具有二阶非完整约束的铰接多刚体系统动力学建模与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无根(无固定基座)铰接多刚体系统与欠驱动铰接多刚体系统的共同特征是系统的控制输入维数少于系统的广义坐标维数,其位形空间约束方程不能满足系统确定运动的控制要求,但由于关节间存在动力耦合作用,因此可基于动力学约束对系统进行控制。基于动力学模型建立的约束方程为二阶微分方程,一般不可积分,因此这两类系统实质上为具有二阶非完整约束的动力系统。本课题针对此类二阶非完整系统的动力学建模进行研究,并基于动力学模型推导出系统的非完整约束方程,从而对多冗余度移动机器人系统、欠驱动柔顺机构及空间机械臂系统的耦合运动进行分析,主要内容如下:
     (1)对具有弹性储能关节的欠驱动铰接多刚体系统进行了运动学分析,并基于D’Alembert-Lagrange原理建立了欠驱动系统的动力学模型,为基于二阶非完整约束的多冗余度欠驱动机器人系统进行动力学特性分析与运动控制奠定了基础。
     (2)通过在无根铰接多刚体系统与地面参考坐标系间增加动力虚设机构,将此类非完整多刚体系统转化为具有固定基座的欠驱动铰接多刚体系统;基于动力学模型解耦形式得到了系统的二阶非完整约束方程,推导出了虚设关节和机构关节的加速度表达式;提出了机构关节角加速度输出精度指标,对虚设机构的约束特性进行了分析,并讨论了系统结构参数对运动输出的影响。
     (3)基于无根铰接多刚体系统动力学虚设机构法,建立弹性欠驱动蛇形机器人蜿蜒运动的动力学模型,推导了被动关节的非完整约束方程;在定义了被动关节耦合运动性能指标的基础上,讨论了运动学、动力学参数及弹性储能元件刚度阻尼特性等因素对弹性欠驱动蛇形机器人运动耦合性能的影响。
     (4)以J型仿生足为例提出了一种基于柔顺构件几何形状和刚度分布的伪刚性段划分方法,建立了J型仿生足的伪刚体模型,将柔顺机构等效为了具有弹性储能关节的欠驱动铰接多刚体系统;基于对系统的受力分析及动力学虚设机构法,建立了J型足的动力学模型,并推导出了伪刚体模型等效关节加速度的非完整约束方程;在定义了力/力矩传递性能指标与耦合运动性能指标的基础上,讨论了J型仿生足结构参数变化、末端作用力对其运动性能的影响。
     (5)基于动力学虚设机构法,在空间机械臂系统与轨道坐标系间增加动力虚设机构,并基于李群、李代数给出了系统的一、二阶影响系数,建立系统的动力学模型;推导出了机械臂载体加速度的约束方程,定义了载体耦合运动性能指标,讨论了机械臂结构参数变化与主动关节输入对载体耦合运动性能的影响。
     (6)基于蛇形机器人样机对实际的无根铰接多刚体系统进行运动轨迹规划控制及实验研究。在分析关节空间机构运动学和蜿蜒步态规划的基础上,对样机驱动电机的耦合进行了力矩分析;通过实验验证了蛇形机器人可实现蜿蜒爬行、转向、抬头等多种运动方式。
The common characteristic of rootless multibody system (without fixed base) and underactuated multibody system is that the quantity of control input is less than that of generalized coordinates. The constraint equations of configuration space can’t satisfy the control request of system certain motions, but due to the dynamic coupling between joints, the dynamic constraints can be applied to the system control. These dynamic constraint equations are second-order differential equations and not integral in general, therefore these two multibody systems are essentially dynamic systems with second-order nonholonomic constraints. The paper investigates the dynamics modeling of this second-order nonholonomic systems, and analyses the coupled motion of redundant mobile robots, underactuated compliant mechanism and space manipulator system based on the nonholonomic constraint equations. The main research contents are as follows:
     (1)The kinematics of underactuated aritculated multi-body systems with elastic energy storage joints is analyzed, and a dynamic model of underactuated system is built based on D'Alembert-Lagrange principle. They provide the foundations for the analysis of dynamic characteristics and the motion control of the high redundancy underactuated robots with nonholonomic constraints.
