低等真真骨鱼类的分子系统发育关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真骨鱼次亚纲Teleostei,俗称真骨鱼类,约占全世界已记录28000种鱼类的96%左右。真骨鱼类下设海鲢亚部Elopomorpha、骨舌鱼亚部Osteoglossomorpha、骨鳔鱼亚部Ostarioclupeomorpha (= Otocephala)和真真骨鱼亚部Euteleostei。真真骨鱼亚部,俗称真真骨鱼类,是真骨鱼类中物种多样性最丰富的类群,大约17500种。真真骨鱼类可划分为原棘鳍总目Protacanthopterygii和新真骨鱼类Neoteleostei两大类群。原棘鳍总目,俗称低等真真骨鱼类,包括鲑形目Salmoniformes、狗鱼目Esociformes、水珍鱼目Argentiniformes与胡瓜鱼目Osmeriformes (sensu Nelson,2006)。低等真真骨鱼类的系统发育关系是鱼类系统学中长期存在争议的科学问题之一。基于线粒体全基因组与核基因多位点的分子证据,本论文重建低等真真骨鱼类的系统发育关系,聚焦于解决三个问题:1)‘迷一样’的低等真真骨鱼类鳞南乳鱼科Lepidogalaxiidae的系统发育位置;2)低等真真骨鱼类目间分子系统发育关系;3)胡瓜鱼目鱼类分子系统发育关系。
     另外,本论文亦开展了物种多样性空间格局的成因研究。主要聚焦于物种多样性海拔分布格局与间断分布格局的成因:1)选择青藏高原及其邻近地区特有的裂腹鱼属Schizothorax鱼类作为模式类群,分析气候、面积、分化速率及定居时间与物种数之间的关系,探讨鱼类多样性海拔分布格局的生态与进化成因;2)选择东亚地区两栖动物小鲵属Hynobius作为模式类群,探讨新生代东亚边缘地质构造演化在小鲵属大陆—岛屿间断分布格局形成中的作用。
     主要研究结果如下:
     1、基于线粒体基因组证据的鳞南乳鱼科系统发育位置
     基于线粒体基因组,重建了低等真真骨鱼类系统发育关系。结果表明:1)原先放在胡瓜鱼目中的鳞南乳鱼科位于真真骨鱼类的基部,是其余所有真真骨鱼类的姊妹群;2)原先放在胡瓜鱼目中的南乳鱼科Galaxiidae作为单系群,建议提升为南乳鱼目Galaxiiformes; 3)重新定义胡瓜鱼目仅包括青瓜鱼科Retropinnidae、胡瓜鱼科Osmeridae、银鱼科Salangidae与香鱼科Plecoglossidae。
     2、基于核基因证据的低等真真骨鱼类目间系统发育关系
     基于10个核基因的部分序列,重建了低等真真骨鱼类目间系统发育关系。结果表明:1)原先放在水珍鱼目中的黑头鱼亚目Alepocephaloidei和骨鳔鱼亚部鱼类形成姊妹群关系,同意基于线粒体基因组证据提出的提升黑头鱼亚目为黑头鱼目Alepocephaliformes的建议;2)同意基于线粒体基因组证据提出的将鳞南乳鱼科放在真真骨鱼类基部的观点,并建议提升为鳞南乳鱼目Lepidogalaxiiformes;3)同意基于线粒体基因组证据提出的水珍鱼目、鲑形目和狗鱼目鱼类组成单系类群,以及胡瓜鱼目和巨口鱼目Stomiiformes形成姊妹群关系的观点;4)南乳鱼目是新真骨鱼类Neoteleostei(减去巨口鱼目)的姊妹群。
     3、胡瓜鱼目鱼类的分子系统发育关系
     基于9个核基因的部分序列,重建了胡瓜鱼目鱼类的分子系统发育关系。结果表明:1)青瓜鱼科位于胡瓜鱼目基部;2)银鱼科和香鱼科形成姊妹群关系,它们一起构成胡瓜鱼科的姊妹群;3)在胡瓜鱼科内部,毛鳞鱼属Mallotus占据基部位置,胡瓜鱼属Osmerus和油胡瓜鱼属+异胡瓜鱼属+蜡鱼属Spirinchus+ Allosmerus+Thaleichthys形成姊妹群关系,这两个类群共同构成公鱼属Hypomesus的姊妹群;4)在银鱼科内部,同意本实验室先前的结果,即大银鱼属Protosalanx和新日本银鱼属Neosalangichthys构成大银鱼亚科Protosalanginae,银鱼属Salanx、白肌银鱼属Leucosoma和日本银鱼属Salangichthys构成银鱼亚科Salanginae; 5)在青瓜鱼科内部,南茴鱼属Prototroctes占据基部位置,青瓜鱼属Retropinna存在并系发生现象,新岛青瓜鱼(Stokellia anisodon)和青瓜鱼(Retropinna retropinna)形成姊妹群。
     4、裂腹鱼属鱼类物种多样性海拔分布格局的成因
     选择裂腹鱼属鱼类为模式类群,对鱼类物种多样性海拔分布格局的生态与进化成因进行了探讨。结果表明:1)裂腹鱼属鱼类的物种数在中海拔(1700-2200m)出现峰值;2)年均降水、面积、Mid-domain效应和分化速率均不能很好地预测物种多样性的海拔格局;3)年均温度和定居时间是物种多样性海拔格局最重要的影响因子。
     5、东亚地区两栖动物小鲵属间断分布格局的成因
     选择两栖动物小鲵属为模式类群,对新生代东亚边缘地质构造演化在小鲵属大陆—岛屿间断分布格局形成中的作用进行了探讨。结果表明:1)现存小鲵属物种起源于早始新世的西南日本和北海道岛;2)中始新世西南日本和北海道岛的隔离导致了北海道特有的滞育小鲵与其余所有小鲵的分化;3)从晚始新世到晚中新世,分布于西南日本的小鲵祖先种通过陆地连接或大陆桥在不同时间段分别进入台湾岛、中国大陆中部、朝鲜半岛一中国东北与日本本州岛东北部。
     综上所述,基于线粒体基因组与核基因的分子证据,本论文提出了低等真真骨鱼类系统发育关系的新观点,即该类群可分为四个谱系:1)鳞南乳鱼科占据真真骨鱼类的基部,建议提升为鳞南乳鱼目;2)水珍鱼目、鲑形目和狗鱼目鱼类一起组成单系;3)重新定义胡瓜鱼目仅包括青瓜鱼科、胡瓜鱼科、银鱼科与香鱼科,与巨口鱼目形成姊妹群关系;4)建议将南乳鱼科提升为南乳鱼目,并与新真骨鱼类(减去巨口鱼目)形成姊妹群关系。本论文亦清楚地提出胡瓜鱼目鱼类的相互关系为:(青瓜鱼科,(胡瓜鱼科,(银鱼科,香鱼科)))。研究结果极大地推进了对真真骨鱼类系统发育关系的理解,为今后真真骨鱼类的历史生物地理学研究奠定了基础。
     同时,本论文通过物种多样性空间格局的成因研究,取得以下两方面研究成果:1)首先指出“物种形成时间效应”与“生态位保守”在鱼类多样性海拔格局的形成过程中扮演重要角色;2)首次阐明新生代始新世到中新世东亚边缘地质构造演化在两栖类小鲵属大陆—岛屿间断分布格局形成过程中扮演了重要作用,支持台湾岛部分区域是始新世末期钓鱼岛隆起残遗的地质假说,并提出了“走出西南日本”(Out of southwestern Japan)生物地理假说,对理解日本、朝鲜半岛、与我国大陆及台湾地区之间生物的扩散提出了新观点。
Teleostean fishes (Teleostei) consist of ca.96% of the 28,000 reported fish species across the world. Teleostei could be further divided into Osteoglossomorpha, Elopomorpha, Ostarioclupeomorpha (= Otocephala) and Euteleostei. Euteleostean fishes (Euteleostei) is the most species-rich fish group of Teleostei with ca.17,500 species. Euteleostei include two subdivisions, i.e., Protacanthopterygii and Neoteleostei. Protacanthopterygii, also named as lower euteleostean fishes, includes four orders (sensu Nelson,2006), i.e., Salmoniformes, Esociformes, Argentiniformes and Osmeriformes. Phylogeny of lower euteleostean fishes is one of the long-debated scientific problems in ichthyological systematics. In this thesis, phylogenetic relationships of lower euteleostean fishes were reconstructed, using mitochondrial genomes and nuclear multiloci, to resolve three problems:i) phylogenetic position of the enigmatic lower euteleostean taxa Lepidogalaxiidae; ii) phylogenetic relationships among all orders of lower euteleostean fishes; iii) phylogenetic relationships of osmeriform fishes.
