非正态过程能力分析与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
统计过程控制理论已成为推动质量管理发展的一种有效的质量应用基本理论,为持续质量改进发展做出了重大贡献。但是传统的统计过程控制理论基于质量特性值服从正态分布的假设,而在某些实际生产过程中,质量特性值往往服从非正态分布。针对非正态过程,传统的统计过程控制理论将失效。因此,非正态过程能力分析与控制问题已成为目前迫切需要研究的一个课题。
     本文首先介绍了非正态过程的特点和检验、统计过程控制中的过程能力分析和控制图方法的基础理论和知识。从更为具有实际应用价值的角度,结合曼-惠特尼U(Mann-Whitney U)检验的原理,对生产中非正态过程的稳定性进行研究。对偏度校正(SC)控制图和比例加权方差(SWV)控制图的进行应用研究。并对SC控制图、SWV控制图、WV控制图以及休哈特控制图进行比较研究,得出结论:SC控制图和SWV控制图能够对非正态过程进行很好地监控。提出了一种修正的加权方差过程能力指数,相对于BAI & CHOI提出的加权方差过程能力指数和WU提出的加权方差过程能力指数更具稳健性。另外,本文将生产过程中以及供应商管理中的删减问题进行还原,也就是将截尾处理的问题引入过程能力评价。通过对截尾样本的统计学原理的研究,能够科学地还原原始未截尾处理的样本的统计特性。
     本文以非正态质量特性值的本质属性为切入点,以非正态过程能力分析与控制的理论为主线,运用统计学原理、数学推导、实证研究、比较分析法对非正态过程能力分析与控制的理论进行深入探讨,对非正态过程稳定性问题、对不同非正态过程控制方法、不同非正态过程能力评价方法、以及正态截尾处理的过程能力评价问题进行理论研究和实证分析,构建非正态过程能力分析与控制方法的理论基础和应用框架,完善统计过程控制体系。
Statistical process control (SPC) has been become an effective form of quality application to promote quality management development and made a significant contribution to continuous quality improvement. Traditional SPC theory is based on a fundamental assumption that the process data are normal. However, in many conditions the process data are non-normal. Under the circumstances, the traditional SPC theory becomes invalid. Therefore, the problem of process capability analysis and control methods in non-normal processes has become an urgent issue to be solved.
     The basic theory and knowledge of the characteristics and test methods for non-normal process, process capability analysis and control charts are first introduced in this paper. For practical points of view, non-normal data stability in manufacturing processes is studied with the principle of Mann-Whitney U test. Skewness Correction (SC) control chart and Scaled Weighted Variance (SWV) control chart application are studied to apply, separately. An analysis is made to compare SC control chart, SWVcontrol chart, Shewhart control chart, WV control chart. The comparative study shows that SC control chart as well as SWVcontrol chart can control non-normal processes well than other control methods. The paper presents a Modified Weighted Variance process capability index which is more robust than process capability indices proposed by BAI & CHOI and process capability indices proposed by WU. In addition, the practical application of estimators of truncated samples from the normal distribution is derived and illustrated, and the paper imports the truncated samples which are easy to appear in manufacturing processes or supplier management into process capability evaluation for the first time. It is scientific to fund the estimators of untruncated samples by the study of paper.
     The paper is commenced by the nature of non-normal data and based on the main line of process capability analysis and control methods for non-normal processes. Statistics principle, mathematics derivation, comparative analysis and case study are employed to carry out the thorough examination to the theory of process capability analysis and control methods for non-normal processes. The theory base and application framework of process capability analysis and control methods in non-normal processes were found from several sets including non-normal process stability, non-normal process control methods, non-normal process capability evaluation as well as process capability evaluation of truncated samples from the normal distribution in order to perfect statistical process control system.
引文
[1]Saniga, E. M. and Shirland, L. E. Quality control in practice: a survey[J]. Quality Progress, 1977, 10(1): 30-33.
    [2]Juran, J. M., Gryna, Jr. F. M. and Bingham, Jr. R. S. Quality control handbook[M]. McGraw- Hill, New York, 1974.
    [3]Cowden, D. J. Statistical methods in quality control[M]. Prentice- Hill, Englewood Cliffs, NJ, 1957.
    [4]Burr, I. W. Engineering statistics and quality control[M]. McGraw – Hill, New York, 1953.
    [5]Feigenbaum, A. V. Total quality control[M]. McGraw – Hill, New York, 1961
    [6]Woodall, W. H. The statistical design of quality control charts[J]. The Statistican, 1985, 34(2): 155-160.