     (2)Through adding the dynamic nominal mechanism between the rootless aritculated multi-body system and the ground reference frame, such nonholonomic multi-body system is converted into underactuated articulated multi-body system with fixed base; the second-order nonholonomic constraint equations of the system and the acceleration expressions of nominal and actual joints are derived based on the decoupling form of the dynamic model; based on the definition of joint angular acceleration output precision indices, the constraint characteristic of the nominal mechanism is analyzed and the influence of system parameters on the output is discussed.
     (3)Based on the dynamic nominal mechanism method, the dynamic model of the serpentine locomotion of elastic underactuated snake-like robot is built, and the nonholonomic constraint equations of passive joints are derived; based on the definition of the performance indices for describing the coupling motion of passive joint, the effect of kinematics, dynamics parameters and the stiffness and damping characteristics of elastic energy storage element and other factors on coupling characteristic of the elastic underactuated snake-like robot are discussed.
     (4)Taking the J-type bionic foot as an example, the pseudo-rigid-segments partition method is proposed based on the geometrical shape and stiffness distribution of compliant components, and the J-type foot pseudo-rigid-body modeling is built; therefore, the compliant mechanism is equivalent to a underactuated articulated multi-body system with elastic energy storage joints; based on force analysis and dynamics nominal mechanism method, the dynamic modeling of J-foot is established, and the nonholonomic constraint equations of the equivalent joint acceleration of pseudo-rigid body model is derived; on the basis of the definition of the performance indices of force/torque transmission and the coupling action, the effect of the structure parameters of the J-type foot and the end force on locomotion characteristic is discussed.
     (5)Based on the dynamic nominal mechanism method, the dynamic nominal mechanisms between the space manipulator system and orbit coordinate are added, and the first and second order effect coefficients of the system are given based on Lie group, Lie algebra, the dynamic model is built; the acceleration constraint equations of the carrier are derived, the coupling motion performance indices are defined, and the effect of the arm structural parameters on the carrier coupling motion performance is discussed
     (6)Based on the snake-like robot prototype, motion path planning control and experiments researches of a actual rootless multibody system are investigated; the coupling torque of servomotors of the prototype is analyzed based on the analysis of spatial linkage mechanism kinematics and serpentine crawling path planning; the experiments confirm that the robot is of ability to realize several motion modes, including lateral undulation, left and right turning motions, and uplifting head.
引文
1梅凤翔.非完整系统力学基础.北京:北京工业学院出版社,1985:10-60
    2 P.F.Muir and C.P.Neuman. Kinematic modeling of Wheeled Mobile Robots. Journal of Robotic Systems,1987,4(2):281-340
    3 Y. Nakamura, W. Chung, J. Sordalen. Design and Control of the Nonholonomic Manipulator. IEEE Transactions on Robotics and Automation,2001,17(1):48-59
    4梅风翔.非完整动力学研究.北京:北京工业学院出版杜,1987:20-45