     In addition, the processes in shaping spatial patterns of species diversity are also studied in this thesis. Two works were carried out to reveal the underlying causes for elevational patterns and disjunctive distributional patterns in species diversity:i) an endemic fish group in the Tibetan Plateau and its adjacent regions, Schizothorax, is selected as a model taxa to reveal ecological and evolutionary drivers for elevational patterns of fish diversity based on the relationships between species richness and climatic factors, area, diversification rate or time of colonization; ii) an amphibian group in the East Asian margins, Hynobius, is selected as a model taxa to reveal the role of Cenozoic tectonic evolution within East Asian margins in shaping the 'continent-islands'disjunctive distributional pattern of Hynobius.
     The major results are as follows:
     1. Phylogenetic position of Lepidogalaxiidae based on mitogenetic evidence
     Phylogeny of lower euteleostean fishes was reconstructed using mitochondrial genomes. The results show:i) Lepidogalaxiidae that was previously placed in Osmeriformes occupies the basal position of Euteleostei, as the sister group of all the other euteleostean fishes; ii) Galaxiidae that was previously placed in Osmeriformes forms a monophyletic group, and the erection of a new order Galaxiiformes is suggested; iii) Osmeriformes is refined to include only Retropinnidae, Osmeridae, Salangidae and Plecoglossidae.
     2. Phylogenetic relationships among all orders of lower euteleostean fishe based on nuclear gene evidence
     Phylogeny of lower euteleostean fishes was reconstructed based on ten nuclear gene fragments. The results show:i) Alepocephaloidei that was previously placed in Argentiniformes is the sister group of Ostarioclupeomorpha, thus the erection of an order Alepocephaliformes based on mitogenomic evidences is supported; ii) the opinion that Lepidogalaxiidae occupies the basal position of Euteleostei revealed from mitogenomic evidence is supported, thus the erection of a new order Lepidogalaxiiformes is suggested; iii) the monophyletic clade consisting of Argentiformes, Salmoniformes and Esociformes, and the sister taxon relationship between Osmeriformes and Stomiiformes revealed from mitogenomic evidences are supported; iv) Galaxiiformes is revealed to be the sister group of Neoteleostei (minus Stomiiformes).
     3. Molecular phylogeny of Osmeriformes
     Phylogeny of osmeriform fishes was reconstructed based on nine nuclear gene fragments. The results show:i) Retropinnidae occupies the basal position of Osmeriformes; ii) Salangidae and Plecoglossidae are a sister taxon relationship, and they together form the sister group of Osmeridae; iii) within Osmeridae, Mallotus occupies the basal position; Osmenis and Spirinchns + Allosmerus + Thaleichthys clade are a sister taxon relationship, and they together form the sister group of Hypomesus; iv) the interrelationships of Salangidae revealed by previous works of our laboratory is confirmed, that Protosalanx and Neosalangichthys form the subfamily Protosalanginae, while Salanx, Leucosoma and Salangichthys form the subfamily Salanginae; v) within Retropinnidae, Prototroctes occupies the basal position; Retropinna is found to be paraphyletic that Stokellia anisodon is revealed to be the sister species of Retropinna retropinna.
     4. The underlying causes for elevational patterns of Schizothorax fishes
     The genus Schizothorax is selected as a model taxa to reveal ecological and evolutionary drivers for elevational patterns of fish diversity. The results show:i) species richness of Schizothorax fishes peaks at mid-elevation of 1700-2200m; ii) rainfall, mid-domain effect, area and diversification rate are weak predictors of species richness; iii) temperature and time of colonization are the most important variables in explaining the elevational pattern of species richness.
     5. The underlying causes for disjunctive distributional patterns of East Asian Hynobius salamanders
     The amphibian genus Hynobius is selected as a model taxa to reveal the role of Cenozoic tectonic evolution within East Asian margins in shaping the'continent-islands'disjunctive distributional pattern of Hynobius. The results show:i) the extant Hynobius species originated in southwestern Japan and Hokkaido Island in the Early Eocene; ii) a sister taxon relationship between Hynobius retardaius and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene; iii) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China,'Korean Peninsula and northeastern China'as well as northeastern Honshu during the Late Eocene-Late Miocene.
     In summary, novel opinions on the phylogeny of lower euteleostean fishes are presented in this thesis on the basis of molecular evidence using mitogenomes and nuclear genes:i) Lepidogalaxiidae occupies the basal position of Euteleostei, and the erection of a new order Lepidogalaxiiformes is suggested; ii) Argentiformes, Salmoniformes and Esociformes form a monophyletic clade; iii) the refined Osmeriformes including Retropinnidae, Osmeridae, Salangidae and Plecoglossidae is the sister group of Stomiiformes; iv) a newly-erected order Galaxiiformes is the sister group of Neoteleostei. Moreover, interrelationships of Osmeriformes are revealed as follows:(Retropinnidae, (Osmeridae, (Salangidae, Plecoglossidae))). The findings from this thesis greatly improve understandings on the phylogeny of euteleostean fishes, which could further aid researches on the historical biogeography of euteleostean fishes.
     Meanwhile, two major results have been achieved based on studies on the underlying causes for spatial patterns of species diversity:i) this thesis firstly reveals the important roles of the time-for-speciation effect and niche conservatism in shaping elevational patterns of fish diversity; ii) this thesis firstly reveal the important role of the tectonic evolution within East Asia margins during Eocene and Miocene in shaping the'continent-islands'disjunctive distributional pattern of Hynobius salamanders. A geological hypothesis that part of the present-day Taiwan Island is a relict area of the Diaoyudao Uplift in the Late Eocene is supported. A biogeographical hypothesis,'out of southwestern Japan', is proposed here as a new opinion on explaining the dispersal of biota among Japan, Korea Peninsula, mainland China and Taiwan Island.
引文
曹文宣:,陈宜瑜,武云飞,朱松泉.(1981)裂腹鱼类的起源和演化及其与青藏高原隆起的关系[A].青藏高原隆起的时代、幅度和形式问题[M](中国科学院青藏高原综合科学考察队),pp.118-130.科学出版社,北京.
    陈勤,卿立燕,曾晓茂.(2008)小鲵属Hynobius系统学研究回顾[J].四川动物,27,468-477.
    陈毅峰,曹文宣.(2000)裂腹鱼亚科[A].中国动物志硬骨鱼纲鲤形目(下)[M](乐佩琦主编),pp.273-390.科学出版社,北京.
    费梁,胡淑琴,叶昌媛,黄永昭.(2006)中国动物志两栖纲(上卷):总论 蚓螈目 有尾目[M].科学出版社,北京.
    郭立,李隽,王忠锁,傅萃长.(2011)基于四个线粒体基因片段的银鱼科鱼类系统发育[J].水生生物学报,35,449-459.
    刘宪亭,苏德造.(1962)山西榆社盆地上新世鱼类[J].古脊椎动物与古人类,6,1-47.
    沈猷慧,邓学建,王斌.(2004)湘中西部小鲵属一新种——挂榜山小鲵(两栖纲:小鲵科)[J].动物学报,50,209-215.
    谭围,王中铎,郭昱嵩,刘楚吾,刘筠.(2009)孟加拉笛鲷线粒体基因组序列结构及其进化[J].中国生物化学与分子生物学报,25,287-291.
    武云飞,吴翠珍.(1991)青藏高原鱼类[M].四川科学技术出版社,成都.
    杨志坚,陈玉华.(1984)“福建-岭南地块”质疑[J].地质科学,1984,244-252.
    杨志坚.(1992)浙东隆起带与西南日本黑濑川构造带地质演化之比较[J].火山地质与矿产,13,13-23.
    叶学齐(1982)论台湾地质与地貌的形成和发展[J].华中师范学报,1982,83-89.
    周放,蒋爱伍,蒋得斌.(2006)中国两栖类一新种(有尾目,小鲵科)[J].动物分类学报,31,670-674.
    Almeida-Neto, M., Machado, G., Pinto-da-Rocha, R.& Giaretta, A.A. (2006) Harvestman (Arachnida:Opiliones) species distribution along three Neotropical elevational gradients:an alternative rescue effect to explain Rapoport's rule? [J]. Journal of Biogeography,33,361-375.
    AmphibiaWeb. (2009) AmphibiaWeb:Information on amphibian biology and conservation [DB]. Available at http://amphibiaweb.org/. Accessed at April, 2009. AmphibiaWeb, Berkeley.
    Arnason, U., Gullberg, A., Janke, A., Joss, J.& Elmerot, C. (2004) Mitogenomic analyses of deep gnathostome divergences:a fish is a fish [J]. Gene,333, 61-70.
    Arratia, G. (1997) Basal teleosts and teleostean phylogeny [J]. Palaeo Ichthyologica,7, 5-168.
    Baba, A.K., Matsuda, T., Itaya, T., Wada, Y., Hori, N., Yokoyama, M., Eto, N., Kamei, R., Zaman, H., Kidane, T.& Otofuji, Y.I. (2007) New age constraints on counter-clockwise rotation of NE Japan [J]. Geophysical Journal International,171,1325-1341.
    Bachman, S., Baker, W.J., Brummitt, N., Dransfield, J.& Moat, J. (2004) Elevational gradients, area and tropical island diversity:an example from the palms of New Guinea [J]. Ecography,27,299-310.