    [7]Saniga, E. M. Isodynes for X and R control charts[J]. Frontiers in Statistical Quality Control, 2ed., H. J. Lertz, G. B. Wetherill and P. T. Wilrich. Physica, Vienna, 1984: 268-273.
    [8]Girshick, M. A. and Rubin, H. A. A Bayes’ approach to a quality control model[J]. Annals of Mathematical Statistics, 1952, 23(1):114-125.
    [9]Duncan, A. J. The economic design of X charts used to maintain current control of a process[J]. Journal of the American Statistical Association, 1956, 51(2): 228-242
    [10]Lorenzen, T. J. and Vance, L. C. The economic design of control charts: a unified approach[J]. Technometrics, 1987, 28(1): 3-10.
    [11]Vance, L. C. A bibliography of statistical quality control chart techiniques, 1970-1980[J]. Journal of Quality Technology, 1983, 15(1): 59-62.
    [12]Montegomery, D. C. The economic design of control charts: a review and literature survey[J]. Journal of Quality Technology, 1980, 12(1): 75-87.
    [13]Montegomery, D. C. Introduction to statistical quality control, 2nd[M]. Wiley New York, 1991.
    [14]Montegomery, D. C. The use of statistical process control and design of experiments in product and process improvement[J]. IIE Transactions, 1992, 24(1): 4-17.
    [15]Svoboda, L. Economic design of control charts: a review and literature survey(1979-1989). Statistical Process Control in Manufacturing[M]. Marcel Dekker, New York, 1991.
    [16]Ho, C. and Case, K. E. Economic design of control charts: a literature review for 1981-1991[J]. Journal of Quality Technology, 1994, 26(1): 39-53.
    [17]Goel, A. L., Jain, S. D. and Wu, S. M. An algorithm for the determination of the economic design of X charts based on Duncan’s model[J]. Journal of the American Statistical Association, 1968, 63(3): 304-320.
    [18]Knappenberger, H. A., and Grandage, A. H. Minimum cost quality control tests[J]. AIIE Transactions, 1969, 1(1): 24-32.
    [19]Duncan, A. J. The economic design of X charts when there is a multiplicity of assignable causes[J]. Journal of the American Statistical Association, 1971, 17: 635-646
    [20]Gibra, I. N. Economically optimal determination of the parameters of an X control chart[J]. Management Science, 1971, 17(9): 635-646.
    [21]Alexander, S. M., Dillman, M. A. and Usher, J. S. Economic design of control charts using Taguchi loss function[J]. Computers and Industrial Engineering, 1995, 28(9): 671-679.
    [22]Chou, C. Y. and Chang, C. L. Bivariate tolerance design for lock wheels by considering quality loss[J]. Quality and Reliability Engineering International, 2000, 16(1): 129-138.
    [23]Chou, C. Y., Chen, C. H. and Liu, H. R. Economic statistical design of X charts for non-normal data by considering quality loss[J]. Journal of Applied Statistics, 2000, 27(8): 939-951.
    [24]Chen, C. H. and Chou, C. Y. Economic design of Dodge-Romig LTPD single sampling plans for variables under Taguchi’s quality loss function[J]. Total Quality Management, 2001, 12(1): 5-11.
    [25]Saniga, E. M. Economic statistical control chart designs with an application to X and R charts[J]. Technometrics, 1989, 31(3): 313-320.
    [26]Ermer, D. S. A control chart for dependent data[J]. In ASQC Technical Conference Transactions, ASQC, 1980, 121-128.
    [27]Montegomery, D. C., Torng, J. C., Cochran, J. K., etal. Statistical constrained economic design of the EWMA control chart[J]. Journal of Quality Technology, 1995, 27: 250-256.
    [28]Baker, K. R. Two process models in the economic design of an X chart[J]. AHE Transactions, 1971, 3(4): 257-263.
    [29]Hu, P. W. Economic design of a X control chart under non-Poisson process shift[C]. Abstract, TIMS/ORSA Joint National Meeting, San Francisco, 1984: 87.
    [30]Banerjee, P. K. and Rahim, M. A. Economic design of X control charts under Weibull shock models[J]. Technometrics, 1988, 30(4): 407-414.
    [31]Zhang Guo Qiang and Victor Berardi. Economic statistical design of X control charts for systems with Weibull in-control times[J]. Computers and Industrial Engineering, 32(3), 575-586.
    [32]Jacobs, D.C. Watch out for non-normal distributions[J]. Chemical Engineering Progress, 1990,86:19-27.