    5 J. Baillieul. Kinematically Redundant Robots with Flexible Components. IEEE Control System Magizine,1993,13(1):15-2l
    6 J.H. Luo. Nonlinear Control Design for Nonholonomic and Underactuated Systems. USA. University of Virginia. PhD Thesis.2000
    7 G.C. Walsh, L.G. Bushnell. Orientation Control of the Dynamic Satellite. American Control Conference, Maryland, USA,1994,1:138-142
    8 R. Mukherjee, D.Q. Chen. Control of Free-Flying Underactuated Space Manipulator to Equilibrium Manfolds. IEEE Transaction on Robotics and Automation ,1993,9(5):561-570
    9 I. Kolmanovsky, N.H. McClamroch. Development in Nonholonomic Control Problems. IEEE Control System Magazine,1995,15(6):20-36
    10 S. Hirose. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford: Oxford University Press,1993:111-123
    11 K.L. Paap. M. Dehlwisch, B. Klaassen. GMD-Snake: A Semi-Autonomous Snake-like Robot. Distributed Autonomous Robotic Systems 2, Springer Verlag, Tokyo,1996:28-38
    12崔显世,颜国正,陈寅,等.一种微小型仿蛇机器人样机的研究.机器人,1999,21(2):156-160
    13陈丽,王越超,马书根,等.一种可重构蛇形机器人的研究.中国机械工程,2003,14(16):135l-1353
    14叶长龙,马书根,李斌,等.基于耦合驱动蛇形机器人机构设计与抬起的方机器人,2003,25(4): 419-423
    15 J. Alfredo, R. Horcs. Stabilization of a Class of Underactuated Systems. Proceedings of IEEE International Conference on Decision and Control Sydney, Australia,2000:2168-2173
    16 M. Reyhanogltt. Feedback Control of an Underatuated System with Two Underactuated Degrees of Freedom. Proceedings of IEEE International Conference on Decision and Control,Orlando,USA,2001:4176-4177
    17 T. Sugie, K. Fujimoto. Control of Inverted Pendulum Systems Based on Approximate Linearization: Design and Experiment. Proceedings of IEEE International Conference on Decision and Control, Lake Buena Vista, USA,1994:1647-1648
    18 B. Subudhi, A.S. Morris. Dynamic Modeling, Simulation and Control of a Manipulator with Flexible Links and Joints. Robotics and Autonomous Systems,2002,41(4):257-270
    19 M.W. Spong, D. J. Block. The Pendubot:A Mechatronie System for Control Research and Education. Proceedings of IEEE International Conference on Decision and Control, New Orleans, USA,1995:555-556
    20 Marcel Bergerman, Christopher lee, Yangsheng Xu. Experiment Study of an Underactuated Manipulator. Proc. of the IEEE/RSJ on International Intelligent robots and systems, Pittsburgh, USA,1995,(2):317-322
    21陈炜.欠驱动平面柔性机械臂动力学分析与控制研究.[北京工业大学博士论文].2006:50-80
    22 http://www.fit.ac.jp/~kino/ver_eng/theme/theme_e.html
    23 http://www.columbia.edu/cu/mece/arma/projects/NSF_career/nsf_career.shtml
    24 T. Lalibme, C.M. Gossclin. Simulation and Design of Underactuated Mechanical Graspers. Mechanism and Machine Theory,1998,33:39-57
    25 C.M. Gosselin. Lalibere Mechanical Finger with Return Actuation. 1998, US Patent 5762390
    26 L. Bifglen, C.M. Gosselin. On the Force Capability of Undemcmated Fingers. IEEE International Conference On Robotics and Automation,2003:l139-1145
    27张文增,陈强,孙振国,等.高欠驱动的拟人机器人多指手,清华大学学报(自然科学版),2004, 44(5):597-600
    28 S. Collins, A. Ruina, R. Tedrake, et al. Efficient Bipedal Robots Based on Passive Dynamic Walkers. Science Magazine,2005,307(5712):1082-1085
    29 http://www.plasticpals.com/?p=2464
    30 S. Kim, M. Spenko, S. Trujillo, et al. Smooth Vertical Surface Climbing with Directional Adhesion. IEEE a Special Issue of Transactions on Bio-Robotics,2008,24(1):65-74
    31 http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-832Spring-2009/CourseHome/