    Beck, J.& Chey, V.K. (2008) Explaining the elevational diversity pattern of geometrid moths from borneo:a test of five hypotheses [J]. Journal of Biogeography,35,1452-1464.
    Beck, J.& Kitching, I.J. (2009) Drivers of moth species richness on tropical altitudinal gradients:a cross-regional comparison [J]. Global Ecology and Biogeography,18,361-371.
    Begle, D.P. (1991) Relationships of the osmeroid fishes and the use of reductive characters in phylogenetic analysis [J]. Systematic Zoology,40,33-53.
    Begle, D.P. (1992) Monophyly and relationships of the argentinoid fishes [J]. Copeia 1992,350-366.
    Bhattarai, K.R.& Vetaas, O.R. (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal [J]. Global Ecology and Biogeography,12,327-340.
    Bhattarai, K.R., Vetaas, O.R.& Grytnes, J.A. (2004) Fern species richness along a central Himalayan elevational gradient, Nepal [J]. Journal of Biogeography, 31,389-400.
    Brehm, G., Colwell, R.K.& Kluge, J. (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient [J]. Global Ecology and Biogeography,16,205-219.
    Broughton, R.E.& Reneau, P.C. (2006) Spatial covariation of mutation and nonsynonymous substitution rates in vertebrate mitochondrial genomes [J]. Molecular Biology and Evolution,23,1516-1524.
    Broughton, R.E. (2010) Phylogeny of teleosts based on mitochondrial genome sequences [A]. Origin and Phylogenetic Interrelationships of Teleosts [M] (ed. by J.S. Nelson, H.-P. Schultze & M.V.H. Wilson), pp.61-76. Verlag Dr. Friedrich Pfeil, Miinchen.
    Cardelus, C.L., Colwell, R.K.& Watkins, J.E. (2006) Vascular epiphyte distribution patterns:Explaining the mid-elevation richness peak [J]. Journal of Ecology, 94,144-156.
    Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J]. Molecluar Biology and Evolution,17, 540-552.
    Chettri, B., Bhupathy, S.& Acharya, B.K. (2010) Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India [J]. Acta Oecologica-International Journal of Ecology,36,16-22.
    Clarke, K.R.& Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation [M]. Plymouth Marine Laboratory, Plymouth.
    Colwell, R.K.& Lees, D.C. (2000) The mid-domain effect:geometric constraints on the geography of species richness [J]. Trends in Ecology & Evolution,15, 70-76.
    Colwell, R.K. (2006) RANGEMODEL:a monte carlo simulation tool for assessing geometric constraints on species richness, version 5 [CP]. Available at: http://viceroy.eeb.uconn.edu/rangemodel.
    Colwell, R.K., Rahbek, C.& Gotelli, N.J. (2004) The mid-domain effect and species richness patterns:what have we learned so far? [J]. American Naturalist,163, E1-E23.
    Crisci, J.V., Katinas, L.& Posadas, P. (2003) Historical biogeography:an introduction [M]. Harvard University Press, Cambridge.
    Curole, J.P.& Kocher, T.D. (1999) Mitogenomics:digging deeper with complete mitochondrial genomes [J]. Trends in Ecology & Evolution,14,394-398.
    Currie, D.J. (1991) Energy and large scale patterns of animal- and plant-species richness [J]. American Naturalist,137,27-49.
    Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guegan, J.F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'brien, E.& Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness [J]. Ecology Letters,7,1121-1134.
    Ding, T.S., Yuan, H.W., Geng, S., Lin, Y.S.& Lee, P.F. (2005) Energy flux, body size and density in relation to bird species richness along an elevational gradient in Taiwan [J]. Global Ecology and Biogeography,14,299-306.
    Diogo, R., Doadrio, I.& Vandewalle P. (2008) Teleostean phylogeny based on osteological and mycological characters [J]. International Journal of Morphology,26,463-522.
    Doiron, S., Bernatchez, L.& Blier, P.U. (2002) A comparative mitogenomic analysis of the potential adaptive value of arctic charr mtDNA introgression in brook charr populations(Salvelinus fontinalis Mitchill) [J]. Molecular Biology and Evolution,19,1902-1909.
    Drummond, A.J.& Rambaut, A. (2007) BEAST:Bayesian evolutionary analysis by sampling trees [J]. BMC Evolutionary Biology,7,214.
    Edds, D.R. (1993) Fish assemblage structure and environmental correlates in Nepal's Gandaki River [J]. Copeia,1993,48-60.
    Edgar, R.C. (2004) MUSCLE:Multiple sequence alignment with high accuracy and high throughput [J]. Nucleic Acids Research,32,1792-1797.
    Escarguel, G., Brayard, A.& Bucher, H. (2008) Evolutionary rates do not drive latitudinal diversity gradients [J]. Journal of Zoological Systematics and Evolutionary Research,46,82-86.
    Fang, P.W. (1934) Study on the fishes referring to Salangidae of China [J]. Sinensia,4, 231-268.
    Felsenstein, J. (1985) Phylogenies and the comparative method [J]. American Naturalist,125,1-15.
    Fink, W.L.& Weitzman, S.H. (1982) Relationships of the stomiiform fishes (Teleostei), with a description of Diplophos [J]. Bulletin of the Museum of Comparative Zoology,150,31-93.
    Fink, W.L. (1984). Basal euteleosts:relationships [A]. Ontogeny and Systematics of Fishes [M] (ed. by H.G. Moser, W.J. Richardson, D.M. Cohen, M.P. Fahay, A.W. Kendall Jr.& S.L. Richards), pp.202-206. The American Society of Ichthyologists and Herpetologists, Lawrence.
    Fleishman, E., Fay, J.P.& Murphy, D.D. (2000) Upsides and downsides:contrasting topographic gradients in species richness and associated scenarios for climate change [J]. Journal of Biogeography,27,1209-1219.
    Francis, A.P.& Currie, D.J. (2003) A globally consistent richness-climate relationship for angiosperms [J]. American Naturalist,161,523-536.
    Froese, R.& Pauly, D. (2007) Fishbase [DB]. World Wide Web electronic publication. Available at http://www.fishbase.org/. Accessed at March,2007.
    Froese, R.& Pauly, D. (2011) Fishbase [DB]. World Wide Web electronic publication. Available at http://www.fishbase.org/. Accessed at October,2011.
    Frost, D.R. (2009) Amphibian species of the world:an online reference. Version 5.3 (12 February,2009) [DB]. Electronic database accessible at http://research. amnh.org/herpetology/amphibia/. American Museum of Natural History, New York.
    Frost, D.R., Grant, T., Faivovich, J., Bain, R.H., Haas, A., Haddad, C.F.B., De Sa, R.O., Channing, A., Wilkinson, M., Donnellan, S.C., Raxworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, R.C., Nussbaum, R.A., Lynch, J.D., Green, D.M.& Wheeler, W.C. (2006) The amphibian tree of life [J]. Bulletin of the American Museum of Natural History,297,1-291.
    Fu, C. Z., Guo, L., Xia, R., Li, J.& Lei, G.C. (submitted) A multilocus phylogeny of Asian noodlefishes Salangidae (Teleostei:Osmeriformes) with a revised classification of the family.
    Fu, C.Z., Hua, X., Li, J., Chang, Z., Pu, Z.C.& Chen, J.K. (2006) Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China:geometric constraints, area and climate effects [J]. Ecography,29, 919-927.
    Fu. C.Z., Luo, J., Wu, J.H., Lopez, J.A., Zhong, Y., Lei, G.C.& Chen, J.K. (2005) Phylogenetic relationships of salangid fishes (Osmeridae, Salanginae) with comments on phylogenetic placement of the salangids based on mitochondrial DNA sequences [J]. Molecular Phylogenetics and Evolution,35,76-84.
    Fu, C.Z., Wang, J.X., Pu, Z.C., Zhang, S.L., Chen, H.L., Zhao, B., Chen, J.K.& Wu, J.H. (2007) Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China [J]. Biodiversity and Conservation,16,707-726.
    Fu, C.Z., Wu, J.H., Wang, X.Y., Lei, G.C.& Chen, J.K. (2004) Patterns of diversity, altitudinal range and body size among freshwater fishes in the Yangtze River basin, China [J]. Global Ecology and Biogeography,13,543-552.
    Fu, J., Hayes, M., Liu, Z.-J.& Zeng, X.-M. (2003) Genetic divergence of the southeastern Chinese salamanders of the genus Hynobius [J]. Acta Zoologica Sinica,49,585-591.
    Gao, K.Q.& Shubin, N.H. (2001) Late Jurassic salamanders from Northern China [J]. Nature,410,574-577.
    Gowri-Shankar, V.& Jow, H. (2006) PHASE:a software package for phylogenetics and sequence evolution [CP]. Available from http://www.bioinf.man.uk /resources/phase.
    Greenwood, P.H., Myers, G.S., Rosen, D.E.& Weitzman, S.H. (1967). Named main divisions of teleostean fishes [J]. Proceedings of the Biological Society of Washington,80,227-228.