    [33]Burr, I.W. Cumulative frequency distribution[J]. Annals of Math. Statist., 1942,13:215–232.
    [34]Burr. I.W. The effect of non-normality on constants for X and R charts[J]. Industrial Quality Control, 1967, 24:563-569.
    [35]Ferrell, E.B. Control charts fro Log-normal universe[J]. Industrial Quality Control, 1958, 15:4-6.
    [36]Nelson, P.R. Control charts for Weibull processes with standards given[J]. IEEE Transactions on reliability, 1979, 28(3):283-287.
    [37]Bianco, E.G. Reply to Query 3-67[J]. Industrial Quality Control, 1967, 24:458-459.
    [38]Balakrishnan N. and Kocherlakota S. Effects of non-normality on X charts: single assignable cause model[J]. Sankhya, 1986, B48:439-444.
    [39]Schilling, E.G. and Nelson, P.R. The effect of non-normality on the control limits of X charts[J]. Journal of Quality Technology, 1976, 8(2): 183-188.
    [40]Burrows, P.M. X control schemes for a production variable with skewed distribution[J]. The Statistician,1962,12(4):296-312.
    [41]Cowden, D.J. Statistical methods in quality control[M]. Prentice-Hall, Englewood Cliffs, NJ, 1957.
    [42]Choobineh F. and Ballard J.L Control-limits of QC chart for skewed distributions using weighted-variance[J]. IEEE Transactions on reliability, 1987, 36(4):473-477.
    [45]Abel V. Comment on: Control-limits of QC chart for skewed distributions using weighted-variance[J]. IEEE Transactions on reliability, 1989, 38(2):265.
    [46]Choobineh F. and Branting, D. A simple approximation for semivariance[J].Europen Journal of Operational Research. 1986, 27:364-370.
    [47]Bai, D.S. and Choi, I.S. X and R control charts for skewed populations[J]. Journal of Quality Technology, 1995, 27(2): 120-131.
    [48]Castagliola, P. X control chart for skewed populations using a scaled weighted variance method[J]. International Journal of Reliability, Quality and Safety Engineering, 2000, 7(3):237-252.
    [49]Y.S. Chang and D.S. Bai. Control charts for positively-skewed populations with weighted standard deviations[J]. Quality and Reliability Engineering International, 2001, 17: 397-406.
    [50]L. K. Chan and H.L. Cui. Skewness correction X and R charts for skewed distributions[J]. Naval Research Logistics, 2003, 50:555-573.
    [51]Chan, L.K. Hapuarachchi, K. P. and Macpherson, B.D. Robustness of X and R charts[J]. IEEE Transactions on reliability, 1988, 37(2):117-123.
    [52]Zimmer, W.J. and Burr, I.W. Variables sampling plans based on the non-normal populations[J]. Industrial Quality Control, 1963, 18:18-36.
    [53]Borror, C.M. Robustness of the EWMA control chart to non-normality[J]. Journal of Quality Technology, 1999, 31(3): 309-316.
    [54]Yi, D. and Ping, S. One-sided control charts for the mean of positively skewed distributions[J]. Total Quality Management, 2002, 13(7):1021-1033.
    [55]Chen,L. Testing the mean of skewed distributions[J]. Journal of the American Statistical Association, Theory and Methods, 1995, 90(430):767-772.
    [56]Chao, Y. C. Chung, H.C. and Hui, R. L. Acceptance control charts for non-normal data[J]. Journal of Applied Statistics, 2005, 32(1):25-36.
    [57]Chou, C.Y. and Cheng, P.H. Ranges control chart for non-normal data[J]. Journal of the Chinese Institute of Industrial Engineers, 1997, 14:401-409.
    [58]Chou, C.Y., Chen, C.H. and Liu, H.R. Economic-statistical design of X-bar charts for non-normal data by considering quality loss[J]. Journal of the Applied Statistics, 2000, 27:939-951.
    [59]Chou, C.Y., Chen, C.H. and Liu, H.R. Effect of non-normality on the economic design of warning limit X-bar charts[J]. Quality Engineering, 2004,16(4):567-575.
    [60]Lin, Y. C. and Chou, C.Y. Robustness of the variable sample size and control limit X chart to non normality[J]. Communications in Statistics- Theory and Methods, 2005, 34:721-743.
    [61]Yourstone, S. A. and Zimmer, W.J. Non-normality and the design of control chartsfor averages[J]. Decision Sciences, 1992, 23:1099-1113.
    [62]Rahim, M.A. Economic model of X chart under non-normality and measurement errors[J]. Computers and Operations Research, 1985, 12:289-301.