    32 G. Campion, G. Bastin, B.D. Andrea-Novel. Structural Properties and Classification of Kinematicand Dynamic Models of Wheeled Mobile Robots. IEEE Transactions on Robotics and Automation, 1996,12:47-61
    33 Z.X. Li, J.F. Canny. Nonholonomic Motion Planning. 1993
    34 G.A. Lafferriere, E.D. Sontag. Remarks on Control Lyapunov Functions for Discontinuous Stabilizing Feedback. Proceedings of the 32th IEEE Conference on Decision and Control, Texas, USA,1993,1:306-308
    35 I. Kolmanovksv, M. Revhanoglu, N.H. McClamroch. Switched Mode Feedback Control Laws for Nonholonomic Systems in Extended Power Form. Systems and Control Letters,1996,27:29-36
    36 Y. Kanayama, Y. Kimura, F. Miyazaki, et al. A Stable Tracking Control Method for an Autonomous Mobile Robot. Proceedings of IEEE International Conference on Robotics and Automation, Boston, USA,1990:384-389
    37 D.H. Kim, J.H. Oh. Globally Asymptotically Stable Tracking Control of Mobile Robots. IEEE International Conference on Control and Applications, Trieste, Italy,1998:1297–1301
    38 K.H. Park, S.B. Cho, Y.W. Lee. Optimal Tracking Control of a Nonholonomic Mobile Robot. IEEE International Symposium Industrial on Electronics Proceedings, Pusan, Korea, 2001,3:2073-2076
    39 M.Alamir, N. Marchand. Constrained Minimum-Time-Oriented Feedback Control for the Stabilization of Nonholonomic Systems in Chained Form. Journal of Optimization Theory and Applications,2002,118(2):229-244
    40 R.W. Brockett. Asymptotic stability and feedback stabilization,1983:20-35
    41胡跃明,周其节,裴海龙.非完整控制系统的理论与应用.控制理论与应用,1996,13(1):1-10
    42李胜.非完整系统若干控制问题的研究. [南京理工大学工学博士论文].2005:42-50
    43 A. Astolfi. Discontinuous Control of Nonholonomic Systems. Systems and Control Letters,1996, 27(1):37-45
    44 M. Reyhanoglu. On the Stabliization of a Class of Nonholonomic Systems Using Invariant Manifold Technique. Proceedings of IEEE Conference on Decision and Control, New Orleans, USA,1995:2125-2126
    45 H.G. Tanner, K.J. Kyriakopoulos. Discontinuous Backstepping for Stabilization of Nonholonomic Mobile Robots. Proceedings of IEEE Conference on Robotics and Automation, Washington DC, USA,2002,3948-3953
    46 F. Fagnani, S. Zampieri. Stability Analysis and Synthesis for Scalar Linear Systems With a Quantized Feedback. IEEE Transactions on Automatic Control,2003,48:1569-1584
    47 R.T. M'Closkey, R,M. Murray. Exponemial Stabilization of Driftless Nonlinear Control Systems Using Homogeneous Feedback. IEEE Transactions on Automatic Control,1997,5:614-628
    48 K. Fujimoto, T. Sugie. Time-varying Stabilization of Nonholonomic Hamiltonian Systems via Canonical Transformations. Proceedings of the American Control Conference, Chicago, USA, 2000,5:3269-3273
    49 A. Loria, E. Panteley, D. Popovic, et al. An Extension of Matrosov's Theorem with Application to Stabilization of Nonholonomic Control Systems. Proceedings of IEEE Conference on Decision and Control, Las Vegas, USA,2002,2:1528-1533
    50董文杰,霍伟.一类不确定非完整动力学系统的时变镇定.自动化报,1999,25(3): 48-54
    51李世华.非完整系统的光滑时变反馈控制. [东南大学工学博士论文].2001:33-46.
    52马保离,霍伟.非完整链式系统的时变光滑指数镇定.自动化学报,2003,29(2):301-305
    53 H. Krishnan, M. Reyhanoglu, N.H. McClamroch. Attitude Stabilization of a Rigid Spacecraft Using Two Control Torques:A Nonlinear Control Approach Based on the Spacecraft Attitude Dynamics . Automatica (Journal of IFAC),1994,30(06):1023-1027
    54 W. Oelen, H. Berghuis, H. Nijmeijer, et al. Hybrid Stabilizing Control on a Real Mobile Robot. IEEE Robotics and Automation Magazine,1995,2(2):16-23