    Greenwood, P.H., Rosen, D.E., Weitzman, S.H.& Myers, G.S. (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms [J]. Bulletin of the American Museum of Natural History,131,339-456.
    Grytnes, J.A.& McCain, C.M. (2007) Elevational trends in biodiversity [A]. Encyclopedia of biodiversity [M] (ed. by S. Levin). Elsevier, Inc., New York.
    Guindon, S.& Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood [J]. Systematic Biology,52, 696-704.
    Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'brien, E.M., Porter, E.E.& Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness [J]. Ecology,84,3105-3117.
    He, D.K.& Chen, Y.F. (2006) Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei:Cyprinidae) in China inferred from cytochrome b sequences [J]. Journal of Biogeography,33,1448-1460.
    Heaney, L.R. (2001) Small mammal diversity along elevational gradients in the Philippines:an assessment of patterns and hypotheses [J]. Global Ecology and Biogeography,10,15-39.
    Herzog, S.K., Kessler, M.& Bach, K. (2005) The elevational gradient in Andean bird species richness at the local scale:a foothill peak and a high-elevation plateau [J]. Ecography,28,209-222.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G.& Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas [J]. International Journal of Climatology,25,1965-1978.
    Huelsenbeck, J.P.& Ronquist, F. (2001) MRBAYES:Bayesian inference of phylogenetic trees [J]. Bioinformatics,17,754-755.
    Hurst, C.D., Bartlett, S.E., Davidson, W.S.& Bruce, I.J. (1999) The complete mitochondrial DNA sequence of the Atlantic salmon, Salmo salar [J]. Gene, 239,237-242.
    Hutchinson, G.E. (1975) Limnological botany. A treatise on limnology, Vol.3 [M]. John Wiley and Sons, New York.
    Igawa, T., Kurabayashi, A., Nishioka, M.& Sumida, M. (2006) Molecular phylogenetic relationship of toads distributed in the Far East and Europe inferred from the nucleotide sequences of mitochondrial DNA genes [J]. Molecular Phylogenetics and Evolution,38,250-260.
    Hves, K.L.& Taylor, E.B. (2007) Are Hypomesus chishimaensis and H. nipponensis (Osmeridae) distinct species? A molecular assessment using comparative sequence data from five genes [J]. Copeia,2007,180-185.
    Hves, K.L.& Taylor, E.B. (2008) Evolutionary and biogeographical patterns within the smelt genus Hypomesus in the North Pacific Ocean [J]. Journal of Biogeography,35,48-64.
    Hves, K.L.& Taylor, E.B. (2009) Molecular resolution of the systematics of a problematic group of fishes (Teleostei:Osmeridae) and evidence for morphological homoplasy [J]. Molecular Phylogenetics and Evolution,50, 163-178.
    Inoue, J.G., Miya, M., Tsukamoto, K.& Nishida, M. (2001) A mitogenomic perspective on the basal teleostean phylogeny:resolving higher-level relationships with longer DNA sequences [J]. Molecular Phylogenetics and Evolution,20,275-285.
    Inoue, J.G., Miya, M., Tsukamoto, K.& Nishida, M. (2003) Basal actinopterygian relationships:a mitogenomic perspective on the phylogeny of the "ancient fish" [J]. Molecular Phylogenetics and Evolution,26,110-120.
    Inoue, J.G., Miya, M., Tsukamoto, K.& Nishida, M. (2004) Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva [J]. Molecular Phylogenetics and Evolution, 32,274-286.
    Ishiguro, N., Miya, M.& Nishida, M. (2001) Complete mitochondrial DNA sequence of ayu Plecoglossus altivelis [J]. Fisheries Science,67,474-481.
    Ishiguro, N.B., Miya, M.& Nishida, M. (2003) Basal euteleostean relationships:a mitogenomic perspective on the phylogenetic reality of the "Protacanthopterygii" [J]. Molecular Phylogenetics and Evolution,27, 476-488.
    Ishiguro, N.B., Miya, M., Inoue, J.G.& Nishida, M. (2005) Sundasalanx (Sundasalangidae) is a progenetic clupeiform, not a closely-related group of salangids (Osmeriformes):mitogenomic evidence [J]. Journal of Fish Biology, 67,561-569.
    Itoh, Y., Uno, K.& Arato, H. (2006) Seismic evidence of divergent rifting and subsequent deformation in the southern Japan Sea, and a Cenozoic tectonic synthesis of the eastern Eurasian margin [J]. Journal of Asian Earth Sciences, 27,933-942.
    Jacobsen, D. (2008) Low oxygen pressure as a driving factor for the altitudinal decline in tax on richness of stream macroinvertebrates [J]. Oecologia,154, 795-807.
    Johnson, G.D.& Patterson, C. (1996) Relationships of lower euteleostean fishes [A]. Interrelationships of Fishes [M] (ed. by M.L.J. Stiassny, L.R. Parenti & G.D. Johnson), pp.251-332. Academic Press, San Diego.
    Johnson, G.D. (1992) Monophyly of the euteleostean clades-Neoteleostei, Eurypterygii, and Ctenosquamata. Copeia,1992,8-25.
    Juan, V.C.C. (1986) Thermal-tectonic evolution of the Yellow Sea and East-China-Sea-implication for transformation of continental to oceanic-crust and marginal basin formation [J]. Tectonophysics,125,231-244.
    Kano, K., Uto, K.& Ohguchi, T. (2007) Stratigraphic review of Eocene to Oligocene successions along the eastern Japan Sea:implication for early opening of the Japan Sea [J]. Journal of Asian Earth Sciences,30,20-32.
    Kass, R.E.& Raftery, A.E. (1995) Bayes factors [J]. Journal of the American Statistical Association,90,773-795.
    Katoh, K.& Toh, H. (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework [J]. BMC Bioinformatics,9,212.
    Katoh, K., Misawa, K., Kuma, K.& Miyata, T. (2002) MAFFT:a novel method for rapid multiple sequence alignment based on fast Fourier transform [J]. Nucleic Acids Research,30,3059-3066.
    Kattan, G.H.& Franco, P. (2004) Bird diversity along elevational gradients in the Andes of Colombia:area and mass effects [J]. Global Ecology and Biogeography,13,451-458.
    Kendall, V.J.& Haedrich, R.L. (2006) Species richness in Atlantic deep-sea fishes assessed in terms of the mid-domain effect and Rapoport's rule [J]. Deep-Sea Research Part I-Oceanographic Research Papers,53,506-515.
    Kessler, M. (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes [J]. Plant Ecology,149,181-193.
    Kessler, M. (2001) Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes [J]. Biodiversity and Conservation,10,1897-1921.
    Kim, J.B., Min, M.S., Matsui, M. (2003) A new species of lentic breeding Korean salamander of the genus Hynobius (Amphibia:Urodela). Zoological Science, 20,1163-1169.
    Kimura, M. (2000) Paleogeography of the Ryukyu Islands [J]. Tropics,10,5-24.
    Kitamura, A., Takano, O., Takata, H.& Omote, H. (2001) Late Pliocene-Early Pleistocene paleoceanographic evolution of the Sea of Japan [J]. Palaeogeography Palaeoclimatology Palaeoecology,172,81-98.
    Kizaki, K.& Oshiro, I. (1980) The origin of the ryukyu islands [A]. Natural history of the ryukyus [M] (ed. by K. Kizaki), pp.8-37. Tsukiji-shokan, Tokyo.
    Kluge, J., Kessler, M.& Dunn, R.R. (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica [J]. Global Ecology and Biogeography,15,358-371.
    Kong, F.C., Lawver, L.A.& Lee, T.Y. (2000) Evolution of the southern Taiwan-Sinzi Folded Zone and opening of the southern Okinawa Trough [J]. Journal of Asian Earth Sciences,18,325-341.
    Kozak, K.H.& Wiens, J.J. (2010) Niche conservatism drives elevational diversity patterns in Appalachian salamanders [J]. American Naturalist,176,40-54.
    Krijgsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J.& Wilson, D.S. (1999) Chronology, causes and progression of the Messinian Salinity Crisis [J]. Nature,400, 652-655.
    Kromer, T., Kessler, M., Gradstein, S.R.& Acebey, A. (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes [J]. Journal of Biogeography,32,1799-1809.
    Krug, A.Z., Jablonski, D.& Valentine, J.W. (2007) Contrarian clade confirms the ubiquity of spatial origination patterns in the production of latitudinal diversity gradients [J]. Proceedings of the National Academy of Sciences of the United States of America,104,18129-18134.
    Kuzmin, S.L., Poyarkov, N.A.& Zeng, X. (2008) On phylogeography and taxonomy of Central Asian Hynobiidae (Amphibia) [J]. Zoologichesky Zhurnal,87, 702-709.
    Kwon, Y.I.& Boggs, S. (2002) Provenance interpretation of Tertiary sandstones from the Cheju Basin (NE East China Sea):a comparison of conventional petrographic and scanning cathodoluminescence techniques [J]. Sedimentary Geology,152,29-43.