    [63] 张维铭.非正态总体的质量控制图[J].数学的实践与认识,1982,4:15-26.
    [64]周丙常, 师义民, 于蕾.有偏总体的均值控制图[J].昆明理工大学学报(理工版),2005,30(3):123-126.
    [65]吴海英, 李跃波, 刘朝荣.用于偏态工序的 X -R控制图[J].中国质量,2000,42-43.
    [66]李跃波,周树民,吴海英.加权方差 X -R控制图[J].武汉工业大学学报,2000,22(2):92-94.
    [67] 周 树 民 , 李 跃 波 .Weibull 分 布 工 序 控 制 图 [J]. 武 汉 理 工 大 学 学 报 ,2000,22(6):72-74.
    [68] S. Kotz and C. Lovelace. Process Capability Indices in Theory and Practice[M]. Arnold: London, 1998.
    [69] P.F. McCoy. Using performance indexes to monitor production processes[J]. Quality Progress, 1991, 24:49-55.
    [70]Juarn JM,Gryna FM and Bingham RS Jr. Quality Control Handbook[M]. McGraw-Hill, New York, 1974.
    [71]Kane VE. Process Capability Indices[J]. Journal of Quality Technology.1986,18(1):41-52.
    [72]Hsiang TC and Taguchi G. A tutorial on quality control and assurance – The Taguchi methods. ASA Annual Meeting[C]. Las Vegas, Nevada. 1985
    [73] Pearn WL, Kotz S and Johnson NL. Distributional and inferential properties of process capability indices[J]. Journal of Quality Technology. 1992,24(4):216-231.
    [74]Gunter BH. The use and abuse of Cpk[J]. Quality Progress, 1989, 22(3):108-109.
    [75] S.E. Somerville and D.C. Montgomery. Process capability indices and non-normal distribution[J]. Quality Engineering, 1996,9:305-316.
    [76] K S Krishnamoorthi, Suraj Khatwani. A capability index for all occasions[A]. Annual Quality Congress Proceedings[C]. Milwaukee: American Society for Quality, 2000. 77-81.
    [77]Box, G.E.P. and Cox, D.R. An analysis of transformations[J]. Journal of the Royal Statistical Society. Series B, 1964, 26(2): 221-252
    [78] Clements JA. Process capability calculations for non-normal distributions[J]. Quality Progress 1989 , 22(2):95-100.
    [79] Kotz, S. and Johnson, N. Process Capability Indices ---A Review[J], 1992-2000. Journal of Quality Technology, 2002, 34(1):2-19.
    [80] Sundaraiyer, V.H. Estimation of a process capability index for inverse Gaussian distributions[J]. Communications in Statistics: Theory and Methods, 1996, 25(8): 2381-2398.
    [81] Pearn WL, Kotz S. Application of Clements’ method for calculating second and third generation process capability indices for non-normal Pearsonian populations[J]. Quality Engineering, 1994,7(1):139-145.
    [81] Clements JA. Process capability calculations for non-normal distributions[J]. Quality Progress , 1989 , 22(2):95-100.
    [82] Bittanti S, Lovera M, Moiraghi L. Application of non-normal process capability indices to semiconductor quality control[J]. IEEE Transactions on Semiconductor , 1998, 11(2):296-303.
    [83]Wright, P.A. A process capability index sensitive to skewness[J]. Journal of Statistical Computation and Simulation, 1995, 52(2): 195-203
    [84]Chen,H.F. and Kotz, S. An asymptotic distribution of wright’s process capability index sensitive to skewness[J]. Journal of Statistical Computation and Simulation, 1996, 55:147-158.
    [85] Bai,D.S and Choi,I.S. Process capability indices for skewed population[D]. Master Thesis, Department of Industrial Engineering, Advanced Institute of Science and Technology, Taejon, South Korea, 1997.
    [86]Wu, H.H. A werighted variance capability index for general non-normal processes[J]. Quality and Reliability Engineering International ,1999, 15:397-402.
    [87] Ding, J.M. A Method of Estimating the Process Capability Index from the First Four Moments of Non-normal Data. Quality and Reliability Engineering International, 2004,20:787-805.
    [88] Johnson, N. L. Systems of frequency curves generated by methods of translation[J].Biomertrika, 1949,36:149-176.
    [89]Farnum, N.R. Using Johnson curves to describe non-normal process data[J]. Quality Engineering,1996, 9(2):329-336.
