic Analysis and Identification of Gas Tungsten Arc Welding Process for Weld Penetration Control[J].Journal of engineering for industry,1996,118(1):123-136.
    [88]Zhang Y M,Kovacevic R.Li L.Adaptive Control of Full Penetration Gas Tungsten Arc Welding[J].IEEE Transaction on Control System Technology,1996,4(4):394-403.
    [89]黄石生,高向东.焊缝跟踪技术的研究与展望[J].电焊机,1995(5):1-5.
    [90]康丽,汤楠,穆向阳.焊缝跟踪系统及焊接过程智能控制技术的研究[J].山西科技,2008(3):153-155.
    [91]王雅生,张庆,蔡洪能.二氧化碳焊焊接电流多因子自调整模糊控制器研究[J].西安交通大学学报,2002,36(1),58-61.
    [92]Gao X D,Huang S S.Artificial neural network and fuzzy logic controller for GTAW modeling and control[J].Chinese Journal of Mechanical Engineering,2002,18(6):53-56.
    [93]岳建锋,李亮玉,王天琪,武宝林.基于正面焊接多信息融合的GMAW熔透控制[J].机械工程学报,2009.45(11):283-287.
    [94]孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.
    [95]Andersen K,Cook G E,Barnett R J.Gas Tungsten Arc Welding Process Control Using Artificial Neural Networks[C].Proceeding of the 3rd International Conference on Trends in Welding Science and Technology,1992:877-881.
    [96]Lin T G,Cho H S.Estimation of Welding Pool sizes in GMA Welding Process Using Neural Network[J].Jourral of Systems and Control Enginerring,1993,207(1):15-26.
    [97]Lou Y J,Chen S B,Wu L. Neuron PSD Control Based on Sensing Image of Weld Pool during Pulsed GTAW[C].Proceedings of International Conference on Manufacturing Science,1998:220-223.
    [98]高向东,黄石生,吴乃优.GTAW神经网络-模糊控制技术的研究[J].焊接学报,2000,21(1):5-8.
    [99]王彬.我国焊接自动化技术的现状与发展趋势[J].电焊机,2001,21(1):3-7.
    [100]赵熹华,王宸煜,张若冰,黄金河,程军,李丽琴.焊接专家系统的开发技术及其在我国的发展[J].汽车工艺与材料,1999(1):9-11.
    [101]赵衍华.连续电流TIG焊接熔池形状检测与神经网络建模[D].济南:山东大学,2002.
    [102]韩鹏,唐振云,余伟,毛智勇.多次热处理对TA15钛合金电子束焊接头组织和性能的影响[J].焊接,2010(10):59-61.
    [103]黄伯云,李成功,石力开,邱冠周,左铁镛.中国材料工程大典第4卷[M].北京:化学工业出版社,2006.
    [104]马立.等离子弧焊接熔池流场与温度场三维数值模拟[D].天津:天津大学,2006.
    [105]Barin I,Knacke O,Kubaschewski O.Thermochemical Properties of Inorganic Substances[M].Berlin:Springer-Verlag,1977.
    [106]贺兴华MATLAB7.X图像处理[M].北京:人民邮电出版社,2006.
    [107]刘明涛,高向东,陈建辉,谢子方.基于数学形态学的熔池图像处理[J].焊接,2008(5):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700