    Lai, J.S.& Lue, K.Y. (2008) Two new Hynobius (Caudata:Hynobiidae) salamanders from Taiwan [J]. Herpetologica,64,63-80.
    Larson, A., Weisrock, D.W.& Kozak, K.H. (2003) Phylogenetic systematics of salamanders (Amphibia:Urodela), a review [A]. Reproductive Biology and Phylogeny of Urodela (Amphibia) [M] (ed. by D.M. Server), pp.31-108. NH Science Publishers, Enfield.
    Lauder, G.V.& Li em, K.L. (1983) The evolution and interrelationships of the actinopterygian fishes [J]. Bulletin of the Museum of Comparative Zoology, 150,95-197.
    Lavoue, S., Miya, M., Poulsen, J.Y., M(?)ller, P.R.& Nishida, M. (2008) Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences [J]. Molecular Phylogenetics and Evolution,47,1111-1121.
    Lee, C.S., Shor, G.G., Bibee, L.D., Lu, R.S.& Hilde, T.W.C. (1980) Okinawa Trough: origin of a back-arc basin [J]. Marine Geology,35,219-241.
    Lee, G.H., Kim, B., Shin, K.S., Sunwoo, D. (2006) Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin. AAPG Bulletin,90,237-260.
    Li, C.H., Lu, G.Q.& Orti, G. (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci [J]. Systematic Biology,57,519-539.
    Li, C.H., Orti, G., Zhang, G.& Lu, G.Q. (2007) A practical approach to phylogenomics:The phylogeny of ray-finned fish (Actinopterygii) as a case study [J]. BMC Evolutionary Biology,7,44.
    Li, J., Xia, R., McDowall, R.M., Lopez, J.A., Lei, G.C.& Fu, C.Z. (2010) Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes [J]. Molecular Phylogenetics and Evolution,57,932-936.
    Li, J.S., Song, Y.L.& Zeng, Z.G. (2003) Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, China [J]. Global Ecology and Biogeography,12,449-460.
    Liew, T.S., Schilthuizen, M.& Bin Lakim, M. (2010) The determinants of land snail diversity along a tropical elevational gradient:insularity, geometry and niches [J]. Journal of Biogeography,37,1071-1078.
    Lin, S.M., Chen, C.A.& Lue, K.Y. (2002) Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia:Lacertidae) of East Asia [J]. Molecular Phylogenetics and Evolution,22,276-288.
    Lin, W., Chen, Y., Faure, M.& Wang, Q.C. (2003) Tectonic implications of new Late Cretaceous paleomagnetic constraints from eastern Liaoning Peninsula, NE China [J]. Journal of Geophysical Research-Solid Earth,108,2313.
    Liu, T.K., Chen, Y.G., Chen, W.S.& Jiang, S.H. (2000) Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints [J]. Tectonophysics,320,69-82.
    Liu, X.Y., Hayashi, F.& Yang, D. (2008) Systematics and biogeography of the fishfly genus Parachauliodes (Megaloptera:Corydalidae) endemic to the east Asian islands [J]. Systematic Entomology,33,560-578.
    Liu, Y., Zhang, Y.P., He, D.M., Cao, M.& Zhu, H. (2007) Climatic control of plant species richness along elevation gradients in the Longitudinal Range-Gorge Region [J]. Chinese Science Bulletin,52,50-58.
    Lomolino, M.V., Riddle, B.R.& Brown, J.H. (2006) Biogeography,3rd ed. [M]. Sinauer Associates, Inc., Sunderland.
    Lopez, J.A., Bentzen, P.& Pietsch, T.W. (2000) Phylogenetic relationships of esocoid fishes (Teleostei) based on partial cytochrome b and 16S mitochondrial DNA sequences [J]. Copeia,2000,420-431.
    Lopez, J.A., Chen, W.J.& Orti, G. (2004) Esociform phylogeny [J]. Copeia,2004, 449-464.
    Lourens, L.J., Antonarakou, A., Hilgen, F.J., Vanhoof, A.A.M., Vergnaudgrazzini, C. & Zachariasse, W.J. (1996) Evaluation of the Plio-Pleistocene astronomical timescale [J]. Paleoceanography,11,391-413.
    Mabuchi, K., Miya, M., Senou, H., Suzuki, T.& Nishida, M. (2006) Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprimus carpio L.):further evidence for an ancient origin [J]. Aquaculture, 257,68-77.
    Mabuchi, K., Senou, H.& Nishida, M. (2008) Mitochondrial DNA analysis reveals cryptic large-scale invasion of non-native genotypes of common carp (Cyprinus carpio) in Japan [J]. Molecular Ecology,17,796-809.
    Maekawa, K., Lo, N., Kitade, O., Miura, T.& Matsumoto, T. (1999) Molecular phylogeny and geographic distribution of wood-feeding cockroaches in East Asian islands [J]. Molecular Phylogenetics and Evolution,13,360-376.
    Magallon, S.& Sanderson, M.J. (2001) Absolute diversification rates in angiosperm clades [J]. Evolution,55,1762-1780.
    Marjanovic, D.& Laurin, M. (2007) Fossils, molecules, divergence times, and the origin of lissamphibians [J]. Systematic Biology,56,369-388.
    Marshall, N.B. (1962) Observations on the Heteromi, an order of teleost fishes [J]. Bulletin of the British Museum (Natural History). Zoology,9,249-270.
    Martins, E.P.& Hansen, T.F. (1997) Phylogenies and the comparative method:A general approach to incorporating phylogenetic information into the analysis of interspecific data [J]. American Naturalist,149,646-667.
    Martins, E.P. (2004) COMPARE, version 4.6b [CP]. Department of Biology, Indiana University, Bloomington (http://compare.Bio.Indiana.Edu/).
    Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zuker, M.& Turner, D.H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure [J]. Proceedings of the National Academy of Sciences of the United States of America,101,7287-7292.
    Matsui, M., Kokuryo, Y., Misawa, Y.& Nishikawa, K. (2004) A new species of salamander of the genus Hynobius from Central Honshu, Japan (Amphibia, Urodela) [J]. Zoological Science,21,661-669.
    Matsui, M., Tominaga, A., Hayashi, T., Misawa, Y.& Tanabe, S. (2007) Phylogenetic relationships and phylogeography of Hynobius tokyoensis (Amphibia:Caudata) using complete sequences of cytochrome b and control region genes of mitochondrial DNA [J]. Molecular Phylogenetics and Evolution,44,204-216.
    Matsui, M., Tominaga, A., Liu, W.Z.& Tanaka-Ueno, T. (2008a) Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata) [J]. Molecular Phylogenetics and Evolution,49,318-326.
    Matsui, M., Yoshikawa, N., Tominaga, A., Sato, T., Takenaka, S., Tanabe, S., Nishikawa, K.& Nakabayashi, S. (2008b) Phylogenetic relationships of two Salamandrella species as revealed by mitochondrial DNA and allozyme variation (Amphibia:Caudata:Hynobiidae) [J]. Molecular Phylogenetics and Evolution,48,84-93.
    Matthews, W.J. (1987) Physicochemical tolerance and selectivity of stream fishes as related to their geographic ranges and local distributions [A]. Community and Evolutionary Ecology of North American Stream Fishes [M] (ed. by W.J. Matthews and D.C. Heins), pp.111-120. University of Oklahoma Press, Norman.
    McCain, C.M.& Grytnes, J.A. (2010) Elevational Gradients in Species Richness [M]. John Wiley & Sons, Ltd.
    McCain, C.M. (2004) The mid-domain effect applied to elevational gradients:species richness of small mammals in Costa Rica [J]. Journal of Biogeography,31, 19-31.
    McCain, C.M. (2007a) Area and mammalian elevational diversity [J]. Ecology,88, 76-86.
    McCain, C.M. (2007b) Could temperature and water availability drive elevational species richness patterns? A global case study for bats [J]. Global Ecology and Biogeography,16,1-13.
    McCain, C.M. (2009) Global analysis of bird elevational diversity [J]. Global Ecology and Biogeography,18,346-360.
    Mccain, C.M. (2010) Global analysis of reptile elevational diversity [J]. Global Ecology and Biogeography,19,541-553.
    McDowall, R.M. (1969) Relationships of galaxioid fishes with a further discussion of salmoniform classification [J]. Copeia,1969,796-824.
    McGuire, J.A., Witt, C.C., Altshuler, D.L.& Remsen, J.V. (2007) Phylogenetic systematics and biogeography of hummingbirds:Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy [J]. Systematic Biology,56,837-856.
    Mckenzie, J.A., Spezzaferri, S.& Isern, A. (1999) The Miocene-Pliocene boundary in the Mediterranean Sea and Bahamas:implications for a global flooding event in the earliest Pliocene [J]. Memorie della Societa Geologica Italiana,54, 93-108.
    McPeek, M.A. (1995) Testing hypotheses about evolutionary change on single branches of a phylogeny using evolutionary contrasts [J]. American Naturalist, 145,686-703.