    [90] Chou,Y.M. Transforming non-normal data to normality in statistical process control[J]. Journal of Quality Technology, 1998, 30(2):133-141.
    [91] Polansky A.M., Chou, Y.M. and Mason R.L. An algorithm for fitting transformations to non-normal data[J]. Journal of Quality Technology, 1999,31:345-350.
    [92] Polansky A.M. A smooth nonparametric approach to process capability[J]. Quality and Reliability Engineering International 1998, 14:43-48.
    [93] Polansky A.M. An algorithm for computing non-parametric capability estimate[J]. Journal of Quality Technology, 2000, 32:284-289.
    [94]Tang, L.C. Computing process capability indices for non-normal data: a review and comparative study[J]. Quality and Reliability Engineering International 1999, 15:339-353.
    [95] 何桢,齐二石,张生虎. 工序能力分析与评价中的几个问题[J]. 工业工程, 2000,3(2):25-27.
    [96] 郭正光,张国权,魏服义. 关于非正态总体的工序能力指数 Cp 值计算的研究[J]. 华南农业大学学报(自然科学版) .2004,25(1):110-111.
    [97] 田志友,田澎,田浣尘.非正态过程能力指数研究中的几个问题[J].工业工程, 2005,8(1):29-33.
    [98] 周群艳.基于 Johnson 转换体系的非正态工序能力指数估计[J].系统工程, 2004,22(5):98-102.
    [99] 汤淑明,王飞跃.过程能力指数综述[J].应用概率统计,2004,20(2):207-216.
    [100]郑小林,郑希俊,余中华.基于约翰逊曲线拟合的非正态工序能力指数估算方法[J]. 机械科学与技术,2002,21(6):878-880.
    [101] 张维铭,施雪忠,楼龙翔.非正态数据转换为正态数据的方法[J].浙江工程学院的学报, 2000,17(3):204-207.
    [102]卓德保.最佳拟合非正态过程的质量控制[J].系统工程理论方法应用,2004,13(4):372-376.
    [103]卓德保.偏态过程的质量控制方法及其应用[J].世界标准化与质量管理,1999,2:9-12.
    [104]卓德保,刘晓芬.用约翰逊曲线拟合非正态过程数据的质量控制[J].系统工程理论与实践,1999,11:97-101.
    [105]卓德保.非正态分布条件下工序能力的度量[J].世界标准化与质量管理. 1997,9(8):14-17.
    [106] 杨剑锋,徐济超,王海宁.基于 SWV 方法的偏态过程能力分析[J].系统工程,2005,23(12):85-90.
    [107]周纪芗,茆诗松.质量管理统计方法[M].北京:中国统计出版社,1999.9.
    [108]Chan, L. K., Cheng, S. W. and Spiring F. A. A new measure of process capability: C pm [J]. Journal of Quality Technology,1988, 20: 162-175.
    [109]Spring, F. A. A unified approach to process capability indices[J]. Journal of Quality Technology, 1997, 29(1): 49-58.
    [110]Johnson, N,L., Kotz, S. and Pearn, W.L. Flexible process capability indices[J]. Pakistan Journal of Statistics, 1994,10:23-31.
    [111]薛薇.SPSS 统计方法及应用[M].北京:电子工业出版社.2004.9.
    [112] Gill M. S. Stalking Six Sigma[J]. Business Month, 1990, (1): 42-46.
    [113] YOUN-MIN CHOU, ALAN M.POLANSKY, ROBERT L.MASON. Transforming non-normal data to normality in statistical process control[J]. Journal of Quality Technology, 1998, 30(2):133-141.
    [114]Hamaker HC. Relative merits of using maximum errors versus 3σin describing the performance of laser-exposure reticle writing systems[C]. Optical/Laser Microlithography VIII (Prceedings of SPIE, vol.2440), Brumer TA(eds.). SPIE: Bellingham, WA, 1995, 550-559.
    [115]L. Weinstein, D. Bukovinsky, T.Shaffer. Ensuring the benefits of requiring supplier capability analysis[J]. Journal of Corporate Accounting & Finance.2002, 13(6): 79-83
    [116] Polansky, A. M., Chou, Y.-M. and Mason R. L. Estimating process capability indices for truncated distributions[J]. Quality Engineering, 1998, 11:257-265.
    [117]Cohen, A.C. On the solution of estimating equations for truncated and censored samples from normal populations[J]. Biomeriks. 1957, 44:225-236.
    [118]Cohen, A.C. On the solution of estimating equations for truncated and censored samples from normal populations[J]. Biomeriks. 1957, 44:225-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700