    55 Z. Xi, G. Feng, Z. Jiang, eatl. On Output Feedback Stabilization of Uncertain Chained System. The 8th International Conference on Control Automation Robotics and Vision,2004,1182-1184
    56 R.W. Brockett. Pattern Generation and Control of Nonlinear System. IEEE Transactions on Automatic Control,2003,48(10):1699-1711
    57刘殿通.一类欠驱动机械系统的智能控制研究.[中国科院自动化研究所工学博士论文]. 2003:32-40
    58 C.L. Rui, N.H. McClamroch. Stabilization and Asymptotic Path Tracking of a Rolling Disk. Proceedings of IEEE Conference on Decision and Control, New Orleans, USA,1995,4:4294-4299
    59 C. Altafmi, P.O. Gutman. Path Following with Reduced Off-tracking for the n-trailer System. Proceedings of IEEE Conference on Decision and Control, Tampa, USA,1998,3:3123-3128
    60 Y. Hada, E. Hemeldan, K. Takase, et al. Trajectory Tracking Control of a Nonholonomic Mobile Robot Using iGPS and Odometry. Proceedings of IEEE International Conference on MultisensorFusion and Integration for Intelligent Systems, Tokyo, Japan, 2003, 51-57
    61 J.D. Tan, N. Xi, W. Kang. Non-time Based Tracking Controller for Mobile Robots. IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton , Canada,1999,2:919 -924
    62 E. Hu, S.X. Yang, N. Xi. A Novel Non-time Based Tracking Controller for Nonholonomic Mobile Robots. Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, Banff, Canada,2001:119-124
    63 B. Andrea, G. Campion, G. Bastin. Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization. The International Journal of Robotics Research,1995,14(6):543-559
    64 S. Lee, Y. Youm, W. Chung. Control of Car-like Mobile Robots for Posture Stabilization. Intelligent Robots and Systems,1999,3:1745-1750
    65董文杰,霍伟.受非完整约束非完整移动机器人的跟踪控制.自动化学报,2000,26(1):1-5
    66王丰尧.滑模变结构控制.北京:机械工业出版社,1995:80-140
    67胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002:20-45
    68 J.M. Yang, I.H. Choi, J.H. Kim. Sliding Mode Control of a Nonholonomic Wheeled Mobile Robot for Trajectory Tracking. Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium,1998,4:2983-2988
    69 D.K. Chwa, J.H. Seo, P. Kim, et al. Sliding Mode Tracking Control of Nonholonomic Wheeled Mobile Robots. Proceedings of the American Control Conference, Anchorage, USA, 2002:3991-3996
    70王朝立,霍伟.一类不确定非完整动力学系统的鲁棒镇定及其在移动机器人中的应用.机器人,1998,20(6):442-447
    71 D.K. Chwa. Sliding Mode Tracking Control of Nonholonomic Wheeled Mobile Robots in Polar Coordinates. IEEE Transactions on Control Systems Technology, Boston, USA, 2004 ,12(4):637-644
    72 Z.P. Jiang, H. Nijmeijer. Tracking Control of Mobile Robots:A Case Study in Backstepping. Automatic (Journal of IFAC),1997,33(7):1393-1399
    73 W.G. Wh, H.T. Chen, Y.J. Wang. Backstepping Design for Path Tracking of Mobile Robots. Proceedings of IEEE International Conference on Intelligent Robots and Systems,Kyongju, Korea, 1999:1822-1827
    74 K. Kozlowski, J. Majchrzak. A Backstepping Approach to Control a Nonholonomic Mobile Robot. Proceedings of IEEE Conference on Robotics and Automation, Washington DC, USA, 2002:3972-3977
    75马海涛.非完整轮式移动机器人的运动控制.[中国科技大学工学博士论文].2009:27-37
    76 C. Samson. Velocity and Torque Feedback Control of a Nonholonomic Cart. Advanced Robot Control,1991:125-151
    77 R. Colbaugh, E. Barany. Adaptive Control of Nonholonomic Robotic Systems. Journal of Robotics System,1998,15(7):365-393
    78 W. Dong, W.L. Xu. Adaptive Tracking Control of Uncertain Nonholonomic Dynamic. IEEE Transactions on Automatic Control,2001,46(3):450-454