    Mees, G. (1961) Description of a new fish of the family Galaxiidae from Western Australia [J]. The Journal of The Royal Society of Western Australia,44, 33-38.
    Miller, S.A., Dykes, D.D.& Polesky, H.F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research,16, 1215.
    Minegishi, Y., Aoyama, J., Inoue, J.G., Miya, M., Nishida, M.& Tsukamoto, K. (2005) Molecular phylogeny and evolution of the freshwater eels genus Anguilla based on the whole mitochondrial genome sequences [J]. Molecular Phylogenetics and Evolution,34,134-146.
    Mirza, M.R. (1975) Freshwater fishes and zoogeography of Pakistan [J]. Bijdragen tot de Dierkunde,45,143-180.
    Mitsui, Y., Chen, S.T., Zhou, Z.K., Peng, C.I., Deng, Y.F.& Setoguchi, H. (2008) Phylogeny and biogeography of the genus Ainsliaea (Asteraceae) in the Sino-Japanese region based on nuclear rDNA and plastid DNA sequence data [J]. Annals of Botany,101,111-124.
    Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush, M.B., Harrison, S.P., Hurlbert, A.H., Knowlton, N., Lessios, H.A., Mccain, C.M., Mccune, A.R., Mcdade, L.A., Mcpeek, M.A., Near, T.J., Price, T.D., Ricklefs, R.E., Roy, K., Sax, D.F., Schluter, D., Sobel, J.M.& Turelli, M. (2007) Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography [J]. Ecology Letters,10,315-331.
    Miya, M.& Nishida, M. (1999) Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei:Stomiifonnes):first example of transfer RNA gene rearrangements in bony fishes [J]. Marine Biotechnology, 1,416-426.
    Miya, M.& Nishida, M. (2000) Use of mitogenomic information in teleostean molecular phylogenetics:a tree-based exploration under the maximum-parsimony optimality criterion [J]. Molecular Phylogenetics and Evolution,17,437-455.
    Miya, M., Kawaguchi, A.& Nishida, M. (2001) Mitogenomic exploration of higher teleostean phylogenies:a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences [J]. Molecular Biology and Evolution,18,1993-2009.
    Miya, M., Satoh, T.P., Yamanoue, Y., Mabuchi, K., Shirai, S.M., Yagishita, N., Nakayama, K., Takeshima, H., Suzuki, N.J., Inoue, J.G., Ishiguro, N.B., Azuma, Y., Kawaguchi, A., Mukai, T., Sakurai, H., Endo, H.& Nishida, M. (unpublished) Mitogenomes resolve the percomorph fish phylgonies.
    Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inoue, J.G., Mukai, T., Satoh, T.P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M.& Nishida, M. (2003) Major patterns of higher teleostean phylogenies:a new perspective based on 100 complete mitochondrial DNA sequences [J]. Molecular Phylogenetics and Evolution,26,121-138.
    Mueller, R.L., Macey, J.R., Jaekel, M., Wake, D.B.& Boore, J.L. (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes [J]. Proceedings of the National Academy of Sciences of the United States of America,101,13820-13825.
    Naniwadekar, R.& Vasudevan, K. (2007) Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India [J]. Journal of Biogeography,34,842-853.
    Navas, C.A. (2002) Herpetological diversity along Andean elevational gradients:links with physiological ecology and evolutionary physiology [J]. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology,133, 469-485.
    Nee, S., May, R.M.& Harvey, P.H. (1994) The reconstructed evolutionary process [J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,344,305-311.
    Nelson, J.S. (2006) Fishes of the World.4th edition [M]. John Wiley & Sons, Inc., Hoboken.
    Nishikawa, K., Jiang, J.P., Matsui, M., Mo, Y.M., Chen, X.H., Kim, J.B., Tominaga, A.& Yoshikawa, N. (2010) Invalidity of Hynobius yunanicus and molecular phylogeny of Hynobius salamander from continental China (Urodela, Hynobiidae) [J]. Zootaxa,2426,65-67.
    Nylander, J.A.A. (2004) MRMODELTEST v2 [CP]. Evolutionary Biology Centre, Uppsala University.
    Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P.& Nieves-Aldrey, J.L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology,53, 47-67.
    Obertegger, U., Thaler, B.& Flaim, G. (2010) Rotifer species richness along an altitudinal gradient in the Alps [J]. Global Ecology and Biogeography,19, 895-904.
    Odland, A.& Birks, H.J.B. (1999) The altitudinal gradient of vascular plant richness in Aurland, Western Norway [J]. Ecography,22,548-566.
    Oh, D.J., Chang, M.H., Oh, H.S.& Jung, Y.H. (2007) The complete mitochondrial DNA sequence of the Jeju salamander, Hynobius quelpaertensis, and the phylogenetic relationships among the Hynobiidae [J]. Korean Journal of Genetics,29,331-341.
    Okamoto, K., Suizu, Y., Mizuno, K., Tanigawa, S., Sako, K., Nakanishi, T., Kawasumi, K., Harada, Y., Moriyasu, T., Mukai, K., Minami, Y., Ishihara, E., Otaku, A., Nankawa, T., Akita, S., Ichikawa, S., Ito, S., Shigeyama, Y., Miyahara, K., Morita, T., Akagawa, M.& Sawaguchi, T. (unpublished) The giant salamander-comparison of mitochondrial whole genome between the Japanese and Chinese species.
    Okazaki, T., Jeon, S.R., Watanabe, M.& Kitagawa, T. (1999) Genetic relationships of Japanese and Korean bagrid catfishes inferred from mitochondrial DNA analysis [J]. Zoological Science,16,363-373.
    Oommen, M.A.& Shanker, K. (2005) Elevational species richness patterns emerge from multiple local mechanisms in himalayan woody plants [J]. Ecology,86, 3039-3047.
    Ota, H., Honda, M., Chen, S.L., Hikida, T., Panha, S., Oh, H.S.& Matsui, M. (2002) Phylogenetic relationships, taxonomy, character evolution and biogeography of the lacertid lizards of the genus Takydromus (Reptilia:Squamata):a molecular perspective [J]. Biological Journal of the Linnean Society,76, 493-509.
    Otofuji, Y., Itaya, T.& Matsuda, T. (1991) Rapid rotation of Southwest Japan paleomagnetism and K-Ar ages of Miocene volcanic-rocks of Southwest Japan [J]. Geophysical Journal International,105,397-405.
    Otofuji, Y., Matsuda, T.& Nohda, S. (1985) Opening mode of the Japan Sea inferred from the paleomagnetism of the Aapan Arc [J]. Nature,317,603-604.
    Otofuji, Y., Sato, K., Iba, N.& Matsuda, T. (1997) Cenozoic northward translation of the Kitakami Massif in Northeast Japan:paleomagnetic evidence [J]. Earth and Planetary Science Letters,153,119-132.
    Page, R.D.M. (1996) TREEVIEW:An application to display phylogenetic trees on personal computers [J]. Computer Applications in the Biosciences,12, 357-358.
    Palumbi, S., Martin, A., Romano, S., Mcmillan, W.O., Stice, L.& Grabowski, G. (1991) The Simple Fools Guide to PCR, version II [M]. University of Hawaii, Honolulu.
    Phillips, M.J.& Penny, D. (2003) The root of the mammalian tree inferred from whole mitochondrial genomes [J]. Molecular Phylogenetics and Evolution,28, 171-185.
    Pianka, E.R. (1966) Latitudinal gradients in species diversity:a review of concepts [J]. American Naturalist,100,33-46.
    Posada, D.& Crandall, K.A. (1998) MODELTEST:testing the model of DNA substitution [J]. Bioinformatics,14,817-818.
    Posada, D. (2008) jMODELTEST:phylogenetic model averaging [J]. Molecular Biology and Evolution,25,1253-1256.
    Rahbek, C. (1995) The elevational gradient of species richness:a uniform pattern [J]? Ecography,18,200-205.
    Rahbek, C. (1997) The relationship among area, elevation, and regional species richness in Neotropical birds [J]. American Naturalist,149,875-902.
    Rahbek, C. (2005) The role of spatial scale and the perception of large-scale species-richness patterns [J]. Ecology Letters,8,224-239.
    Rahel, F.J.& Hubert, W.A. (1991) Fish assemblages and habitat gradients in a Rocky-Mountain Great-Plains stream-biotic zonation and additive patterns of community change [J]. Transactions of the American Fisheries Society,120, 319-332.
    Rambaut, A.& Drummond, A.J. (2007) Tracer v 1.4 [CP]. Available from http://beast.bio.ed.ac.uk/tracer.
    Rambaut, A., Harvey, P.H.& Nee, S. (1997) END-EPI:an application for inferring phylogenetic and population dynamical processes from molecular sequences [J]. Computer Applications in the Biosciences,13,303-306.
    Rangel, T., Diniz-Filho, J.A.F.& Bini, L.M. (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography [J]. Global Ecology and Biogeography,15,321-327.
    Ree, R.H.& Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis [J]. Systematic Biology,57,4-14.