    79易继揩,侯媛彬.智能控制技术.北京:北京工业大学出版社,1999:21-48
    80刘殿通.郭卫平.易建强.一类欠驱动机械系统的动态及其稳定控制.自动化学报,2006,32(3): 422-427
    81 C. Samson. Control of Chained Systems Application to Path Following and Time-Varying Point Stabilization of Mobile Robots. IEEE Transactions on Automatic Control,1995,40(1):64-77
    82董文杰,霍伟.动态非完整控制系统的指数镇定及其在一类车式机器人中的应用,机器人, 1998,20(2):88-92
    83 Murray, M. Richard, S. Sastry. Nonholonomic Motion Planning: Steering Using Sinusoids. IEEE Transaction on Automatic Control,1993,38(5):700-716
    84 R.W. Brockett. Asymptotic Stability and Feedback Stablization. Birkhauser,1983:181-208
    85 O.J. Srdalen. Conversation of Kinematics of a Car with N Trailers into a Chained Form. IEEE International Conference on Robotics and Automation, Atlanta, USA,1993:382-387
    86董文杰,霍伟.链式系统的轨迹跟踪控制.自动化学报,2000,26(3):310-316
    87 L.G. Buslmell, D. Tilbury, S.S. Sastry. Stcedng Three-input Chained form Nonholonomic Systems Using Sinusoids: The Fire Truck Example. Proceedings of the European Control Conference, Cambridge, UK,1993:1432-1437
    88马保离,宗光华,霍伟.非完整链式系统的输出跟踪控制-动态扩展线性化方法.自动化学报, 1999,25(3):3l0-322
    89 J. M. Hollerbach. A Recursive Formulation of Lagrangian Manipulator Dynamics and Comparative Study of Dynamics Formulation Complexity. IEEE Transactions on Systems, Man,and Cybernetics,1980,10(11):730-736
    90 H. Arai, S. Tachi. Position Control of a Manipulator with Passive Joints Using Dynamic Coupling. IEEE Transactions on Robotics and Automation,1991,7(4):528-534
    91 H. Arai, K. Tanie, S. Tachi. Dynamic Control of a Manipulator with Passive Joints in Operational Space. IEEE Transaction on Robotics and Automation,1993,9:850-893
    92 A. De Luca, S. Lannitti, R. Matone, et a1. Control Problems in Underactuated Manipulators. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy,2001:855-861
    93 A. De Luca, S. lannitti, R. Mattonc, et a1. Underactuated Manipulators: Control Properties and Techniques. Machine Intelligence and Robotic Control,2002,4(3):113-125
    94 G. Oriolo, Y. Nakamura. Control of Mechanical Systems with Second-Order Nonholonomic Constraints: Underactuated Manipulators. Proceedings of the Conference on Decision and Control, Brighton, England,1991:2398-2403
    95 M.W. Sprong. Underactuated Mechanical Systems Control Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences, Springer Verlag,1997:225-230.
    96 M. Reyhanogin, A. SchatL, N.H. Clamroch, et a1. Dynamics and Control of a Class of Underaetuated Mechanical Systems. IEEE Transactions on Automatic Control,1999,44(9):1663 -1671
    97 A. De Luca, S. lannitti. A Simple STLC Test for Mechanical Systems Underactuated by One Control. Proceedings of IEEE International Conference on Robotics and Automation, Washington. DC,2002:1735-1740
    98 T. Narikiyo, J. Sahashi, K. Misao. Control of a Class of Underactuated Mechanical Systems. Proceedings of IEEE International Conference on Hybrid Systems and Applications, LA, USA, 2006:231-241
    99 Xin Xin, Masahiro Kaneda. A Robust Control Approach to the Swing up Control Problem for Acrobot. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001:1650-1655
    100 M.J. Zhang, T.J. Tam. Hybrid Control of the Pendubot. IEEE/ASME Transactions on Mechatronics,2002,7(1):79-86
    101 Yi Jianqiang, Yubazaki Naoyoshi, Hirta Kaom. A New Fuzzy Controller for Stabilization ofParallel-type Double Inverted Pendulum System. Fuzzy Sets and Systems, 2002, 1(126): 105-119
    102 T. Suzuki, M. Koinura, Y. Nakamma. Chaos and Nonlinear Control of a Nonholonomic Free-joint Manipulator. Proceedings of IEEE International Conference on Robotics Automation, Minneapolis, Minnsota,1996:668-675
    103 T. Suzuki, Y. Nakamura. Nonlinear Control of a Nonholonomic Free Joint Manipulator with the Averaging Method. Proceedings of 35th Conference on Decision and Control, Kobe, 1996: 1694-1699
    104 I. Kiyotaka, W. Keigo, I. Keisuke. The Design of Fuzzy Energy Regions Optimized by GA for a Switching Control of Multi-link Underactuated Manipulators. International Conference on Control Automation and Systems, Seoul, Korea,2007:24-29
    105 I. Keisuke, W. Keigo, I. Kiyotaka. Control of Three-link Underactuated Manipulators by a Logic-based Switching Method. Proceedings of IEEE International Conference on Networking, Sensing and Control, Okayama, Japan,2009:108-112
    106 A. De Luca, R. Mattone, G. Oriolo. Steering a Class of Redundant Mechanisms through End-effector Generalized Forces. IEEE Transactions on Robotics and Automation,1998,14(2): 329-335
    107 V. Sangwan, S.K. Agrawal. Generation of Leg-like Motion and Limit Cycles with an Underactuated Two DOF Linkage. Proceedings of the IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy,2006:684-689
    108 N. Sadati, K. Hamed. Neural Controller for a 5-link Planar Biped Robot. Proceedings of IEEE International Workshop on Robot and Human Interactive Communication, Korea, 2007: 980-985
    109 M. Reyhanoglu. Control and Stabilization of an Underactuated Surface Vessel. Proceedings of IEEE Conference on Decision and Control, Kobe,1996:2371-2376
    110 M. Reyhanoglu, S. Cho, N.H. Mcclamroch, et a1. Discontinuous Feedback Control of a Planar Rigid Body with an Underactuated Degree of Freedom. Proceedings of IEEE Conference on Decision and Control, Florida, USA,1998:433-438
    111 K.D. Do, Z.P. Jiang, J. Pan. Robust Adaptive Path Following of Underactuated Ship. Automatica, 2004,40(6):929-944
    112 V. Sankaranarayanan, A.D. Mahindraka, R.N. Banavar. A Switched Controller for an Underactuated Underwater Vehicle. Communications in Nonlinear. Science and NumericalSimulation,2008,13(10):2266-2278
    113 Y.S. Murat, H. Temeltas.General Underactuated Cooperating Manipulators in Space Manipulation. Proceedings of 2nd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey,2005:293-297
    114 L. Birglen. An Introduction to the Analysis of Linkage-Driven Compliant Underactuated Fingers. Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Philadelphia, USA,2006
    115赖旭芝.一类非完整欠驱动机械系统的智能控制.[中南大学博士论文].2001:38-42
    116赖旭芝,蔡自兴,吴敏.一类欠驱动机械系统的模糊与变结构控制.自动化学报,2001,27 (6):850-854
    117傅雪冬,裴海龙,吴国钊.Pendubot基于能量的非线性控制.机器人,2000,22(6):451-456
    118栾楠,明爱国,赵锡芳,等.含有非驱动关节机器人的学习控制.机器人,2002,24(2):144-148
    119朱齐丹,席志红.具有非驱动关节机器人的位置闭环控制.哈尔滨工程大学学报,2002,23 (4):67-72
    120李祖枢.小车三级摆摆起倒立的仿人智能控制,华中科技大学学报(自然科学版),2004,S1: 38-41
    121李德毅.三级倒立摆的云模型控制方法及动平衡模式.中国工程科学,1999,1(2):4l-45
    122马保离,宗光华,霍伟.非完整链式系统的路径规划-多项式拟合法.自动化学报,1999, 25(5):26-35
    123 Xu W L, Ma B L. Stabilization of Second-order Nonholonoinic Systems in Canonical Chained Form. Robotics and Autonomous Systems,2001,34:223-233
    124邓秀娟,陆震.基于微分几何的欠驱动机器人动力学建模和控制.机械工程学报,2007, 43(10):132-137
    125董文杰.不确定非完整动力学系统控制研究.[北京航空航天大学博士论文].2002:33-68
    126 Jian S. Dai, Tieshi Zhao. Stiffness Characteristics and Kinematics Analysis of Two-Link Elastic Underactuated Manipulators. Journal of Robotic Systems,2002,19(4):169-176