    Ree, R.H., Moore, B.R., Webb, C.O.& Donoghue, M.J. (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees [J]. Evolution,59,2299-2311.
    Regan, C.T. (1908) A synopsis of the fishes of the subfamily Salanginae [J]. Annals and Magazine of Natural History,2,444-446.
    Ren, J.Y., Tamaki, K., Li, S.T.& Junxia, Z. (2002) Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas [J]. Tectonophysics,344,175-205.
    Roberts, T.R. (1984) Skeletal anatomy and classification of the neotenic Asian salmoniform superfamily Salangoidea (icefishes or noodlefishes) [J]. Proceedings of the California Academy of Science,43,179-220.
    Rohlf, F.J. (1997) NTSYS-PC:Numerical taxonomy and multivariate analysis system, version 2.02 [CP]. Exeter Software, Setauket, New York.
    Rosen, D.E. (1974) Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides [J]. Bulletin of the American Museum of Natural History,153,267-325.
    Rosen, D.E. (1982) Teleostean interrelationships, morphological function and evolutionary inference [J]. American Zoologist,22,261-273.
    Rowe, R. (2009) Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah [J]. Ecography,32,411-422.
    Saitoh, K., Miya, M., Inoue, J.G., Ishiguro, N.B.& Nishida, M. (2003) Mitochondrial genomics of ostariophysan fishes:perspectives on phylogeny and biogeography [J]. Journal of Molecular Evolution,56,464-472.
    Saitoh, K., Sado, T., Mayden, R.L., Hanzawa, N., Nakamura, K., Nishida, M.& Miya, M. (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii:Ostariophysi):the first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences [J]. Journal of Molecular Evolution,63, 826-841.
    Sakamoto, M., Tominaga, A., Matsui, M., Sakata, K.& Uchino, A. (2009) Phylogeography of Hynobius yatsui (amphibia:Caudata) in Kyushu, Japan [J]. Zoological Science,26,35-47.
    Sanders, N.J. (2002) Elevational gradients in ant species richness:area, geometry, and Rapoport's rule [J]. Ecography,25,25-32.
    Sanders, N.J., Moss, J.& Wagner, D. (2003) Patterns of ant species richness along elevational gradients in an arid ecosystem [J]. Global Ecology and Biogeography,12,93-102.
    Sanmartin, I. (2003) Dispersal vs. Vicariance in the Mediterranean:historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea) [J]. Journal of Biogeography,30,1883-1897.
    Schellart, W.P.& Lister, G.S. (2005) The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia [J]. Journal of the Geological Society,162,959-972.
    Shi, N., Cao, J.X.& Konigsson, L.K. (1993) Late Cenozoic vegetational history and the Pliocene-Pleistocene boundary in the Yushe Basin, S.E. Shanxi, China [J]. Grana,32,260-271.
    Shih, H.T.& Suzuki, H. (2008) Taxonomy, phylogeny, and biogeography of the endemic mudflat crab Helice/Chasmagnathus complex (Crustacea:Brachyura: Varunidae) from East Asia [J]. Zoological Studies,47,114-125.
    Shih, H.T., Yeo, D.C.J.& Ng, P.K.L. (2009) The collision of the Indian plate with Asia:Molecular evidence for its impact on the phylogeny of freshwater crabs (Brachyura:Potamidae) [J]. Journal of Biogeography,36,703-719.
    Shimodaira, H.& Hasegawa, M. (2001) CONSEL:For assessing the confidence of phylogenetic tree selection [J]. Bioinformatics,17,1246-1247.
    Sibuet, J.C.& Hsu, S.K. (2004) How was Taiwan created? [J]. Tectonophysics,379, 159-181.
    Signor, P.W. (1990) The geologic history of diversity [J]. Annual Review of Ecology and Systematics,21,509-539.
    Smith, K.F.& Brown, J.H. (2002) Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth [J]. Global Ecology and Biogeography,11,313-322.
    Smith, S.A., De Oca, A.N.M., Reeder, T.W.& Wiens, J.J. (2007) A phylogenetic perspective on elevational species richness patterns in middle american treefrogs:Why so few species in lowland tropical rainforests? [J]. Evolution, 61,1188-1207.
    Stamatakis, A. (2006) RAXML-VI-HPC:maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models [J]. Bioinformatics,22, 2688-2690.
    Stephens, P.R.& Wiens, J.J. (2003) Explaining species richness from continents to communities:the time-for-speciation effect in emydid turtles [J]. American Naturalist,161,112-128.
    Swofford, D.L. (2002) PAUP* phylogenetic analysis using parsimony (* and other methods). Version 4 [CP]. Sinauer Associates, Sunderland.
    Tada, R. (1994) Paleoceanographic evolution of the Japan Sea [J]. Palaeogeography Palaeoclimatology Palaeoecology,108,487-508.
    Takeuchi, A. (2004) Basement-involved tectonics in North Fossa Magna, Central Japan:the significance of the northern Itoigawa-Shizuoka Tectonic Line [J]. Earth Planets and Space,56,1261-1269.
    Talwar, P.K.& Jhingran, A.G. (1992) Inland fishes of India and adjacent countries [M]. A. A. Balkema, Rotterdam.
    Tamaki, M.& Itoh, Y. (2008) Tectonic implications of paleomagnetic data from Upper Cretaceous sediments in the Oyubari area, Central Hokkaido, Japan [J]. Island Arc,17,270-284.
    Tamura, K., Dudley, J., Nei, M.& Kumar, S. (2007) MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,24,1596-1599.
    Teng, L.S. (1992) Geotectonic evolution of Tertiary continental margin basins of Taiwan [J]. Petroleum Geology of Taiwan,27,1-19.
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F.& Higgins, D.G. (1997) The CLUSTAL_X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research,25,4876-4882.
    Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994) Clustal-W-Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research,22,4673-4680.
    Thorne, J.L.& Kishino, H. (2002) Divergence time and evolutionary rate estimation with multilocus data [J]. Systematic Biology,51,689-702.
    Thorne, J.L., Kishino, H.& Painter, I.S. (1998) Estimating the rate of evolution of the rate of molecular evolution [J]. Molecular Biology and Evolution,15, 1647-1657.
    Tominaga, A.& Matsui, M. (2008) Taxonomic status of a salamander species allied to Hynobius naevins and a reevaluation of Hynobius naevins yatsui Oyama, 1947 (Amphibia, Caudata) [J]. Zoological Science,25,107-114.
    Torninaga, A., Matsui, M., Nishikawa, K.& Tanabe, S. (2006) Phylogenetic relationships of Hynobius naevius (Amphibia:Caudata) as revealed by mitochondrial 12s and 16s rRNA genes [J]. Molecular Phylogenetics and Evolution,38,677-684.
    1 sigenopoulos, C.S., Durand, J.D., Unlu, E.& Berrebi, P. (2003) Rapid radiation of the Mediterranean Luciobarbus species (Cyprinidae) after the Messinian Salinity Crisis of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis [J]. Biological Journal of the Linnean Society,80, 207-222.
    Uno, K. (2002) Late Cretaceous palaeomagnetic results from Southwest Japan:new insights for Early Cenozoic clockwise rotation [J]. Geophysical Journal International,149,617-624.
    Wageman, J.M., Hilde, T.W.C.& Emery, K.O. (1970) Structural framework of East China-Sea and Yellow-Sea [J]. American Association of Petroleum Geologists Bulletin,54,1611-1643.
    Wakabayashi, K.I., Tsunakawa, H., Mochizuki, N., Yamamoto, Y.& Takigami, Y. (2006) Paleomagnetism of the Middle Cretaceous iritono granite in the Abukuma region, Northeast Japan [J]. Tectonophysics,421,161-171.
    Wakiya, Y.& Takahasi, N. (1937) Studies on fishes of the family Salangidae [J]. Journal of the College of Agriculture, Imperial University of Tokyo,14, 265-296.
    Waldbieser, G.C., Bilodeau, A.L.& Nonneman, D.J. (2003) Complete sequence and characterization of the channel catfish mitochondrial genome [J]. DNA Sequence,14,265-277.
    Wang, G.M., Coward, M.P., Yuan, W., Liu, S.& Wang, W. (1995) Fold growth during basin inversion-example from the East China Sea basin [J]. Geological Society, London, Special Publications,88,493-522.
    Wang, X.P., Fang, J.Y., Sanders, N.J., White, P.S.& Tang, Z.Y. (2009) Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China [J]. Ecography,32,133-142.
    Wang, Z.H., Tang, Z.Y.& Fang, J.Y. (2007a) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China [J]. Diversity and Distributions,13,845-854.
    Wang, X.Z., Li, J.B.& He, S.P. (2007b) Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei:Cypriniformes) derived from the nuclear recombination activating gene 2 sequences [J]. Molecular Phylogenetics and Evolution,42,157-170.
    Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R.& Hebert, P.D.N. (2005) DNA barcoding Australia's fish species [J]. Philosophical Transactions of the Royal Society B-Biological Sciences,360,1847-1857.