    127 Tieshi Zhao, Jian S. Dai. Dynamics and Coupling Actuation of Elastic Underactuated Manipulators. Journal of Robotic Systems,2003,20(3):135-146
    128何广平,陆震,王凤翔.欠驱动冗余度空间机器人优化控制.控制理论与应用,2004,21(2):305 -310
    129何广平,杨泽勇,范春辉等.双臂弹性单腿机器人的垂直跳跃控制.机械工程学报,2007,43(5): 44-49
    130骆敏舟,梅涛,卢朝洪.多用途欠驱动手爪的自主抓取研究.机器人.2005,27(1):20-25
    131戈新生,吕杰.欠驱动双刚体航天器姿态运动规划的数值方法.宇航学报,2009,30(2):645-651
    132刘庆波.水平运动的欠驱动机器人运动规划与控制研究.[北京工业大学工学博士论文].2009: 40-49
    133 Chen Wei, Yu Yueqing, Zhang Xuping, et al. Vibration Controllability of Underactuated Robots with Flexible Links. International Technology and Innovation Conference 2006, Hangzhou, China, 2006:1872-1878
    134 J.S. Dai, J.R. Jones. Interrelationship between Screw Systems and Their Reciprocal System and Applications. Mechanism and Machine Theory,2001,36(5):633-651
    135黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997:45-88
    136理查德·摩雷,李泽湘,厦恩卡·萨思特里.机器人操作的数学导论.北京:机械工业出版社,1998:5-60
    137张劲松,秦卫阳.高等动力学.北京:科学出版社,2004:135-136
    138黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006:321-323
    139 M. Yim, D.G. Duf, K.D. Roufas. Polybot: A Modular Reconfigurable Robot. Proceeding IEEE International Conference on Robotics and Automation, San Francisco,2000:301-306
    140 S.G. MA, H. Araya, L. Li. Development of A Creeping Locomotion Snake Robot. IASTED International Journal of Robotics and Automation,2002,l7(4):146-153
    141李斌,叶长龙.蛇形机器人的扭转运动研究.中国机械工程,2005,16(11):941-945
    142郭希娟,耿清甲.串联机器人加速度性能指标分析.机械工程学报,2008,44(9):56-60
    143 R. Luharuka, P.J. Hesketh. Design of Fully Compliant , In-plane Rotary , Bistable Micro-mechanisms for MEMS applications. Sensors and Actuators,2007,134(1):231-238
    144 N.T. Pavlovic. Compliant Mechanism Design for Realizing of Axial Link Translation. Mechanism and Machine Theory,2009,44(5):1082-1091.
    145 N. Lobontiu, E. Garcia. Circular-hinge Line Dement for Finite Element Analysis of Compliant Mechanisms. Journal of Mechanisms in Design,2005,127(4):766-773
    146王雯静,余跃庆,王华伟.柔顺机构国内外研究现状分析J机械设计,2007,24(6):1-4.
    147 L.L Howell, A. Midha. A Method for The Design of Compliant Mechanisms with Small-LengthFlexural Pivots. Transaction of the ASME,1994,116(3):280-290
    148 N.D. Masters, L.L Howell. A Three Degree-of-Freedom Model for Self-retracting Fully Compliant Bistable Micro-mechanisms. Journal of Mechanical Design,2005,127(4):739-744
    149于靖军,毕树生,宗光华,等.基于伪刚体模型法的全柔性机构位置分析.机械工程学报,2002, 16(2):75-78
    150赵山杉,毕树生,宗光华,等.基于曲线柔性单元的新型大变形柔性铰链.机械工程学报,2009, 45(4):8-12
    151 L.L Howell,余跃庆.柔顺机构学.北京:高等教育出版,2007:104-115
    152赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制.[燕山大学工学博士论文].2009:51-57
    153熊有伦,丁汉,刘恩沧.机器人学.北京:机械工业出版社,1993:153-157
    154 M. Montemerlo. 25 Years of Space Automation and Robotics at NASA:An Historical Perspective. Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics and Automation in Space, Quebec, Canadian Space Agency,2001:22-30
    155陈力,刘延柱.空间机械臂本体与末端爪手协调运动的自适应控制方法.控制理论与应用, 2002,19(2):274-278
    156 L. Evans. Canadian Space Robotics on Board the International Space Station. CCToMM Symposium on Mechanisms, Machines, and Mechatronics, Montreal, Canada: Canadian Space Agency,2005:26-27
    157 O. Parlaktuna, M. Ozkan. Adaptive Control of Free-Floating Space Manipulator Using Dynamically Equivalent manipulator Model. Robotics and Autonomous System,2004,46 (3):185-193
    158温锐.基于SE(3)/se(3)的并联六维力传感器性能研究.[燕山大学工学硕士学位论文]. 2007:20-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700