    Watanabe, K. (1998) Parsimony analysis of the distribution pattern of Japanese primary freshwater fishes, and its application to the distribution of the bagrid catfishes [J]. Ichthyological Research,45,259-270.
    Waters, J.M., Lopez, J.A.& Wallis, G.P. (2000) Molecular phylogenetics and biogeography of galaxiid fishes (Osteichthyes:Galaxiidae):Dispersal, vicariance, and the position of Lepidogalaxias salamandroides [J]. Systematic Biology,49,777-795.
    Waters, J.M., Saruwatari, T., Kobayashi, T., Oohara, I., Mcdowall, R.M.& Wallis, G.P. (2002) Phylogenetic placement of retropinnid fishes:data set incongruence can be reduced by using asymmetric character state transformation costs [J]. Systematic Biology,51,432-449.
    Watkins, J.E., Cardelus, C., Colwell, R.K.& Moran, R.C. (2006) Species richness and distribution of ferns along an elevational gradient in Costa Rica [J]. American Journal of Botany,93,73-83.
    Weisrock, D.W., Harmon, L.J.& Larson, A. (2005) Resolving deep phylogenetic relationships in salamanders:analyses of mitochondrial and nuclear genomic data [J]. Systematic Biology,54,758-777.
    Weitzman, S.H. (1967) The origin of the stomiatoid fishes with comments on the classification of salmoniform fishes [J]. Copeia,1967,507-540.
    Wiens, J.J.& Donoghue, M.J. (2004) Historical biogeography, ecology and species richness [J]. Trends in Ecology & Evolution,19,639-644.
    Wiens, J.J.& Graham, C.H. (2005) Niche conservatism:integrating evolution, ecology, and conservation biology [J]. Annual Review of Ecology Evolution and Systematics,36,519-539.
    Wiens, J.J. (2007) Global patterns of diversification and species richness in amphibians [J]. American Naturalist,170, S86-S106.
    Wiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A.& Reeder, T.W. (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs:treefrog trees unearth the roots of high tropical diversity [J]. American Naturalist,168,579-596.
    Wiens, J.J., Parra-Olea, G., Garcia-Paris, M.& Wake, D.B. (2007) Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders [J]. Proceedings of the Royal Society B-Biological Sciences,274,919-928.
    Wiens, J.J., Sukumaran, J., Pyron, R.A.& Brown, R.M. (2009) Evolutionary and biogeographic origins of high tropical diversity in Old World frogs (Ranidae) [J]. Evolution,63,1217-1231.
    Williams, R.R.G. (1987) The phylogenetic relationships of the salmoniform fishes based on the suspensorium and its muscles [D]. PhD Thesis, University of Alberta, Edmonton.
    Williams, R.R.G. (1997) Bones and muscles of the suspensorium in the galaxioids and Lepidogalaxias salamandroides (Teleostei:Osmeriformes) and their phylogenetic significance [J]. Records of Australian Museum,49,139-166.
    Williams, S.E., Shoo, L.P., Henriod, R.& Pearson, R.G. (2010) Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregion [J]. Austral Ecology,35,650-664.
    Willig, M.R., Kaufman, D.M.& Stevens, R.D. (2003) Latitudinal gradients of biodiversity:pattern, process, scale, and synthesis [J]. Annual Review of Ecology Evolution and Systematics,34,273-309.
    Wilson, M.V.H.& Williams, R.R.G. (1991) New Paleocene genus and species of smelt (Teleostei:Osmeridae) from freshwater deposits of the Paskapoo Formation, Alberta, Canada, and comments on osmerid phylogeny [J]. Journal of Vertebrate Paleontology,11,434-451.
    Wilson, M.V.H.& Williams, R.R.G. (2010) Salmoniform fishes:key fossils, supertree, and possible morphological synapomorphies [A]. Origin and Phylogenetic Interrelationships of Teleosts [M] (ed. by J.S. Nelson, H.-P. Schultze & M.V.H. Wilson), pp.379-409. Verlag Dr. Friedrich Pfeil, Munchen.
    Wu, J.H., Hsu, C.H., Fang, L.S., Shao, K.T.& Chen, I.S. (2004) The complete mitochondrial genome of variegated lizardfish, Synodus variegatus (Teleostei: Synodontidae) [A]. In:Symposium on Marine Biology and Biotechonology, Hongkong.
    Xia, X.& Xie, Z. (2001) DAMBE:Software package for data analysis in molecular biology and evolution [J]. Journal of Heredity,92,371-373.
    Xia, X., Xie, Z., Salemi, M., Chen, L.& Wang, Y. (2003) An index of substitution saturation and its application [J]. Molecular Phylogenetics and Evolution,26, 1-7.
    Xiong, J.L., Chen, Q., Zeng, X.M., Zhao, E.M.& Qing, L.Y. (2007) Karyotypic, morphological, and molecular evidence for Hynobius yunanicus as a synonym of Pachyhynobius shangchengensis (Urodela:Hynobiidae) [J]. Journal of Herpetology,41,664-671.
    Yang, Z.H. (2007) PAML 4:Phylogenetic analysis by maximum likelihood [J]. Molecular Biology and Evolution,24,1586-1591.
    Yasuike, M., Jantzen, S., Cooper, G.A., Leder, E., Davidson, W.S.& Koop, B.F. (2010) Grayling (Thymallinae) phylogeny within salmonids:complete mitochondrial DNA sequences of Thymallus arclicus and Thymallus thymallus [J]. Journal of Fish Biology,76,395-400.
    Yin, W., Fu, C.Z., Guo, L., He, Q.X., Li, J., Jin, B.S., Wu, Q.H.& Li, B. (2009) Species delimitation and historical biogeography in the genus Helice (Brachyura:Varunidae) in the Northwestern Pacific [J]. Zoological Science, 26,467-475.
    Yoshikawa, N., Matsui, M., Nishikawa, K., Kim, J.B.& Kryukov, A. (2008) Phylogenetic relationships and biogeography of the Japanese clawed salamander, Onychodactylus japonicus (Amphibia:Caudata:Hynobiidae), and its congener inferred from the mitochondrial cytochrome b gene [J]. Molecular Phylogenetics and Evolution,49,249-259.
    Zaragueta-Bagils, R., Lavoue, S., Tillier, A., Bonillo, C.& Lecointre, G. (2002) Assessment of otocephalan and protacanthopterygian concepts in the light of multiple molecular phylogenies [J]. Comptes Rendus Biologies,325, 1191-1207.
    Zardoya, R.& Doadrio, I. (1999) Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids [J]. Journal of Molecular Evolution,49,227-237.
    Zardoya, R., Garridopertierra, A.& Bautista, J.M. (1995) The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss [J]. Journal of Molecular Evolution,41,942-951.
    Zhang, D.C., Zhang, Y.H., Boufford, D.E.& Sun, H. (2009) Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China [J]. Biodiversity and Conservation,18, 699-716.
    Zhang, J., Li, M., Xu, M., Takita, T.& Wei, F. (2007) Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome b sequences, with comments on estuarine fish evolution [J]. Biological Journal of the Linnean Society,91,325-340.
    Zhang, L., Tang, Q.Y.& Liu, H.Z. (2008) Phylogeny and speciation of the Eastern Asian cyprinid genus Sarcocheilichthys [J]. Journal of Fish Biology,72, 1122-1137.
    Zhang, P.& Wake, D.B. (2009) Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes [J]. Molecular Phylogenetics and Evolution,53,492-508.
    Zhang, P., Chen, Y.Q., Liu, Y.F., Zhou, H.& Qu, L.H. (2003) The complete mitochondrial genome of the chinese giant salamander, Andrias davidianus (Amphibia:Caudata) [J]. Gene,311,93-98.
    Zhang, P., Chen, Y.Q., Zhou, H., Liu, Y.F., Wang, X.L., Papenfuss, T.J., Wake, D.B. & Qu, L.H. (2006) Phylogeny, evolution, and biogeography of Asiatic salamanders (Hynobiidae) [J]. Proceedings of the National Academy of Sciences of the United States of America,103,7360-7365.
    Zhang, P., Papenfuss, T.J., Wake, M.H., Qu, L.H.& Wake, D.B. (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia:Caudata) inferred from complete mitochondrial genomes [J]. Molecular Phylogenetics and Evolution,49,586-597.
    Zhang, Y.L., Qiao, X.G. (1994) Study on phylogeny and zoogeography of fishes of the family Salangidae [J]. Acta Zoologica Taiwanica,5,95-115.
    Zhao, E.M. (1999) Distribution patterns of amphibians in temperate Eastern Asia [A]. Patterns of Distribution of Amphibians:a Global Perspective [M] (ed. by W.E. Duellman), pp.421-443. The Johns Hopkins University Press, Baltimore.
    Zhou, Z., Zhao, J.& Yin, P. (1989) Characteristics and tectonic evolution of the East China sea [A]. Chinese Sedimentary Basins [M] (ed. by X. Zhu), pp.165-179. Elsevier Science, Amsterdam.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700